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ABSTRACT

Quantum magnetism remains a hot topic in condensed matter physics due to its complexity
and possible powerful and significant applications in data storage and memory. To understand
how the materials can achieve these goals, one should have a clear idea about the fundamentals
behind it. In this thesis, we focus on three examples that can help us deepen the knowledge in
many-body effects, which stand to be crucial for quantum magnetism.

(1) The well-known CuSO4·5D2O material has already demonstrated the model behaviour as
one-dimensional Heisenberg antiferromagnet in zero and high (H > Hsat) fields. The fully-
polarized magnetic ground state is described by linear spin-wave theory with magnons, whereas
at zero field, the excitations are pairs of topological excitations called spinons. In an intermediate
field, the dynamic properties are even more complicated. The inelastic spectrum cannot be
reproduced without considering exotic elementary excitations and bound states such as psinons
and Bethe strings. Although Bethe in 1931 provided an exact solution for 1D Heisenberg systems,
there is still no quantitative comparison between theory and experiment.

(2) The magnetic ground state and hence the dynamic properties of the gemstone mineral
green dioptase, Cu6[Si6O18] · 6H2O are under debate: starting from controversial theories and
continuing with non-explained experimental observations. Dioptase is a quasi-one-dimensional
spin chain with dominant antiferromagnetic interactions. Recent studies claim the classical
spin chain behaviour and absence of any quantum fluctuations in the system. In contrast, our
experimental findings indicate the presence of continuous excitations above and below TN .

(3) Newly synthesized material CuSb2O6 of rosiaite-type structure tends to become a quantum
spin-liquid (QSL) candidate since the magnetic cations Cu2+ are arranged in trigonal layers,
and no long-range order is observed down to 2 K. The idea of QSL on the triangular lattice
was proposed by P. Anderson in 1973. Since his work, a lot of efforts have been made to
explore deeper, both theoretically and experimentally, this state. As for now, there are several
requirements needed to be met – small spin number, absence of long-range order or spin
freezing, long-range entanglement, and the associated fractional spin excitations. We aim to
establish whether or not CuSb2O6 can be considered as a potential quantum spin-liquid candidate
employing different techniques suitable for a powder sample.

Keywords: quantum spin liquids, quantum spin chains, frustration, inelastic neutron scattering, Heisenberg

antiferromagnets, polarized neutrons, time-of-flight spectroscopy.
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RÉSUMÉ

Le magnétisme quantique reste un sujet brûlant en physique de la matière condensée en raison
de sa complexité et de ses possibles applications puissantes et importantes dans le stockage de
données et la mémoire. Pour comprendre comment les matériaux peuvent atteindre ces objectifs,
il faut avoir une idée claire des principes fondamentaux qui les sous-tendent. Dans cette thèse,
nous nous concentrons sur trois exemples qui peuvent nous aider à approfondir les connaissances
sur les effets à N corps, ce qui s’avère crucial pour le magnétisme quantique.

(1) Le matériau bien connu CuSO4·5D2O a déjà démontré le comportement du modèle en
tant qu’antiferromagnétique de Heisenberg unidimensionnel dans des champs nuls et élevés
(H > Hsat). L’état fondamental magnétique totalement polarisé est décrit par la théorie des
ondes de spin linéaires avec des magnons alors qu’à champ nul les excitations sont des paires
d’excitations topologiques appelées spinons. Dans un domaine intermédiaire, les propriétés
dynamiques sont encore plus compliquées. Le spectre inélastique ne peut pas être reproduit sans
considérer les excitations élémentaires exotiques et les états liés tels que les psinson et les cordes
de Bethe. Bien que Bethe en 1931 ait fourni une solution exacte pour les systèmes Heisenberg
1D, il n’y a toujours pas de comparaison quantitative entre la théorie et l’expérience.

(2) L’état fondamental magnétique et donc les propriétés dynamiques de la dioptase verte
minérale de pierre précieuse, Cu6[Si6O18] · 6H2O sont en débat : partir de théories controversées
et continuer avec des observations expérimentales non expliquées. La dioptase est une chaîne
de spin quasi unidimensionnelle avec des interactions antiferromagnétiques dominantes. Des
études récentes revendiquent le comportement classique de la chaîne de spin et l’absence de
fluctuations quantiques dans le système. En revanche, nos résultats expérimentaux indiquent la
présence d’excitations continues au-dessus et au-dessous de TN .

(3) Le matériau CuSb2O6 nouvellement synthétisé de structure de type rosiaite tend à devenir un
candidat liquide de spin quantique (QSL) puisque les cations magnétiques Cu2+ sont disposés
en couches trigonales et aucun ordre à longue distance n’est observé jusqu’à 2 K. L’idée de
QSL sur le réseau triangulaire a été proposée par P. Anderson en 1973. Depuis ses travaux, de
nombreux efforts ont été déployés pour explorer plus profondément, à la fois théoriquement et
expérimentalement, cet état. Pour l’instant, plusieurs exigences doivent être remplies – petit
nombre de spins, absence d’ordre à longue distance ou de gel de spin, intrication à longue
distance et les excitations de spin fractionnaires associées. Nous visons à établir si CuSb2O6 peut
être considéré comme un candidat potentiel liquide de spin quantique en utilisant différentes
techniques adaptées à un échantillon de poudre.

Mots clés: liquides de spin quantiques, chaînes de spin quantiques, frustration, diffusion inélastique de

neutrons, antiferromagnétiques de Heisenberg, neutrons polarisés, spectroscopie de temps de vol.
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CHAPTER 1

INTRODUCTION

Spinons are a commonly used characteristic associated with the spin-liquid behavior. At the
moment, there are many reviews [1–6] devoted to quantum spin liquids, their experimental
realizations, as well as theoretical aspects of the corresponding ground state. Here, we present
the selected properties of certain materials that are somehow related to the materials studied in
this thesis.

A historically significant model in the pursuit of the quantum spin liquid (QSL) ground state
is a one-dimensional chain of antiferromagnetically (AFM) coupled isotropic or Heisenberg
S = 1/2 moments. One of the textbook examples of such material is KCuF3 [7]. The dynamical
structure factor in zero field (Fig.1.1 right) does not correspond to the classical spin-wave picture
with magnons, as elementary excitations (Fig.1.1 left). In fact, there is a continuum, which arises
due to fractionalized excitations, called spinons. Each of the spinons carries spin-1/2 and freely
propagates along the chain with no energy loss. Since each spinon has its own energy-momentum
relation, the spectra appear continuous. This model was solved exactly by Bethe [8] in 1931, who
predicted a spin-pair correlations to be proportional to a power law: hS(0) · S(r)it=0 / (�1)r

r .

If for one-dimensional case there is an exact analytical solution, situation changes drastically for
higher dimensions. And one of the key ingredients to observe a QSL state in higher dimensions
is frustration. To represent the ground state of antiferromagnetically interacting spins on the
two-dimensional triangular lattice, P. W. Anderson proposed a resonating valence bond (RVB)
model [9], in which any two antiparallel spins pair up to form a spin singlet, with a total spin
S = 0 and vanishing net magnetic moment. There is no particular arrangement of these singlets
and the wavefunction of this state is a linear superposition of all possible configurations of
the singlets (Fig.1.2). This state was termed as quantum spin liquid QSL and characterized
by the following features: absence of long-range magnetic order, no spontaneous symmetry
breaking of the crystal lattice or spins, long-range entanglement between the spins, and fractional

13



CHAPTER 1 – INTRODUCTION

FIGURE 1.1
Left : Classical antiferromagnetic magnon dispersion calculated for J = 1 meV; right : dynamical

structure factor of KCuF3 measured at T = 6 K (adapted from [7]).

spin excitations. Later on, it has been shown [10] that there is a classical solution to avoid
such a geometrically frustrated configuration on the triangular lattice – each spin on a triangle
points to 120� with respect to each other resulting to a ground state with the 120� long-range
magnetic order [5]. However, if one includes further neighbor interactions, in a certain regions of
J1 � J2 ratios, QSL state is yet a ground state of the system. For the kagome lattice, geometrical
frustration cannot be bypassed by having the 120� order as does the triangular lattice. Theoretical
calculations suggest that the ground state for the kagome lattice is a QSL, although the detailed
classification for such a state is still under hot debate. One of the remarkable examples is
herberthsmithite [11], where the diffuse magnetic scattering was observed in the inelastic spectra
and in which this signal was attributed to multi-spinon continua.

FIGURE 1.2
Left : Triangular lattice (adapted from [5]) and its J1 � J2 phase diagram (adapted from [12]);
right : Kagome lattice (adapted from [5]) and magnetic excitations of herberthsmithite (adapted

from [11]).

In three-dimensional (3D) spin systems, the fractionalisation is also possible. One of the well-
explored examples are pyrochlore compounds which consists of a three-dimensional network
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of corner-sharing tetrahedra. The pyrochlore lattice can support the spin ice state which arises
from the combination of strong local Ising anisotropy and ferromagnetic interactions as was
found in Ho2Ti2O7 [13]. Spin ice is characterized by a macroscopic ground state degeneracy
and fractional monopole excitations. Those states only exist for large local moments and/or very
strong local anisotropies. In comparison to the pyrochlore compounds, current understanding
of three-dimensional networks of corner-sharing triangles, such as the hyperkagome lattice, is
much less developed, despite the fact that they are expected to support spin liquid behavior in
the presence of isotropic antiferromagnetic interactions [14]. One of the physical realisations of
the hyperkagome lattice is PbCuTe2O6, which has quantum S = 1/2 ions and is proximate to a
quantum spin liquid [15].

FIGURE 1.3
Left : Pyrochlore lattice (adapted from [16]) and the scattering function S(Q) of Ho2Ti2O7 [13];
right : hyperkagome lattice and single crystal inelastic spectra of PbCuTe2O6 measured at

constant energy transfer [15].

In the current thesis, three materials with spinon-like excitations will be presented – starting
from its experimental evidence in a quasi-one-dimensional system and two (three)-dimensional
frustrated triangular system and ending with the evolution of spinon-continuum in applied
magnetic field. The chapters are organized as follows.

Chapter 2 reviews the methods, which were used during the current thesis. Most of it is devoted
to the description of the neutron scattering technique since it is the main and most powerful
method for studying quantum magnets.

Chapter 3 presents a very accurate study of the best-known realization of one-dimensional
Heisenberg S = 1/2 antiferromagnet CuSO4 · 5D2O in the applied magnetic field below
saturation. The new quasiparticles, which govern the spectrum in applied magnetic field, behave
like spinons in low applied magnetic field and demonstrate magnon-like bound states close to
the saturation.
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Chapter 4 demonstrates the evidence of quantum fluctuations of spinon-like character in very
contradicting quasi-one-dimensional material Cu6[Si6O18] · 6H2O. With polarization analysis,
we extracted pure magnetic scattering and observed continuum-like scattering below and above
TN .

Chapter 5 is a comprehensive research of a new potential quantum spin liquid candidate
CuSb2O6. The sample is available only in powder, thus we have used other experimental
techniques besides neutron scattering for its characterization. The experimental findings so far
indicate a highly frustrated (including frustration in triangular motifs) magnetic system with no
evidence of long-range magnetic order, which is probably three-dimensional realization of a
quantum spin liquid.
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CHAPTER 2

METHODS

In this chapter, I will provide a reader with the experimental techniques used during the current
thesis. The idea of this chapter is not to rewrite Squires [17], Lovesey [18], or other (e.g.
[19]) excellent books but to highlight the main principles and equations, which are essential to
understand during the data analysis.

2.1 NEUTRON SCATTERING

Neutron scattering is a very powerful technique to study condensed matter and, especially
magnetism. This is primarily due to the peculiarities of the interaction of a neutron with matter.
Neutron probes the whole volume of the sample and generally scatters only once within the
sample. The scattering process can be described with the so-called Master equation, where
scattering cross-section is defined as

d2�

d⌦dEf
=

kf
ki

⇣ m

2⇡~2
⌘2 X

�i,�f ,n0,n1

p(�i)p(n0)|hkf�fn1|V |ki�in0i|2�(✏1 � ✏0 � ~!), (2.1)

where d⌦ is a solid angle of the neutron scattered; dEf is a final energy interval, which is
captured by the detector; ki, kf are initial and final wave vector of a neutron; m is a neutron
mass; �i, �f are initial and final neutron spin state; n0, n1 are quantum number for the sample’s
initial and final state; ✏0, ✏1 are initial and final sample energy; Ei, Ef are initial and final energy
of a neutron; Ei � Ef = ~! is an energy transfer; V is an interaction potential between sample
and neutron; p(n0) is a probability to find a sample in the initial state n0; p(�i) is a probability to
find neutron in the initial spin state �i.
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2.1.1 NUCLEAR SCATTERING

Neutron interacts with a nucleus, which leads to an isotropic nuclear scattering characterized by
a scattering length b. The scattering length depends on the isotope, the nuclear spin value, and the
total spin of neutron and nucleus. Coherent scattering is the result of the interference of scattered
neutrons from different crystallographic sites. It manifests itself in the form of Bragg reflections
or phonons, while incoherent scattering appears due to the fluctuations of the scattering length

from the mean value b̄ on each site
q

¯(b2)� (b̄)2. For monoatomic sample, the cross-sections
can be read as

✓
d2�

d⌦dEf

◆

coh

=
kf
ki

b̄2

2⇡~
X

ij

Z +1

�1
heiQ[rj(t)�ri(0)]ie�i!tdt (2.2)

✓
d2�

d⌦dEf

◆

incoh

=
kf
ki

¯(b2)� (b̄)2

2⇡~
X

i

Z +1

�1
heiQ[ri(t)�ri(0)]ie�i!tdt, (2.3)

where eiQri(t) reflects the definition of an interaction by Fermi pseudopotential, Q is momentum
transfer and r stands for nucleus position in the unit cell.

It is worth mentioning here the link of a double differential cross-section with a so-called
scattering function or dynamical structure factor S(Q,!) as follows:

d2�

d⌦dEf
=

kf
ki
b̄2S(Q,!). (2.4)

In this equation, the dynamical structure factor multiplied with b̄2 reflects the properties of the
sample. The momentum transfer dependence indicates the atomic positions, whereas energy
dependence expresses the motion of atoms. Thus, neutrons allow us to study where the atoms
are and how they move. Moreover, the double differential cross-section is the entry measured
during the neutron experiment.

2.1.2 MAGNETIC SCATTERING

Since the neutron has a spin S = 1/2 and hence a magnetic moment, it probes the electronic
magnetic moment of a sample via dipole-dipole interaction, which is as strong as the interaction
with the nuclei, so that makes neutron a powerful instrument to study magnetism. However,
the magnetic scattering is no longer isotropic – one observes only magnetic moments (and/or
its fluctuations), which are perpendicular to the momentum transfer Q. Similarly to Eq.2.4, the
double-differential cross-section for magnetic scattering is given by:
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✓
d2�

d⌦dEf

◆

mag

=
kf
ki
(�r0)

2Smag(Q,!), (2.5)

where (�r0) is a strength of dipole-dipole interaction between the neutron and electronic spins,
and Smag(Q,!) reveals the information about the structure and movement of electronic spins, so
that describes the magnetic correlations of the system in space and in time.

Considering that the neutron senses only perpendicular projection of the magnetic moments, one
rewrites Eq.2.5 as:

✓
d2�

d⌦dEf

◆

mag

=
kf
ki
(�r0)

2

✓
gf(Q)

2

◆2

e�2W (Q)
X

↵�

⇣
�↵� � Q̂↵Q̂�

⌘
S↵�
mag(Q,!), (2.6)

where f(Q) is a magnetic form-factor for a given magnetic atom, g is a gyromagnetic ratio,
e�2W (Q) is a Debye-Waller factor, which reflects the nuclei motion,

⇣
�↵� � Q̂↵Q̂�

⌘
is a dipole

factor expressing perpendicular projection of a magnetic moment, so that |M?Q| = Q̂ ⇥⇣
M(Q)⇥ Q̂

⌘
, in which M(Q) is a Fourier transform of the sample magnetization M(r). The

dynamical structure factor S↵�(Q,!) is defined as

S↵�
mag(Q,!) =

1

2⇡~
X

ij

e�iQ(ri�rj)

Z +1

�1
dte�i!thS↵

i (t)S
�
j (0)i, (2.7)

where hS↵
i (t)S

�
j (0)i reveals spin-spin correlations present in the sample.

To eliminate a trivial temperature dependence of the excitations population in S(Q,!), it is
worthwhile to analyze the dynamic susceptibility �(Q,!), which imaginary part �00(Q,!), is
related to S(Q,!) as

S(Q,!) = � 1

⇡

1

1� e�~!/kBT
�00(Q,!). (2.8)

Thus, in the observed temperature dependence of �00(Q,!) one can conclude of underlying
physics.

2.1.3 NEUTRON TECHNIQUES AND INSTRUMENTATION

NEUTRON DIFFRACTION

To obtain information of a crystal (magnetic if any) structure, one can perform neutron diffraction
experiments. On diffraction instruments, the final energy Ef is not analyzed, so that we obtain
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integrated by energy scattering function S(Q) =
R +1
�1 S(Q,!)d!. This is valid if the incident

neutron energy Ei is much higher than all excited states in the sample.

The principle of neutron diffraction is based on the Bragg’s law:

2d sin⇥ = n�, (2.9)

where d is an interplanar spacing, ⇥ is a scattering angle, n is an order of diffraction (integer),
and � is a neutron wavelength. Therefore, the cross-section for nuclear elastic coherent scattering
is: ✓

d�

d⌦

◆el

nuc

= N
(2⇡)3

V

X

⌧

�(Q� ⌧)|FN(Q)|2, (2.10)

where FN(Q) =
P

d bde
iQde�Wd(Q) is a nuclear structure factor, ⌧ = ki � kf . As can be

seen from Eq.2.10, the delta function explicitly displays the appearance of a peak at Q = ⌧,

which reflects Bragg’s law 2.9. In fact, what we get from the experiment is a delta function
but convoluted with instrument resolution and broadening due to the microstructural effects
in the sample so that the intensity of a measured peak would have a finite value. Since each
peak has its own width, position, and intensity, each parameter gives the following information
about the sample: symmetry and lattice dimensions are "stored" in the peak position, location of
atoms inside the unit cell – in the intensity, and width of the peak reflects Debye-Waller factor
together with instrument resolution and possible microstructural effects. Neutron diffraction can
be successfully used for the magnetic structure determination, and for elastic magnetic scattering,
we have:

✓
d�

d⌦

◆el

mag

= (�r0)
2Nm

(2⇡)3

V

X

⌧m

�(Q� ⌧m)|Q̂⇥
⇣
FM(Q)⇥ Q̂

⌘
|2, (2.11)

where in analogy to elastic nuclear scattering FM(Q) =
P

i

⇣
gifi(Q)

2

⌘
hSiieiQrie�Wi(Q) is a

magnetic structure factor. In this case, magnetic Bragg peaks will be found at new positions
Q = ⌧m in reciprocal space.

Depending on the studied material type (single crystal or powder sample), different types of
instruments were used. The principle of the experiment remains the same, while the technical
environment is different. In the thesis, for the investigation of a powder sample crystal structure,
CuSb2O6, D2B@ILL (Fig.2.1), and D4@ILL were used. The profile analysis of the obtained
diffraction pattern was done by the Rietveld method [20] implemented in Fullprof [21].
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FIGURE 2.1
Layout of a D2B instrument. The wavelength of neutrons � = 1.594 Å is selected by Ge(335)
monochromator. A bank of 128 detectors allows to capture the Bragg reflections in the angular

range of about 4� to 160� [22].

POLARIZED NEUTRON DIFFRACTION

Using polarized neutrons, one can separate different contributions like nuclear coherent, magnetic
coherent, and incoherent scattering to the total scattering according to their structural or magnetic
origin [23]. By analyzing the polarization of incoming Pi and outgoing Pf neutron beams,
Blume [24] and Maleev [25] define the general cross-section for polarized neutrons as

d�

d⌦
= N⇤N +M⇤

?M? +N⇤[Pi ·M?] +N [Pi ·M⇤
?] + iPi[M

⇤
? ⇥M?] + ⌫i + �nsi (2.12)

and

Pf
d�

d⌦
= Pi(N

⇤N + ⌫i)�PiM
⇤
?M? � 1

3
Pi�nsi +M?[Pi ·M⇤

?] +M⇤
?[Pi ·M?]�

� iM⇤
? ⇥M? +N⇤M? +NM⇤

? � iN⇤[Pi ⇥M?] + iN [Pi ⇥M⇤
?], (2.13)

where N is a nuclear scattering, M? is a magnetic scattering, �nsi is a nuclear spin incoherent
scattering, ⌫i is a nuclear isotope incoherent scattering. The first equation is the cross-section for
an incoming polarized beam without polarization analysis after the sample, whereas the second
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equation leads to a measurable cross-section when projected on a final polarization direction. In
the following, we define a right-handed coordinate system linked to Q and the scattering plane
with x̂ k Q, ŷ ? Q in the scattering plane, ẑ ? Q perpendicular to the scattering plane.

With spherical neutron polarimetry, the polarization tensor could be measured:

P =

0

B@
Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

1

CA ,

where P↵� =
�↵���↵�̄

�↵�+�↵�̄
. Such matrices could be measured with Cryogenic Polarization Analysis

Device (CRYOPAD) [26].

FIGURE 2.2
Layout of a D3@ILL instrument adapted from [27].

We used a single crystal diffractometer D3@ILL (Fig.2.2) for magnetic structure determination of
Cu6[Si6O18] · 6H2O. Polarized neutrons with wavelength � = 0.85 Å are created by Heusler(111)
monochromator. The final neutron polarization is analyzed with 3He spin filter, whose efficiency
is usually tested by measuring one of the polarization channels of the strong nuclear Bragg
reflection. The sample was mounted into an Orange Cryostat at base temperature T = 1.5 K. In
addition, a CRYOPAD device hosted CryoCradle [28], allowing access to out-of-plane Bragg
reflections.
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TRIPLE-AXIS SPECTROSCOPY

For single crystal inelastic scattering studies, triple-axis spectrometers (TAS) are often used
allowing point-by-point measurements at particular Q and ! values (Fig.2.3). The incoming
energy of neutrons Ei is selected by a monochromator, which is usually a Bragg reflection of a
well-defined crystal. Then neutrons scatter at the sample position, and the analyzer captures only
those at the specific final energy Ef . The measurement of excitations therefore can be described
as:

Q = ki � kf = ⌧ + q, (2.14)

~! =
~2
2mn

(ki
2 � kf

2) = ~!(q), (2.15)

where ~!(q) is the energy of the measured excitation at specific wave-vector q.

FIGURE 2.3
Layout of a triple-axis instrument adapted from [29].

XYZ POLARIZATION ANALYSIS

One of the huge TAS advantages is the possibility to polarize the incoming neutron beam and also
to analyze the polarization of the outgoing beam. In the case of XYZ polarization analysis, which
can be performed using Helmholtz coils, with a spin-flipper in kf the following cross-sections
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are defined:
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where |↵!� defines the initial polarization direction ↵ and analyzed outgoing polarization �, and

N =

Z +1

�1
e�i!tdthN⇤(Q, 0)N(Q, t)iT ,

My(z) =

Z +1

�1
e�i!tdthM⇤

?y(z)(Q, 0)hM?y(z)(Q, t)iT ,

C = � i

2

Z +1

�1
e�i!tdt · hM⇤

?Q ⇥M?QiT

reflect nuclear correlations, distinguishable (allocated) magnetic, and chiral scattering correla-
tions respectively.

In current thesis, the results of several triple-axis experiments are presented, the details of which
can be found in the table below Tab.2.1.

Instrument Material Magnetic field Cross-sections Monochromator Analyzer Fixed
IN14 CuSO4 · 5D2O H ? Q z̄z, zz PG(002)+bender Heusler(111) kf = 1.075 Å�1

IN14 CuSO4 · 5D2O H k Q x0, x̄0 Heusler(111) – kf = 1.075 Å�1

ThALES Cu6[Si6O18] · 6H2O – XYZ Heusler(111) Heusler(111) kf = 1.5 Å�1

IN20 Cu6[Si6O18] · 6H2O – XYZ Heusler(111) Heusler(111) kf = 2.662 Å�1

TABLE 2.1
List of TAS experiments and their details.
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TIME-OF-FLIGHT SPECTROSCOPY

Time-of-flight (TOF) technique allows to perform all measurements simultaneously over a broad
range in (Q,!) space, unlike triple-axis spectrometers. IN5@ILL (Fig.2.4) belongs to the
direct geometry multi-chopper instruments, in which the wavelength (hence, Ei) is selected by
choppers, and scattered neutrons with different final energy Ef are collected by huge detector
arrays covering 30 m2. Multi-chopper system allows to control and optimize the resolution
function with very high precision [30] and, hence, grants a superior resolution of the order of
several µeV. Contrary to TAS, the time-of-flight technique is adapted not only for single crystal
studies but also for powder samples.

FIGURE 2.4
Layout of IN5@ILL time-of-flight instrument adapted from [31].

To have an overview of the magnetic excitations in powder CuSb2O6 sample, in addition to Cryo-
stat measurements at IN5@ILL, we have performed LET@ISIS experiment with dilution insert.
Since the Repetition Rate Multiplication method [32] is implemented in LET, neutrons with
four different incident energies were able to pass through the chopper system, and therefore, we
obtained four different data sets simultaneously. The list of performed time-of-flight experiments
and their details are shown in Tab.2.2.

Instrument Material Temperature (K) Incoming energy (meV) Environment
IN5 CuSO4 · 5D2O 0.075 Ei = 2.27 Vertical cryomagnet , dilution fridge
IN5 CuSb2O6 [1.6..100] Ei = 3.55, 12.1 Orange Cryostat
LET CuSb2O6 [0.06..1.7] Ei = 1.03, 1.77, 3.7, 12.14 Dilution fridge

TABLE 2.2
List of TOF experiments and their details.
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2.2 LINEAR SPIN-WAVE THEORY

Linear spin wave theory LSWT is indeed a subject of Chapter 4, where the magnetic excitations
are studied below TN . The main goal of these calculations is to obtain the energy-momentum
relation of spin waves, which are elementary excitations in the magnetically ordered state. The
method is realized in SpinW [33]. As an input, it requires a definition of the spin Hamiltonian and
the magnetic structure, which represents the ground state of this Hamiltonian. Through Holstein-
Primakoff [34] transformation, spin operators are then represented as bosonic annihilation a† and
creation a operators, therefore reconstructing the Hamiltonian as a series expansion in powers
of a† and a. Linear in LSWT means that only the terms linear to a†a will be taken into account
reflecting non-interacting magnons. Following Fourier transformation of the bosonic terms
allows to obtain momentum transfer dependence of the Hamiltonian, diagonalization of which
will finally give the magnon energies and spin-spin correlation functions, and hence the neutron
scattering cross-section can be obtained.

2.3 REVERSE MONTE CARLO

When one deals with the paramagnetic state of the sample, characterized by short-range spin
correlations and absence of long-range magnetic order (LRMO), spin-wave theory is no longer
valid. Moreover, the task becomes more difficult when the sample is in powder form, and we
cannot measure certain directions with inelastic neutron scattering to trace the dynamics. One
of the methods that could be used for diffuse scattering study in powder samples is Reverse
Monte Carlo (RMC). Contrary to direct Monte Carlo, the function which is minimised during
the refinement is not an energy term defined by a spin Hamiltonian, but rather the sum of
squared residuals that quantifies the level of disagreement between the fit and experimental
data. Therefore, RMC based on the experimental data will provide information on spin pair
correlations hS(0) · S(r)i, not interactions Ji.

This method is realized in SPINVERT [35]. It is based on a step-by-step application of the least
squares approximation, where at each step the neutron scattering cross section S(Q) for a given
spin configuration hS(0) · S(r)i is calculated, compared with experimental data. Then the initial
configuration is transformed in order to minimize the discrepancy between the experiment and
the model curve. For a powder isotropic paramagnet, magnetic scattering function integrated
along ! takes the form:

S(Q) / 2

3

���
g

2
f(Q)

���
2
 
1 +

1

N

X

i,j

Si · Sj
sinQrij
Qrij

!
, (2.17)
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where hS(0) · S(r)i =
PN

i
1

Zij(r)

PZij(r)
j Si · Sj.

2.4 MAGNETIC SUSCEPTIBILITY

Magnetic susceptibility measurements determine the averaged value of the magnetization in
a sample. The sample is magnetized by a constant magnetic field and the magnetic moment
is measured, producing a magnetization curve M(H). The slope of the M(H) is called the
susceptibility � = dM/dH. At high temperatures, the magnetic susceptibility is approximated
by Curie-Weiss law [36]:

�(T ) = �0 +
C

T �⇥CW
, (2.18)

where �0 is a temperature-independent term, C – Curie constant, from which one can obtain the
value of the effective magnetic moment

C =
NA

3kB
µ2
eff ,

⇥CW [36] is a Curie-Weiss temperature, which is basically a sum of all interactions present in
the system [36]

⇥CW =
X

i

ziS(S + 1)Ji
3kB

,

and therefore with its sign one can conclude of dominant interactions in the system.

This technique is widely used for single crystal and powder samples as a quick examination of
presence or absence of magnetic ordering.

2.5 SPECIFIC HEAT

Specific heat C is the most direct measure of fluctuations in any system. In a simplistic
approximation, C = Cph+Ce+Cm, where Cph – lattice contribution, Ce – electronic contribution
and Cm – magnetic contribution [37]. At low temperatures, where the systems are assumed to
be in a thermal equilibrium, only magnetic fluctuations give rise to a magnetic specific heat
contribution Cm. At critical temperature e.g. TN , one can observe �-anomaly, usually associated
with LRMO. At higher temperatures, lattice fluctuations become significant, and they need to be
removed in order to estimate the magnetic part of the specific heat. For that purpose, it is always
a good practice to prepare a non-magnetic analog of the studied magnetic material. Whenever
it is impossible, one has to simulate a lattice contribution, for example, using Debye and/or
Einstein models. Change of magnetic contribution �Cm is linked to a change of the magnetic
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entropy as:

�Sm(T ) =

Z T

0

Cm(T )

T
dT, (2.19)

which reflects how much of the magnetic entropy is involved into a phase transition (if any).

Similar to susceptibility, specific heat measurements can be performed on single crystal and
powder samples.

2.6 MUON SPECTROSCOPY

Complementary to mentioned above macroscopic methods, muons are an effective probe of local
magnetic fields present in the sample and their dynamics. The implemented muons are very
sensitive to any spin freezing and long-range magnetic order induced by magnetic atoms and
hence can reveal a question of static magnetic moments present in the system.

We have performed a muon relaxation experiment in zero field. The goal of such experiment
is to observe time evolution of muon polarization caused by randomly oriented local fields in
the sample. This technique was developed by Kubo and Toyabe [38], who initially assumed a
system of spins with the Gaussian distribution of field strengths, which describes the magnetic
environment, thus the polarization function takes the form:

GGKT
z (t) =

1

3
+

2

3

�
1� �2t2

�
exp

✓
��

2t2

2

◆
, (2.20)

where � = �µ� is the relaxation rate. In Eq.2.20, 1
3 and 2

3 components arise from the fact that
the local field is random in all directions so that ⇡ 1

3 is parallel or antiparallel to the initial muon
spin direction and ⇡ 2

3 is perpendicular. Such muon response is often attributed to nuclear static
fields [39]. Nuclear moments are weak and thus can be regarded static on the µSR time window.
In the paramagnetic state of systems, the electronic moments are fluctuating much too fast to
have an effect on the µSR signal and the muon spin will solely sense the field distribution created
by the nucleus moments. As these are randomly oriented, they will create a weak Kubo-Toyabe
depolarization of the muon ensemble and the minimum of the function will not always be visible
in the data [40].
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FIELD-DEPENDENT DYNAMICS IN

CUSO4·5D2O

3.1 QUANTUM SPIN-1/2 ANTIFERROMAGNETIC SPIN CHAINS

IN ZERO AND NON-ZERO MAGNETIC FIELD

In this section, we review theoretical and experimental studies related to the dynamics of quantum
spin-1/2 antiferromagnetic linear spin chains, although limiting ourselves to those scientific
discoveries that somehow influenced the following study of our material.

The history of 1D magnetism starts with Ising’s consideration of infinite spin chain with nearest-
neighbor AFM interactions in 1925 [41]. The Hamiltonian for this case is the following:

H = J
X

i

S↵
i S

↵
i+1,

where J – intrachain AFM interaction between the neighboring spins, S↵
i – z-component of the

spin ~Si on the site i for the Ising case. He has reported that there is no spontaneous magnetization
occurs at any finite temperature. Whereas for S = 1/2 chain at T = 0 K Ising model suggests
an ordered state, in the isotropic Heisenberg (↵ = x, y, z) model, this chain remains disordered
even at T = 0 K.

Almost century ago, in 1931, Bethe [8] provided an ansatz to find the exact eigenvalues and
eigenvectors of the spin-1/2 Heisenberg Hamiltonian with antiferromagnetic nearest-neighbor
interactions. At zero temperature T = 0 K , a ground state is a many-body spin singlet Stot = 0

with power-law decaying spin correlations hS↵
0 · S↵

r i = (�1)r

r [42] and can be mapped onto
Tomonaga-Luttinger liquid (TLL). The excitation spectrum is gapless and composed of free
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spinon pairs. Each spinon with spin-1/2 propagates freely along the chain and has its own
energy-momentum relation making the spectrum appear continuous. The dispersion relations for
the upper and lower boundaries are given by:

!low(k) =
⇡J

2
| sin (k)|, (3.1)

!up(k) = ⇡J | sin (k/2)|. (3.2)

The lower boundary in Eq.3.1 was calculated by Des Cloizeaux and Pearson [43], and it is
remarkable that it differs from classical AFM spin-wave dispersion relation E(k) = J | sin (k)|
by a factor of ⇡/2. As a consequence, it was assumed that for a larger spin value, the Heisenberg
model converges to the classical limit. However, in 1983 Haldane [42] discovered that the ground
state of spin chains strongly depends on the spin value but in another sense – it is different
for integer and half-integer spins. Namely, for integer spins, the lowest-lying excitations are
separated from the ground state by an energy gap (Haldane gap), and its spin-spin correlations
are decaying exponentially: hS↵

0 · S↵
r i =

(�1)rp
(r)

exp�r/⇠, where ⇠ is a correlation length.

A big step forward was done by Müller et al. in the series of work (e.g. [44]), where they gave the
expression for the spectral weight for the dynamical structure factor of spin-1/2 antiferromagnetic
Heisenberg chain in zero field:

Szz(q,!) =
Ap

!2 � ✏21(q)
⇥(! � ✏1(q))⇥(✏2(q)� !),

where A is the amplitude, ✏1 and ✏2 are lower and upper boundaries of the two-spinon continuum
given by Eq.3.1 and Eq. 3.2 respectively. However, for several materials [7, 45–47] it has been
observed that two-spinon states given by Müller ansatz underestimate the total spectral weight
observed in the inelastic spectra. Those discrepancies are related to four-spinon states. Two- and
four-spinon dynamical structure factor has been calculated by Caux in [48], where it has been
shown that four-spinon states carry approximately 30% of the total spectral weight (Fig.3.1), and
later on showed a remarkable agreement with the most recent neutron experiments [49].

In zero field, the ground state is a singlet, and therefore the transverse and longitudinal fluctuations
are equivalent. In contrary, once the magnetic field is applied (H k ẑ), one has to treat the
longitudinal fluctuations Szz and the transverse fluctuation Sxx = Syy separately. In [44], authors
demonstrated that the splitting of the two-spinon continuum into many continua associated with
incommensurate soft modes is a striking aspect of the model’s dynamics in intermediate field.
Their positions change with the applied field so that the incommensurate wave vector q is directly
proportional to the magnetization m via q = 2⇡m (Fig.3.2). In 1997, the incommensurate
positions of the soft modes were first measured in Copper Benzoate [47].
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FIGURE 3.1
Plots of the two- and four-spinon parts of the dynamical structure factor at momenta k = ⇡/4,

⇡/2, 3⇡/4 and ⇡. Adapted from [48].

The identification of quasiparticles governing the spectra in the applied magnetic field was done
by Karbach et al [50, 51]. Their central idea is to reconfigure the Bethe ansatz ground state into a
new "quasiparticle vacuum". This new state connects continuously the zero field spinon vacuum
and the saturation field magnon vacuum. Those quasiparticles that govern the low-energy part
of the excitation spectrum were termed as psinon  and antipsinon  ⇤. Similar to spinons, they
are fractional excitations with spin Sz = 1/2 and Sz = �1/2 respectively and are created in an
even number by inelastic neutron scattering, so that the spectrum appears to be continuous. In
[51], dominant excitations were identified, carrying the maximum spectral weight. However, a
significant part of the spectral weight, which lies at higher energies, in S+� dynamical structure
factor could not be explained in terms of two-psinon 2 or psinon-antipsinon   ⇤ continua. The
missing spectral weight has been attributed to Bethe n-strings [52], which can be regarded as
n-magnon bound state.

Using Bethe ansatz solutions, M. Kohno has calculated [52] the dynamical structure factors
S+�(k,!), S�+(k,!), and Szz(k,!) for spin-1/2 Heisenberg antiferromagnetic spin chain.
Considering a chain of L = 320 spins, he has considered the excitations up to 2 2 ⇤, which
correspond to the four-spinon states in zero-field and satisfy 90% of the S�+(k,!) sum rules.

Figure 3.3 shows the dynamical structure factors for a finite L = 320 spin chain. Each
column with S+�(k,!), S�+(k,!), and Szz(k,!) corresponds to an individual M value, which
represents the number of down spins in the chain and is directly linked with magnetization
m = 1/2�M/320 and magnetic field. Therefore, a larger M corresponds to the smaller applied
magnetic field. Now, we will look how the dynamical structure factor evolves with the applied
magnetic field.

For the S+�(k,!), a significant part of the continuum is attributed to 2-strings solutions with   ⇤

and 3-string solutions with 2 . The higher-energy continuum (!/J > 2) is mainly associated
with so-called 2-string solutions with  . By increasing the magnetic field, this high-energy
continuum separates from the low-energy continuum with the spectral weight gradually lost and
reduces to a two-magnon state above the saturation field. The low-energy incommensurate mode
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FIGURE 3.2
Lineshapes of dynamical structure factors S

zz(q,!), S+�(q,!), S�+(q,!) of spin-1/2 Heisenberg
antiferromagnetic spin chain calculated for different magnetization values (from left to right).

arising at k = 0 and extending up to k = 2⇡m at zero energy transfer is related to two-antipsinon
continuum, of which one moving antipsinon is the dominant part. Overall, solutions up to 2 2 ⇤

together with 2-strings with  , 2-strings solution with   ⇤ and 3-strings with 2 saturate the
S+�(k,!) sum rule by 80%.

For the Szz(k,!), the main contribution is attributed to   ⇤ excitations. At the same time,
at lower fields, one has to take into account 2-string solutions together with 2 , which are
responsible for the appearance of higher-energy continuum centered at k = ⇡ together with all
solutions up to 2 2 ⇤ to favor more than 90% of the sum rules.

Finally, for the S�+(k,!), one can observe only one continuum associated mainly with dominant
2 excitations, and consideration of higher-order particles satisfy the sum rule of more than
90%.

Experimentally, Bethe strings are observed to constitute the excitation spectrum in various
materials such as SrCo2V2O8 [53], BaCo2V2O8 [54], and YbAlO3 [55]. However, none of
those compounds belongs to the "pure" more like Heisenberg systems: first two belongs to
the Heisenberg-Ising chains with � ⇡ 2, the latter has a large spin-orbital contribution to the
magnetic moment. Below we present a more prominent example of model one-dimensional
Heisenberg s = 1/2 system.

32



CHAPTER 3 – FIELD-DEPENDENT DYNAMICS IN CUSO4·5D2O

FIGURE 3.3
Dynamical structure factor calculated by M. Kohno [52] for M = 40, 80, 120. The definition of M

is presented in the text.

3.2 STATE OF THE ART CUSO4 · 5D2O

CuSO4 · 5D2O belongs to the model example of the 1D AFM quantum Heisenberg system. Its
crystal structure is triclinic and was firstly published in [56]. By means of inelastic neutron scat-
tering, M. Mourigal et al. [49] have demonstrated excellent one-dimensionality of CuSO4 · 5D2O.
There are two copper Cu2+ ions in the unit cell, which constitute two different magnetic subsys-
tems: Cu1 ions at (0,0,0) form one dimensional chain along a-direction with J = 0.252(17) meV,
and Cu2 ions at (0.5,0.5,0) ferromagnetically coupled with J22 = �0.012(18) meV Fig. 3.4.
The interaction between two different sites, Cu1 and Cu2, is found to be J12 = �0.020(22) meV,
which is less than 0.1J .

In [49], they have started from spin dynamics in fully polarized state H = 5 T, where the
excitation spectrum is correctly described by linear spin-wave theory (Fig.3.5 left). Two modes
are expected and observed: the cosine-shape branch corresponds to the Cu1 chain atom, and
the flat mode corresponds to the almost isolated Cu2 atom. By measuring magnon energies as a
function of field (Fig.3.5 right), they obtained g-tensors for each Cu-site: the dispersive branch
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FIGURE 3.4
Magnetic unit cell and interactions scheme of CuSO4 · 5D2O: red balls correspond to chain ions

Cu2+
1 , grey balls correspond to isolated sites of Cu2+

2 . Adapted from [49].

emerges at zero field at saturation field value Hs ⇡ 3.6 T, whereas the flat mode is directly
proportional to the magnetic field strength. The straight line fits correspond to g1 = 2.49(6),

g2 = 2.25(5).

FIGURE 3.5
Left : Excitation spectrum of CuSO4 · 5D2O in the fully polarized state; right : magnon energies of

two different copper sites as a function of magnetic field. Adapted from [49].

In zero field, they have concluded that two- and four-spinon excitations need to be considered to
match 98(8)% of the spectral weight, where 30% relate to four-spinon states.

34



CHAPTER 3 – FIELD-DEPENDENT DYNAMICS IN CUSO4·5D2O

3.3 TIME-OF-FLIGHT EXPERIMENT

To have a full overview of chain dynamics in the applied magnetic field, we have performed an
inelastic neutron experiment on time-of-flight (TOF) spectrometer IN5 (ILL, Grenoble), which
is shown in Fig. 2.4.

3.3.1 EXPERIMENTAL DETAILS

CuSO4 · 5D2O sample (Fig. 3.6) was glued to a Cu holder, thus ensuring a good thermalization
and inserted into a vertical cryomagnet reaching up to 10T together with a dilution fridge. An
experiment was performed at T = 100 mK above the Néel temperature TN [57]. Incident neutron
wavelength was � = 6 Å with chopper speed 12000 rpm, thus providing energy resolution of
0.048 meV FWHM at zero energy transfer.

FIGURE 3.6
Aligned CuSO4 · 5D2O sample used for the IN5@ILL experiment.

3.3.2 DATA REDUCTION IN MANTID

Data reduction was carried out in Mantid [58]. Raw data were prepared for the analysis as
follows:

1) detector counts are normalized to the monitor, which reflects the number of incident neutrons;

2) mask has been applied, based on a list of "noisy" (defective) detector tubes, a value of the
spectrum integral, and accessible angles;

3) normalization by vanadium to correct for detector efficiency;

4) convert units from time-of-flight to energy transfer �E;
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5) ki
kf

correction in order to transform differential cross-section into dynamic structure factor;

6) rebinning of the energy axis.

The output of the above mentioned steps is resolution-convoluted structure factor S(!) and its
errors for each detector; detector position and size information, stored along with the crystal
orientation angle  and the incident energy Ei.

3.3.3 CRYSTAL ORIENTATION

A sample was aligned with two reciprocal axes (1 0 0) and (0 1 1) in the scattering plane. The
choice of this scattering plane is due to that q1D = (1� 0.3877� 0.2953) axis is very close to
the scattering plane (2.8� out).

We have used Horace‘ [59] software to manipulate four-dimensional experimental dynamical
structure factor S(Q,!). First, we had to check the crystal orientation. Corrections for crystal
tilt relative to the scattering plane were performed as an iterative procedure, which included
consideration of 1) peaked-feature widths, shapes, and intensities (in constant Q(h) cuts); 2)
positions of those peaks in h-space with constant energy cuts in order to have a symmetric
profile around h = 0.5 rlu and h = 1 rlu. In short, the lattice parameter a, the angle responsible
for tilts under real a direction, and the angle responsible for misorientations about a vector
perpendicular to the scattering plane, were the parameters to vary. As model spectra, cuts of
0 T and 9.5 T data were only taken into account, since it is well-known [49], what has to be
observed. Overall, we refined only a = 6.072(11) Å lattice parameter, while keeping the rest as
they were published in literature [56]: b = 10.736 Å, c = 5.986 Å, ↵ = 82.267�, � = 107.433�,

� = 102.667�. According to the refined a parameter, the orientation axes were redetermined as
u = (1 � 0.3149 � 0.3149), v = (0 1 1), and w = u ⇥ v. In addition, a tilt of 0.31� of the
vertical w axis was found. Once the orientation and lattice constants were set, detector positions
were converted to Qu, Qv, Qw momentum transfer coordinates.

The data after this step is shown in Fig. 3.7 and contain several different features. The magnetic
signal is clearly distinguishable in the energy region of 0.1 < E < 1 meV. A flat dispersion-less
mode is observed due to the second Cu2+ ion at different energies depending on the strength of
the magnetic field. A large elastic signal at zero energy transfer is seen mainly due to incoherent
scattering from the sample.
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FIGURE 3.7
Measured dynamic structure factor S(Q,!) along chain direction in vertical magnetic fields

H = 0, 1.5, 3, 3.3, 3.5, 9.5 T.

An additional field-independent scattering can be found at the top 0.75 < E < 1.6 meV and at
the lower part E < 0.75 meV in low-h region h < 0.3 rlu of each spectrum. We can observe a
similar scattering in the spectrum of an empty magnet in Fig.3.8, thus we conclude that these
features are not from the sample and related to the sample environment and will be treated as a
background.

FIGURE 3.8
Measured dynamic structure factor S(Q,E) of an empty magnet.

Therefore, data preparation consists of the following steps. From each data-set, one has to
subtract 1) background scattering, which is related to the sample environment; 2) incoherent
scattering, and 3) multiple scattering. In addition, one has to correct data with the Cu2+ magnetic
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form-factor.

3.3.4 BACKGROUND SUBTRACTION

Despite that we have measured an empty magnet at the same incident energy at the cryostat
base temperature, the measured spectrum was not sufficient (Fig.3.8) to reproduce all sample
environment scattering features since the dilution insert with the sample was already extracted.
Therefore, one of the ways to describe the background would be a combination of 9.5 T and 0 T
data.

In a fully polarized state at 9.5 T, two modes are expected, corresponding to the Cu2+
1 and Cu2+

2

ions in the unit cell. Since the interaction within the chain is antiferromagnetic, the minimum
of the dispersion is observed at h = 0.5. According to [49], the corresponding Zeeman shift
and the bandwidth are � = gµBH/2S = 1.36(3) meV and 2J = 0.517(9) meV respectively.
Therefore, taking into account IN5 energy resolution �! = 0.02 meV, the minimum of the
dispersion is expected in the energy range �� 2J � �! = 0.82(5) < Emin < �� 2J + �! =

0.86(5) meV. For zero field, the upper band of spinon continuum is given by Eq.3.2, so that
Eup = 0.804(3) meV. Therefore, we expect the upper band of the spinon continuum in the
energy range 0.784(4) < Eup < 0.824(3) meV. Hence, the following energy intervals, above
E > 0.83 meV at H = 0 T and below E < 0.77 meV at H = 9.5 T should be free of any
excitations and thus can be taken as a background. From constant energy cuts in Fig. 3.9, we can
estimate when the chain dispersive contribution starts. Obviously, the peak-feature at constant
energy transfer E = 0.78 meV at h = 0.5 rlu corresponds to the magnon intensity, whereas
below E < 0.78 meV no additional intensity around h = 0.5 rlu is observed.
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FIGURE 3.9
Several constant energy cuts showing absence of spin-wave excitations at energies below

0.78 meV at 9.5 T. The arrow on the right figure indicates its appearance.

For the remaining region in between 0.78 < E < 0.83 meV we estimated the background
as follows from H = 0 T data. In this energy interval, the upper part of 2-4 spinon continua
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still might be in. To avoid possible oversubtraction, we fit 0 T data with Caux [48] S2+4(h,!)

dynamic structure factor and add this contribution for energies above E > 0.78 meV.

Note that for an isotropic ground state in zero field, we have Sxx(h,!) = Syy(h,!) = Szz(h,!).

However, only Syy(h,!) + Szz(h,!) = 2Syy(h,!) contribute to the inelastic neutron scattering
cross-section. We have fitted experimental excitation spectrum in the energy range 0.1 < E <

0.78 meV with the following function

Sexp(h,!) =
2

3
ACauxCCaux

Z 1

0

Z 2⇡J

0

S2+4(h0,!0)R(h0 � h,!0 � !)dhd!, (3.3)

where 2
3 reflects the contribution to the neutron cross-section, CCaux is a sum rules normalization

to the total spin S(S + 1), ACaux is an overall scale factor between Caux and experiment,

J is an exchange coupling within the chain, R(h,!) = 1p
2⇡�h

1p
2⇡�!

exp
� h2

2�2
h exp

� !2

2�2
! is the

simplified resolution function in both ! and h directions with �! = 0.02 meV and �h = 0.01 rlu.
Simultaneous fit of constant momentum transfer cuts in the energy range 0.1 < E < 0.78 meV
provided the following parameters: ACaux = 0.0054(3) and J = 0.254(1) meV, and the
corresponding lineplots with experimental data are shown in Fig.3.10. As one can see, the
experimental data is in good agreement with Caux theoretical lineshapes [48], and exchange
parameter J is in accordance with previously published data [49].
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FIGURE 3.10
Experimental constant momentum transfer cuts (blue markers) with Caux lineplots (black solid

line). The parameters for Eq.3.3 are specified in the text above.

By combining spinon-subtracted H = 0 T above E > 0.78 meV and H = 9.5 T below
E < 0.78 meV, we have obtained the background colormap shown in Fig.3.11 left. On the
right side of Figure, one can see selected constant h lineplots, showing the complexity of the
background function. Thus, we would need to perform point-by-point background subtraction
since no analytical function would describe the background as good as it is in Fig.3.11.
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FIGURE 3.11
Background associated with scattering from the sample environment. Solid black lines indicate
the energy region in which the corresponding H = 0 T and H = 9.5 T were used, as explained in
the text. Note that the region of the elastic line at zero energy transfer will be treated separately

in the Section below.

3.3.5 INCOHERENT SCATTERING

Assuming that incoherent scattering should be field independent, H = 9.5 T data-set is supposed
to be an ideal candidate as an incoherent scattering estimate since no excitations are expected
below E < 0.78 meV. First, we checked, whether the simple subtraction works for constant
energy cuts in Fig.3.12. In order to choose the energy below which we would fit the elastic
line and afterward subtract it from the spectra, one can prepare constant energy cuts assuming
if we would subtract the background as it is in Fig.3.11, that is using the elastic line of 9.5 T
data. Obviously, the simple 9.5 T subtraction down to FWHM= 0.048 meV of the elastic line
works fine, whereas below E < 0.048 meV a substantial part of the field spectra start to be
oversubtracted. However, the additional scattering at zero field should not confuse the reader
since the flat mode at zero energy is expected.
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FIGURE 3.12
Constant energy cuts E = [0.045, 0.06, 0.075] meV (from top to bottom) for each field H = with

prior subtraction of H = 9.5 T data.

Assuming that elastic line takes a form of a simple Gaussian function, we have performed a fit for
all field values and for each h. The peak widths remained unchanged for all field data. However,
the difference in the centers between intermediate field data and high field data increased linearly
with h. Overall, by adapting the amplitudes and the peak positions of the 9.5 T elastic line, we
obtained the spectra shown in Fig. 3.13;
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FIGURE 3.13
TOF Experimental maps before multiple scattering correction

3.3.6 MAGNETIC FORM-FACTOR

Since we are dealing with the magnetic neutron scattering, one has to reconstruct the effective
magnetic form-factor. Since each pixel has its own Q coordinates (Qu, Qv, Qw), one could
calculate |Q| =

p
Q2

u +Q2
v +Q2

z, and hence s = |Q|
4⇡ , and then substitute it to P.J. Brown’s [60]

analytical approximation for the magnetic form-factor of Cu2+:

hj0(s)i = A exp(�as2) + B exp(�bs2) + C exp(�cs2) +D, (3.4)

where A = 0.0232, a = 34.9686, B = 0.4023, b = 11.5640, C = 0.5882, c = 3.8428, D =

�0.0137. By projecting this 4D structure to an a-axis, one can obtain the effective form-factor
(Fig.3.14).
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FIGURE 3.14
Effective magnetic form-factor of Cu2+ for TOF experiment

Note that we apply the magnetic form-factor correction to the experimental data at the end of
Section 3.3. However, we would need this result for multiple scattering correction introduced in
the following Section.

3.3.7 MULTIPLE SCATTERING

Due to hydrogen-deuterium exchange in the sample, strong incoherent elastic scattering, which
is independent of Q, is observed in experimental data. In the simplistic case assuming double-
scattering process, multiple scattering involves the strong incoherent elastic scattering of the
sample and excitations of the two modes. Therefore, the incoherent inelastic scattering is
proportional to the density of states of the two copper modes in addition to coherent inelastic
scattering of the single scattering process. It can be clearly observed on the H = 0 T experimental
map in Fig.3.15 left as a stripe around E ⇡ 0.42 meV in the region of the zone boundary h = 1 rlu.
The size of this multiple scattering compare to a real magnetic signal is somewhat around 10%
Fig.3.15 right. To get rid of this additional effect, we must first determine how it manifests itself
in the obtained experimental spectra.
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FIGURE 3.15
Left : Dynamical structure factor of H = 0 T. Additional stripe-like scattering can be observed in
the energy region of E ⇡ 0.42 meV. Solid magenta and green lines show the constant h-cuts at

h = 0.75 and 1 rlu, respectively, in the right figure.

Initially, each experimental map (we define it ⇥(h,!)) shown in Fig.3.13 was obtained by
summing up the intensities of each contributing pixel n: ⇥(h,!) = 1

N

PN
n=1⇥n(h,!). To take

into account that after incoherent elastic scattering event, the system undergoes the second
scattering event µ(!) with certain probability ↵ together with single scattering event, which
is a dynamical structure factor of two modes Sn(h,!) + Sn,PM(h,!) multiplied by magnetic
form-factor squared |F (|Qn|)|2, we can write:

⇥(h,!) =
1

N

NX

n=1

↵µ(!) +
1

N

NX

n=1

|F (|Qn|)|2 [Sn(h,!) + Sn,PM(h,!)] =

= ↵µ(!) +
1

N

NX

n=1

|Fn(h,!)|2 [Sn(h,!) + Sn,PM(h,!)] .

When one integrates along h the experimental data-set, which in the simplistic picture already
contains multiple scattering:

1

Nh

X

h

⇥(h,!) = ↵µ(!) + µ(!) = (1 + ↵)µ(!). (3.5)

From the other hand, by integrating along h theoretical dynamical structure factor one gets:

µ(!) =
1

Nh ·N
X

nh

NX

n=1

|Fn(h,!)|2 [Sn(h,!) + Sn,PM(h,!)] . (3.6)

First, one needs to obtain multiple scattering probability ↵. This can be found using H = 0 T
data-set. The choice of these experimental data is explained by the fact that the dynamic structure
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factor is known [49] and, in contrast to the data in a field above the saturation H = 9.5 T (where
one also can obtain the dynamical structure factor by LSWT), the paramagnetic mode overlaps
with the spinon continuum only at zero energy transfer and may be neglected, so that we define
µ(!) = 1

Nh·N
P

nh

PN
n=1 |Fn(h,!)|2S2+4

Caux(h,!) (Fig.3.16). Note that in a latter expression,
the Caux dynamical structure factor is convoluted with instrumental resolution, and all the
parameters were obtained earlier in Section 3.3.4.
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(
)

S2+4
Caux

(h, ) integral h=[0.5 0.99]

FIGURE 3.16
Multiple scattering function µ(!) obtained by integrating |F (h,!)|2 · S2+4

Caux(h,!) along h =
[0.5, 0.99], thus covering half of a Brillouin zone.

Finally, we fit each constant h = hi cut of H = 0 T data-set with the following expression

⇥(h = hi,!) = A
⇥
|F (h = hi,!)|2 · S2+4

Caux(h = hi,!) + ↵µ(!)
⇤
,

where A and ↵ are fitting parameters. We have obtained A = 0.005(1) and ↵ = 0.196(2). In
order to check the values and goodness of fitting, we have subtracted multiple scattering from
H = 0T data-set. In Fig.3.17, the signs of spectra improvement are distinctly visible.

FIGURE 3.17
Comparison of original and multiple scattering subtracted H = 0 T data-sets.
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Once multiple scattering probability is found, we can subtract multiple scattering from the
other data-sets using the approach expressed in Eq.3.5. This basically means that integrated
along h experimental data is a multiple scattering function multiplied by a prefactor (1 + ↵),

expressing that experimental data already contains multiple scattering. Another illustrative
example of how this approach works is 9.5 T data-set in Fig.3.18. One can notice an additional
stripe-like scattering appearing at E ⇡ 0.8 meV, which was successfully removed by subtracting
↵

1+↵µ(!)9.5T.

FIGURE 3.18
Comparison of original and multiple scattering subtracted H = 9.5 T data-sets.

Finally, after multiple scattering subtraction, we have applied the effective magnetic form-factor
introduced in Section 3.3.6 to the data, and the result is shown in Fig.3.19.

FIGURE 3.19
Dynamical structure factors S(h,!) for different field values H = 0, 1.5, 3, 3.3, 3.5, 9.5 T with
applied magnetic form-factor correction and subtracted background, incoherent and multiple

scattering.
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3.3.8 MAGNETIZATION VALUES

In order to compare the experimental dynamical structure factor with theory, one has to know
the magnetization value (Section 3.1) for each data-set. From ESR [61], it is known that the
gyromagnetic tensors of both copper atoms are anisotropic. They provide precise values:

g1 =

0

B@
2.080 0 0

0 2.080 0

0 0 2.4286

1

CA and g2 =

0

B@
2.080 0 0

0 2.080 0

0 0 2.4046

1

CA (3.7)

for Cu2+
1 chain and Cu2+

2 isolated ions respectively. Note that g?, g1k and g2k are given with
respect to the principle axes of copper octahedra in the tetragonal coordinate system. When
magnetic field H is perpendicular to the scattering plane, its direction is [0,1,-1] in real triclinic
space, so that effective gyromagnetic tensors are g1eff = |g1 · Ĥ| = 2.38, g2eff = |g2 ·
Ĥ| = 2.17. Those values are ⇡ 5% smaller than they were previously reported in [49]. This
uncertainty therefore, leads to an uncertainty in saturation field determination Hs. Using Müller’s
approximation [44] of a magnetization curve for S = 1/2 antiferromagnetic Heisenberg spin
chain, we can see that at fields close to the saturation when the dynamic properties of the chain
evolve quite fast, 5% variation of Hs explicitly leads to a ⇡20% variation (Fig.3.20) of the
magnetization value. Therefore, one would need to find a complementary approach to avoid
those uncertainties related to the anisotropic gyromagnetic g-tensor.

48



CHAPTER 3 – FIELD-DEPENDENT DYNAMICS IN CUSO4·5D2O

0 0.2 0.4 0.6 0.8 1

H/H
s

0

0.2

0.4

0.6

0.8

1

m

S=1/2 AFM Heisenberg chain

 m  20%

FIGURE 3.20
Magnetization curve (black circles) for S = 1/2 antiferromagnetic Heisenberg spin chain using
approximation given in [44]. The solid blue lines correspond to a confidence interval of a satura-
tion field value Hs. The solid red lines correspond to a confidence interval of a magnetization

value m.

It is known [44] that in the applied magnetic field, the incommensurate mode emerges in
the spectrum and is directly proportional to magnetization k = 2⇡m at zero energy transfer.
Moreover, there is an almost linear dependence in the low-energy region according to S+�(k,!)

in the first row of Fig. 3.3. Below, the analysis only for H = 1.5 T is shown, other fields were
treated in the same way.

Initially, at our disposal, we had S+�(h,!), S�+(h,!) and Szz(h,!) calculated by M. Kohno
for M = 120 and M = 126 down spins for a finite L = 320 spin chain, which we convo-
luted with experimental resolution. For simplicity, and just for the purpose of estimating the
Cu2+

1 magnetization, we compare experimental dynamical structure factor with Sav(h,!) =
1
4 (S

+�(h,!) + S�+(h,!)) + Szz(h,!) [52]. The corresponding colormaps are shown in
Fig.3.21.
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FIGURE 3.21
Left : Experimental data-set for H = 1.5 T; middle: Sav(h,!) for M = 120; right : Sav(h,!) for

M = 126

We compare constant energy cuts, where the incommensurate mode occurs as the second sharp
feature, for the energies below E ⇡ 0.15 meV in order to avoid overlapping with paramagnetic
mode (Fig.3.22). We fit (solid black lines) the position of the incommensurate mode for the
experimental data and Kohno’s M = 120 and M = 126 dynamical structure factors with Gauss
function. Note that at this step, Kohno’s data were scaled by a number in order to have intensities
more or less at the same scale.
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FIGURE 3.22
Several constant energy cuts. Magenta filled circles correspond to the experimental H = 1.5 T

data, red – M = 120, blue – M = 126. Solid black lines show the fit with Gauss.

The result of sequential fittings is shown in Fig.3.23. Since we know that at zero energy transfer
the incommensurate mode has a position h = m = 1/2�M/320, we can add those points for
calculated theory data. Without any quantitative analysis, one can see that experimental data
falls somewhere in between M = 120 and M = 126. Using linear approximation, we find the
slopes for experimental data (black), M = 120 (blue) and M = 126 (red). With free slope,
experimental data cross zero energy transfer at h = 0.1146, which corresponds to M = 123.328.

With M = 120 slope, the data extrapolates to h = 0.1134, which is M = 123.7. Finally, with
M = 126 slope, the data extrapolates to h = 0.1199, which is M = 121.6. Assuming that we
have to provide theoretician with integer number M, which corresponds to the number of down
spins, for the current data-set of H = 1.5 T, we would like to have dynamical structure factor
M = 123.
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FIGURE 3.23
Results of sequential fitting explained above. Left : Free slope; middle: slope from M = 120;

right : slope from M = 126.

In the same manner, the other data-sets were treated. In Table 3.1, we present corresponding
M -values for each field, according to the data that was available at the moment of analysis. One
can notice that for H = 3.5 T (which is very close to the saturation field) we had only one
calculated dynamical structure factor for M = 18. Nevertheless, we were able to estimate the
corresponding M -value using the relation �h · 320 = �M.

It will be more convenient to rewrite Müller’s approximation m = 2
⇡ arcsin

H
Hs

in terms of
applied magnetic field:

m(H) =
2

⇡
arcsin

⇣µB

2J
g1effH

⌘
. (3.8)

For Fig.3.24, we have converted number of down spins (3rd column in Tab.3.1) to the mag-
netization values m(H) and presented the obtained results considering different values of the
gyromagnetic g-tensor. It can be concluded that the corresponding magnetization values qualitat-
ively follow the trend of Müller’s approximation [44], however, not lying on the curve perfectly.
One of the reasons could be the influence of the isolated Cu2+

2 ions, which create an additional
field in which Cu2+

1 ions should be considered.

Field value Available theory Estimated M value Compared M value
1.5 T M = 120,M = 126 M = 123 M = 120

3 T M = 80,M = 66 M = 67 M = 66

3.3 T M = 40,M = 48 M = 41 M = 40

3.5 T M = 18 M = 17 M = 18

TABLE 3.1
Field value estimation.
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FIGURE 3.24
Magnetization values obtained from IN5@ILL experiment (blue markers). Solid lines correspond

to Müller’s approximation given in [44] for different values of g-tensor.

In the next section, we will present a comparison of experimental data with calculations for the
closest M -value (4th column of Table 3.1).

3.3.9 PROPER AVERAGE FOR UNPOLARIZED NEUTRONS

For unpolarized neutrons, in vertical field geometry, when the quantization z-axis is set since
~H k z, Sxx = Syy 6= Szz. According to Eq.2.6, the measured dynamic structure factor takes the
form:

Sunpol(Q,!) =
X

↵

⇣
1� Q̂↵2

⌘
S↵↵(Q,!) =

= (1� Q̂x2)Sxx(Q,!) + (1� Q̂y2)Syy(Q,!) + (1� Q̂z2)Szz(Q,!),

where (1� Q̂↵2
) is a consequence of the integration over the vertical detector.

Using Sxx = Syy = 1
4(S

+� + S�+) and Q̂x2
+ Q̂y2 + Q̂z2 = 1 we rewrite:

Sunpol(Q,!) = (1 + Q̂z2) · 1
4

⇥
S+�(Q,!) + S�+(Q,!)

⇤
+ (1� Q̂z2)Szz(Q,!). (3.9)
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Therefore, to have an accurate comparison of the experimental data with theory, we have
to multiply Kohno’s dynamical structure factors S+�(h,!), S�+(h,!), and Szz(h,!) with
corresponding prefactors in Eq.3.9. Since we have four-dimensional data-sets, we have to
reconstruct those prefactors according to our projections specified in Section 3.3.3. In Horace
[59] notations, Q̂z2 = Q2

w
Q2

u+Q2
v+Q2

w
. Finally, the projected prefactors are shown in Fig.3.25. As

one can see, those prefactors vary significantly for each h and energy. As a consequence, this
will directly affect the observed intensities.

FIGURE 3.25
Colormaps of the projected prefactors (1 + Q̂

z2) (left) and (1� Q̂
z2) (right).

3.3.10 COMPARISON WITH THEORY

The colormaps of experimental dynamical structure factors and corresponding theoretical calcu-
lations indicated in the fourth column of Table 3.1 are shown in Fig.3.26. One can see that except
for the dispersion-less flat paramagnetic mode, the results are in a great qualitative agreement, so
that all the main features are well captured in the experimental data. As the field is lowered and
the density of spin down particles increases, we observe a splitting of the cosine mode as well
as an appearance of a new mode at higher energies (E ⇡ 0.8 meV), which comes from Bethe
ansatz string solutions. The gap between two-strings and incommensurate mode reduces with
decreasing the field, as well as the contribution from Szz(h,!) and S�+(h,!) channels start to
be more pronounced.
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FIGURE 3.26
Experimental dynamical structure factors (left column) and corresponding Kohno’s theoretical

calculations (right column).

Now we move to the quantitative analysis of the observed scattering. In order to have a
consistency with zero-field dynamics, we have applied Caux amplitude ACaux to all numerical
data-sets. As a reminder, the theoretical calculations were convoluted with instrument resolution,
as well as the prefactors shown in Fig.3.25 were applied. Below, in Fig.3.27 - 3.28], we present
several constant energy cuts for each field. Blue markers correspond to the experimental data,
solid red lines – scaled theory. For each field, we demonstrate the low-energy regions far enough
from the paramagnetic mode, and high-energy regions where Bethe strings scattering is expected.
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FIGURE 3.27
Constant energy cuts for H = 1.5 T left and H = 3 T right and its comparison with corresponding

theoretical calculations.

From the first glance, it may be seen (Fig.3.27 left) that the applied amplitude ACaux is systemat-
ically underestimated, and is not sufficient to describe the experimental intensities for H = 1.5 T,
although the high-energy features are perfectly described by the theory. The reason to that is
clear and small discrepancies in peak positions at H = 1.5 T of the incommensurate modes are
related to the fact that we are comparing data with "real" magnetization value M ⇡ 123 with
theory calculated for M = 120. Apart from that, the ratio between S+�(h,!) + S�+(h,!) and
Szz(h,!) seems to work quite well, and no additional parameter is required. The experimental
data reproduce all the features presented in the theoretical data, including sometimes non-trivial
peak shapes. For the higher fields (Fig.3.27 right and Fig.3.28), the agreement is indeed perfect,
meaning that Kohno’s cosideration of up to 4-spinon states plus Bethe strings saturates the sum
rules as good as does Caux [48] at zero field, so that by 99%.

55



CHAPTER 3 – FIELD-DEPENDENT DYNAMICS IN CUSO4·5D2O

FIGURE 3.28
Constant energy cuts for H = 3.3 T left and H = 3.5 T right and its comparison with correspond-

ing theoretical calculations.

To have a better overview of those high energy excitations represented by two- and three-strings
solutions, we present constant momentum transfer cuts in Fig.3.29. To gain the statistics, we have
integrated over a certain Q range. Solid lines correspond to theoretical calculations integrated
in the same way. One can see that by increasing the field, string excitations shift in energy,
and starting from H = 3 T the string continua is well separated from the low-energy psinon
(antipsinon) pair excitations. As well as we can observe, that increasing the magnetic field, while
the energy increases, the spectral weight is gradually vanishes. Overall, the experimental results
are in a very good qualitative and quantitative agreement with Bethe-ansatz calculations.
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FIGURE 3.29
Constant momentum transfer cuts integrated along selected h regions for intermediate applied

magnetic fields.

3.4 POLARIZATION ANALYSIS

As stated in Section 2.1.3, polarization analysis helps to distinguish scattering terms with respect
to their structural and/or magnetic origins. Despite the results demonstrated in a previous Section
3.3, the intriguing scattering from Bethe-strings remains very weak (Fig.3.30) and, for some
fields, overlaps with the other multi-particle continua since we were working with unpolarized
neutrons, where the total cross-section is a sum of all contributions S+�, S�+ and Szz. Therefore,
we are interested in distinguishing those parts and having a more detailed picture of the dynamics
in the Heisenberg spin-1/2 chain. The experiments presented in this Section were performed
prior to this thesis [29] and have been reanalyzed in the thesis. For the experiment with vertical
field and polarization analysis, we present the comparison with theoretical calculations. For
the experiment with horizontal field in half-polarized mode, we subtracted paramagnetic mode
contribution assuming anisotropic g-tensor and compared with theory provided by [52] for
S+�(k,!) and S�+(k,!) dynamical structure factors.
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FIGURE 3.30
Bethe strings observed in IN5@ILL experiment.

3.4.1 VERTICAL MAGNETIC FIELD

By applying vertical magnetic field together with polarization analysis, one can distinguish longit-
udinal and transverse excitations, so that with flipper off one measures �z̄z / 1

4 (S
+� + S�+)+

spin-incoherent, and with flipper on one obtains �zz / Szz+ spin-incoherent. The experiment
was performed at triple-axis spectrometer IN14@ILL, and the sample was mounted on a Cu-
holder with triclinic axes (1� 1� 1) and (1 0 0) in the scattering plane. All measurements were
carried out at T ⇡ 0.42 K in the CEA 12T magnet equipped with a dilution stick.

We present here (Fig.3.31) the results of the measurements for H = 1.7 T vertical magnetic
field. For this field, the paramagnetic mode is observed at E ⇡ 0.25 meV so that the constant
energy scans were performed at E = 0.1, 0.125, and 0.175 meV. The background was subtracted
separately for each channel �NSF and �SF and for each constant energy according to the data
measured at H = 7 T, where the magnon dispersion is observed for the high-energy region
so that the low-energy region is free of excitations. We have compared those constant energy
scans with M = 120 data (Fig.3.32) convoluted with an energy resolution of FWHM 45 µeV
obtained from the vanadium measurements, convoluted with momentum transfer resolution
�h = 0.01 rlu, and multiplied with the same scale factor for all energies and polarization
channels. We chose theoretical calculations corresponding to M = 120 based on a previous TOF
experiment, where for vertical H = 1.5 T, the estimated value was M = 123. At lower fields,
the magnetization curve does not change rapidly as for the fields close to saturation, as shown in
Fig.3.20. Therefore, since in this experiment the value of the vertical field was H = 1.7 T so
that the closest theoretical M value would be M = 120.

58



CHAPTER 3 – FIELD-DEPENDENT DYNAMICS IN CUSO4·5D2O

0.2 0.4 0.6 0.8 1

0

20

40

60

80

0.2 0.4 0.6 0.8 1

0

20

40

60

80

0.2 0.4 0.6 0.8 1 1.2

0

20

40

60

80

0.2 0.4 0.6 0.8 1 1.2

0

20

40

60

80

0.2 0.4 0.6 0.8 1 1.2

h (rlu)

0

20

40

60

80

0.2 0.4 0.6 0.8 1 1.2

h (rlu)

0

20

40

60

80

C
o
u
n
ts

Energy = 0.1 meV

Energy = 0.15 meV

Energy = 0.175 meV

FIGURE 3.31
Longitudinal (red) and transverse (blue) cross-sections measured with applied vertical field H =
1.7 T at different energies E = 0.1, 0.15, 0.175 meV (from top to bottom). The corresponding

solid lines show theoretical calculations for M = 120.

Even though we are limited to a low-energy region, all data is in good agreement with Bethe-
ansatz calculations. In the Szz channel, one clearly observes two distinct branches, which
extrapolate to 0.5� hinc and 0.5 + hinc at zero energy transfer related to the incommensurate
modes. Moreover, at higher energies, one can notice clear evidence of the psinon-antipsinon
continuum. In the spin-flip channel, at higher energies, two intensive branches can be seen,
which are indistinguishable at E = 0.1 meV.
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FIGURE 3.32
S
zz(h,!) (left) and 1

4 (S
+�(h,!) + S

�+(h,!)) (right) obtained by Kohno for M = 120. Magenta
solid lines correspond to the constant energy cuts that have been measured during the experi-

ment.

The experimental data cover all even low-intensity features of the theoretical spectrum. Moreover,
the theoretical M-value seems to be very close to the "real" one, which corresponds to H = 1.7 T.
Therefore, we can update the previous magnetization curve (Fig.3.24) by including H = 1.7 T
data point in Fig.3.33. The resulting point (green marker) tends to follow the overall trend.
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FIGURE 3.33
Magnetization curve obtained from IN5@ILL experiment (blue markers) and IN14@ILL experi-
ment with vertical field geometry (green marker). Solid lines correspond to Müller’s approximation

given in [44] for different g-tensors.

3.4.2 HORIZONTAL MAGNETIC FIELD

In this last section, we review the results of horizontal field experiment. The aim of this
experiment is to distinguish between S+� and S�+ transverse excitations and therefore trace the
polarization of Bethe-strings. This can be done by applying the magnetic field in the scattering
plane H k Q. The experiment was performed on triple-axis spectrometer IN14@ILL using
the half-polarized mode, so that the beam was polarized before scattering on the sample and
the polarization of the scattered neutrons was not analyzed. Therefore, the measured cross-
sections are �x0 / S�++ spin-incoherent and �x̄0 / S+�+ spin-incoherent. The measurements
were done at dilution temperature T = 0.1 K, allowing direct comparison of experiment and
calculations.

While applying the magnetic field in the scattering plane, one has to face the fact that the
effective magnetic field changes for each Q value since the g-tensor is anisotropic [61]. In
vertical field geometry, |g ·H| remains constant for each Q. According to 3.7, we can calculate
effective horizontal g-tensor for each Cu2+ magnetic system as follows: g1(2)hor = |g1(2) · ĤkQ|,
where ĤkQ is a unitary magnetic field vector parallel to the scattering plane. Constant energy
scans were performed at H = 1.7 T and H = 3.4 T horizontal magnetic fields with varying
h = [�0.5..1.2] rlu in Q = (h,�1/2,�1/2).
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The effective horizontal g-tensor for both copper sites is shown in Fig.3.34 left. As one can see,
for a given momentum transfer range, effective g-tensor changes significantly, giving bandwidth
of �g1hor = 0.0569 for chain Cu2+

1 ions, and �g2hor = 0.2448 for isolated Cu2+
2 ions. To

evaluate how this tensor variation will affect the magnetic Cu2+
1 chain subsystem and determine

which theoretical calculations we should compare experimental data-sets, it is more convenient
to rewrite Eq.3.8 in terms of M -value:

M(H) = 160� 320

⇡
arcsin

⇣µB

2J
g1horH

⌘
. (3.10)

We present the obtained (according to Eq.3.10) M -curve for the chain Cu2+
1 ion assuming the

minimal gmin
1hor = 2.0796 and maximal gmax

1hor = 2.1365 horizontal g-tensors in Fig.3.34 right. As
ticks on the M -axis, we have specified available theoretical calculations; for the H-axis, we
have indicated the measured horizontal magnetic fields. The average of a horizontal g-tensor
for Cu2+

1 magnetic system is gav1hor = 2.1080± 0.0285. The variation of 1.4% from the average
value leads to overall variation of M -value �M ⇡ 5 for H = 3.4 T, and �M ⇡ 1 for the lower
field H = 1.7 T. Therefore, if theoretical M -value is close enough to the experimental M -value,
at H = 1.7 T we will not see any variation in Q due to anisotropic g-tensor. Most likely that we
will not see any difference at H = 3.4 T too since in the TOF experiment we observed very small
discrepancies at H = 1.5 T where�M = 3, and indeed the resolution of IN5@ILL is better than
it was at IN14@ILL. According to the available theory calculations, experimental H = 1.7 T
magnetic field is closer to the theoretical M = 120 value, whereas H = 3.4 T magnetic field is
closer to M = 66.
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FIGURE 3.34
Left : Variation of an effective horizontal g-tensor for two copper magnetic subsystems when
magnetic field is parallel to the scattering plane; right : field dependent M -value for maximal
and minimal horizontal g-tensors for chain Cu2+

1 ions. Vertical lines correspond to the measured
fields; horizontal lines correspond to the available theoretical calculations.
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DATA PREPARATION

Before proceeding to the comparison of experimental data with theoretical calculations, it is
necessary to make several corrections. In order to reduce the influence of the strong paramagnetic
mode, the scans with constant energy transfer were performed. However, as we saw in the
previous Section 3.3, the residuals of the paramagnetic still could be present in those spectra.
Moreover, its effective g-tensor variation with Q is not negligible compared to chain Cu2+

1

ions (Fig.3.34 left) and must be taken into account in the following calculations. With linear
spin-wave theory, one can exactly calculate the magnon dispersion in the fully polarized state.
We have reproduced the linear spin-wave calculations in SpinW [33] as they were previously
reported in [49], applying H = 5 T magnetic field perpendicular Fig.3.35 left and parallel
Fig.3.35 right to the scattering plane. The exchange parameters were taken as Ja = 0.254 meV,
J12 = �0.02 meV, J22 = �0.012 meV, Jb + Jc = 0.004 meV as they are shown in Fig.3.5. The
anisotropic g-tensor from [61] was taken into account for two inequivalent copper positions.
Cosine-dispersion corresponds to the magnon dispersion of the chain Cu2+ ion, and the flat mode
corresponds to the paramagnetic contribution.

FIGURE 3.35
Intensity maps of the theoretical magnon dispersion in fully polarized state with vertical (left)
and horizontal (right) magnetic field of H = 5 T. Exchange parameters were taken from [49]. A

finite arbitrary energy resolution of FWHM = 0.01 meV has been applied.

As was expected, the energy-momentum relation of the paramagnetic modes changes drastically
in the horizontal field geometry and has to be taken into account in further analysis. Since
the chain mode has its lowest energy at h = 0.5 rlu, we are able to distinguish between chain
and paramagnetic modes as they are well separated. For this purpose, constant h-scans have
been performed at h = 0, 0.5, and 1 rlu Fig.3.36 left with H = 3.4 T horizontal magnetic field
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applied. At those Q values, one can observe a sharp peak feature together with the incoherent
scattering. We have fitted the tail of the incoherent scattering with Voigt function (solid green
line in Fig.3.36 left) using only h = 0 and h = 1 rlu data-sets since h = 0.5 rlu data-set contains
chain-mode scattering at lower energies as expected Fig.3.35. The result of the incoherent
scattering subtraction is shown in Fig.3.36 right. We have fitted the peak at h = 0.5 rlu scan with
Voigt function (solid blue line). At h = 0(1) rlu (Fig.3.35 right), the chain and paramagnetic
modes have almost the same energy (exactly the same energy) so that in the experimental data,
we observe only one broadened peak with higher amplitude. We have fixed the amplitude and
width of the h = 0.5 rlu Voigt function, and then fit h = 0 and h = 1 rlu with two Voigt functions
the results of which are shown with red and blue solid lines, respectively. As one can see, both
contributions are well described, so that we can use those parameters for the paramagnetic mode
description in the following.
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FIGURE 3.36
Left: Constant h-scans measured in horizontal magnetic field H = 3.4 T in spin-flip channel.
Solid green line represents the fit of the incoherent tail; right: same h-scans with incoherent
scattering subtracted. Solid lines show the fitting of the magnetic signal, as explained in the text

above.

Using linear spin-wave theory with the same exchange and anisotropy parameters, we performed
calculations for different horizontal field values in order to obtain the field dependence of the
paramagnetic mode energy. The results of those calculations are shown in Fig.3.37. As one can
notice, for different h values, the corresponding E(H) dependence is perfectly linear, allowing to
extrapolate those curves to H = 1.7 T and H = 3.4 T magnetic fields for each h independently
in order to obtain the paramagnetic mode energies.
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FIGURE 3.37
Left : Energy-field E(H) dependence for paramagnetic mode at different h values in Q =
(h,�1/2,�1/2) obtained from LSWT. Vertical dashed lines indicate experimental H = 1.7 T and
H = 3.4 T horizontal field values; right : dispersion of the paramagnetic mode at H = 1.7 T and

H = 3.4 T obtained by extrapolation of linear spin-wave calculations.

In addition, from the fitting with Voigt functions in Fig.3.36, we were able to obtain the peak
positions for the corresponding chain and paramagnetic modes. To summarize, we present in
Table 3.2 the fitted positions of two modes with Voigt function (2nd and 3rd columns) and
extrapolated positions from the LSWT (4th column). We also present the energy difference
between fits and calculations in column 5. Overall, the discrepancies with calculations are less
than 1%, and will not be taken into account in the following.

h (rlu) E (meV) para E (meV) chain E (meV) para expected � (meV) para
0 0.47(1) 0.462(6) 0.4693 0.0007

0.5 0.456(2) – 0.4572 0.0012
1 0.4294(1) 0.4294(2) 0.4317 0.0023

TABLE 3.2
Energy of the paramagnetic and chain modes obtained from the fitting (Fig.3.36) with Voigt
function for different h values in columns 2 and 3 respectively. Expected energy values for
paramagnetic mode obtained from by extrapolation of LSWT results in column 4. The difference

between fitted energy and expected energy is specified in column 5.

As was shown in Fig.3.34, the bandwidth of the effective horizontal g-tensor for the isolated Cu
atoms is 0.2448. Its averaged value gav2hor = 2.2025± 0.1224. Therefore, if one uses the averaged
value, it will explicitly provide 5% uncertainty in energy determination. For this reason, in the
following we will keep anisotropic g-tensor for Cu2+

2 isolated ions.
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COMPARISON WITH THEORY

In Fig.3.38, we present dynamical structure factors S�+(h,!) and S+�(h,!) for M = 120

(top) and M = 66 (bottom) together with LSWT calculated paramagnetic mode contribution,
which appears only in S+�(h,!). In addition, by solid magenta lines we indicated the constant
energy scans that have been performed during the experiment in order to see how big could be
the influence of the paramagnetic mode. For M = 120, which corresponds to H = 1.7 T, the
h-scan with energy E = 0.3 meV is very close to the paramagnetic mode, which could affect the
observed intensities due to uncertainties explained above. Apart from the paramagnetic mode
subtraction and incoherent scattering, no corrections were applied to the data, neither multiple
scattering correction nor magnetic form-factor correction.

FIGURE 3.38
Dynamical structure factors S

�+(h,!) and S
+�(h,!) obtained by Kohno for M = 120 and

M = 66. In addition, we have added paramagnetic mode scattering to the spin-flip polarization
channel.
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The results of comparison are shown in Fig.3.39 – 3.40 for H = 1.7 T, and in Fig.3.41 – 3.42
for H = 3.4 T. We have convoluted theoretical spectra with finite energy �! = 0.034 meV and
momentum transfer �h = 0.01 rlu resolution and multiplied it with the same amplitude for both
fields in order to match the experimental data. As was expected for H = 1.7 T, anisotropic
g-tensor of Cu2+

1 chain ions does not affect the observed experimental data a lot so that all sharp
features are quite symmetric in h. For H = 3.4 T, it is hard to judge since the constant energy
scans are "shorter" in h in addition to obvious peak position discrepancies between calculations
and experiment, which is most likely related to a slightly different M -value. High-energy
region E > 0.6 meV of S+� dynamical structure factor (in which we are mostly interested in
this experiment) is well captured for both horizontal fields displaying two-string excitations.
For lower energies in both channels, the quantitative agreement is quite good. Unexpected
discrepancies are observed at E = 0.3 meV for both channels at H = 1.7 T. Most likely, this is
related to the paramagnetic mode since the constant energy scans were performed very close to
the paramagnetic mode (Fig.3.38), and therefore slightly different value of a horizontal g-tensor
for Cu2+

2 will affect this energy region a lot.
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Comparison of H = 1.7 T S
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+�(h,!) constant energy scans with theoretical
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FIGURE 3.40
Comparison of H = 1.7 T S

+�(h) and S
+�(h) constant energy scans with theoretical M = 120

dynamical structure factors (continuation).
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FIGURE 3.41
Comparison of H = 3.4 T S

+�(h) and S
+�(h) constant energy scans with theoretical M = 66

dynamical structure factors.
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FIGURE 3.42
Comparison of H = 3.4 T S
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+�(h) constant energy scans with theoretical M = 66
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3.5 SUMMARY

This chapter mainly focused on quantitative data analysis of the field-dependent dynamics fea-
tures in CuSO4 · 5D2O. Together with polarization analysis, we were able to observe excitations
from the new quasiparticles, like psinons, antipsinons, and Bethe strings. We showed a qualitat-
ively and quantitatively great agreement with the Bethe-ansatz calculations, thus confirming that
CuSO4 · 5D2O belongs to the model example of one-dimensional spin-1/2 Heisenberg chain.

The incommensurate modes were already observed in copper benzoate [47], azurite [62], and
BaCu2Si2O7 [63]. However, the observed excitations were not fully described with Heisenberg
S = 1/2 antiferromagnetic spin chain model due to additional interactions. For CPC [64] and
pyrazine [46] the comparison between Bethe-ansatz calculations and experiment was demon-
strated in [52]. However, due to the large values of main exchange coupling, the higher energy
regions have not been studied. For BaCo2V2O8 [54] and SrCo2V2O8 [53], recent studies have
presented observation of Bethe-strings and psinon continua. However, these materials belong to
XXZ Heisenberg-Ising S = 1/2 spin chain antiferromagnets with � ⇡ 2. Moreover, due to the
additional interactions present in the SrCo2V2O8, the corresponding theoretical Bethe lineplots
do not agree with experimental data perfectly.

In addition, we have presented an first experimental verification of the polarization (chirality) of
Bethe strings, and contrary to [65], polarization analysis was applied to study excitations in a
longitudinal magnetic field. The results are in perfect agreement with Bethe-ansatz calculations
that include solutions up to 2 2 ⇤, which are equivalent to two- and four-spinon continuum in
zero field, and saturate sum rules by 99%.
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CHAPTER 4

QUANTUM NATURE OF MAGNETIC

EXCITATIONS IN CU6[SI6O18] · 6H2O

The gemstone mineral green dioptase, Cu6[Si6O18] · 6H2O, crystallizes in the space group R3̄.
Hexagonal rings of silica tetrahedra interconnect the magnetic Cu2+ ions with spin-1/2. The
Cu2+ are surrounded by axially-elongated oxygen octahedra. The copper-oxygen network forms
corner-sharing spirals along the hexagonal three-fold c-axis, where neighbouring coppers are
displaced by c/3. The spiral chains have a honeycomb arrangement in the ab-plane.

FIGURE 4.1
Projection of the structure of green dioptase along the hexagonal c-axis (blue Cu, green Si,
red O, rose H). The Cu spiral chains along c are encircled in light blue, the interchain bonds are

indicated in yellow [66],[67].
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4.1 A SEA OF CONFLICTS

Numerous studies such as bulk susceptibility [68],[69], specific heat [70],[71], neutron diffraction
[67] and NMR [72] point to an unfrustrated quasi-one-dimensional Heisenberg antiferromagnetic
chain behaviour with the intrachain exchange of 74 K, and smaller ferromagnetic interchain
coupling. In specific heat measurements, a sharp �-anomaly was observed at TN = 14.5 K,
indicating the onset of long-range magnetic order. It contains only 2% of the entropy expected
for the ordering of a S = 1/2 spin system. The AFM spin ordering with propagation vector
k = (0, 0, 3/2)hex at TN has been confirmed by an unpolarized single-crystal neutron diffraction
study [67]. The ordered Cu2+ moment was refined to 0.55(1) µB at 1.5 K, which is significantly
lower theoretical value of M = gS = 1µB for S = 1/2. Nearest Cu2+ spins within the spirals
in c direction are inclined in the opposite direction by 13� with respect to the c-axis, while the
ordering within hexagonal ab-plane remains ferromagnetic (FM) [67].

Recent neutron time-of-flight experiment [73] provided some clarity on the size and sign of
exchange interactions, the question about which arose in the works [74] and [75]. The inelastic
spectra [73] were modelled with linear spin-wave theory of a strictly collinear magnetic structure
with antiferromagnetic nearest-neighbour interaction Jc = 10.6(1) meV, ferromagnetic interchain
coupling Jab = �1.2(1) meV and easy axis anisotropy on every Cu2+ ion A = 0.14(1) meV
shown in Fig.4.2. Larger bandwidth was observed for longitudinal excitations, reflecting Jc >

Jab. The observed spin-wave gap was reproduced by introducing single ion anisotropy term in
Heisenberg Hamiltonian:

H = Jc
X

hi,jic

Si · Sj + Jab
X

hi,jiab

Si · Sj �
X

i

ASz2

i . (4.1)

The origin of anisotropy might be related to Jahn-Teller distortion [67], however difficult to
reconcile with the small ordered moment. Moreover, the observed experimental spectra are
extremely broadened and cannot be explained by the instrumental resolution.
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FIGURE 4.2
Top: Inelastic neutron spectra measured at time-of-flight CNCS@SNS in dioptase at T = 1.7 K,
showing the dispersion of magnetic excitations along high-symmetry directions. Bottom: LSWT
calculations, based on the model Hamiltonian 4.1 convoluted with instrumental resolution.

Adapted from [73].

To summarize, the ground state of green dioptase proposed in [73] represents by spiral AFM spin
chains along the hexagonal c-axis with ferromagnetic interchain coupling, which is supported by
[75] and [72] and disagrees with [74], where AFM coupling between the chain was proposed.
Their magnetization value obtained from LSWT yields 0.38 µB , which is not far from the value
obtained in the diffraction study [67]. Overall, they attribute the reduced magnetic moment to
quantum fluctuations of copper spins, which arise due to the low coordination number [75]. In
contrast, muon studies [76] evidenced no quantum criticality above or below TN . Instead, they
propose only a three-dimensional Heisenberg coupling scheme below TN .

Inspired by all the above contradictions, the first thing we did was LSWT calculations (Fig.4.3)
based on the model in [73] with the inclination of a magnetic moment, which was observed
in [67]. We have used exchange parameters as Jc = 10.6(1) meV, Jab = �1.2(1) meV
and A = 0.14(1) meV and a collinear magnetic structure with a propagation vector k =
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(0, 0, 1.5) for the left column in Fig.4.3. We define the direction of the magnetic moment m
as mx = sin(⇥) cos(�), my = sin(⇥) sin(�), mz = cos(⇥), where ⇥ is an inclination of the
magnetic moment from the c-axis, and � – its orientation in ab-plane. For the last three figures,
Jc = 10.6(1) meV, Jab = �1.2(1) meV, and different directions of the magnetic moment were
used. In addition, on each copper site, single ion anisotropy was introduced in accordance with
the magnetic moment direction. However, the larger value of anisotropy was needed A = 1 meV
in order to stabilize the ground state. Obviously, the deviation from the collinear spin ordering
strongly affects the calculated inelastic scattering spectra, and more intriguing, it can lead to the
broadening of the inelastic features observed in [73]. Therefore, an accurate determination of a
magnetic structure would be our first task.

FIGURE 4.3
LSWT calculations for a model Heisenberg Hamiltonian from [73]. The first column of figure
reproduces the calculations from [73] with non-inclined magnetic moments. Other figures
represent excitations considering the tilt of 13� from the c-axis reported before by [67]. For the
tilted configuration, different orientations of the magnetic moment in ab-plane are presented by

changing �-angle, the larger value of A = 1 meV was used.

4.2 MAGNETIC STRUCTURE DETERMINATION

SYMMETRY ANALYSIS

The crystallographic unit cell contains eighteen Cu2+ ions, which are all equivalent to the general
18f Wyckoff position in R3̄ space group. The magnetic structure determined in [67] below TN
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can be described with propagation vector k = (0, 0, 1.5). Group representation theory can be
used to identify the possible magnetic structures. According to symmetry analysis in BASIREPS
[21], for the propagation vector k and the space group R3̄ there are six irreducible representations,
including four with imaginary part �3,�4,�5, and �6. Moreover, �5 and �6 are equivalent to �3

and �4 representations with the complex conjugate operation. Table 4.1 represents the symmetry
relations for magnetic moments transformations for coupled Cu-ions inside the unit cell. In
addition, since the interaction scheme is clear [73] [75], we conclude that �1 should be sufficient
to describe the magnetic structure, and we will use that in the following.

Atom Symmetry �1 �2 �3 �4

Cu1 (x, y, z) (u, v, w) (u, v, w) (u, v, w) (u, v, w)

Cu2 (�y, x� y, z) (�v, u� v, w) (�v, u� v, w) (v,�u+ v,�w) (v,�u+ v,�w)

Cu3 (�x+ y,�x, z) (�u+ v,�u, w) (�u+ v,�u, w) (u� v, u,�w) (u� v, u,�w)

Cu4 (�x,�y,�z) (u, v, w) (�u,�v,�w) (u, v, w) (�u,�v,�w)

Cu5 (y,�x+ y,�z) (�v, u� v, w) (v,�u+ v,�w) (v,�u+ v,�w) (�v, u� v, w)

Cu6 (x� y, x,�z) (�u+ v,�u, w) (u� v, u,�w) (u� v, u,�w) (�u+ v,�u, w)

In chain AFM AFM FM FM
Between the chains FM AFM FM AFM

TABLE 4.1
Irreducible representations and their symmetry operations according to the space group R3̄ and
propagation vector k = (0, 0, 1.5). The parameters u, v, and w are free parameters which are to
be determined experimentally. The corresponding exchange interactions within and between

chains are indicated in the two bottom rows.

POLARIZATION ANALYSIS WITH CRYOCRADLE

We have performed spherical neutron polarimetry (SNP) on the spin-polarized hot neutron
diffractometer D3@ILL with a monochromatic and polarized neutron beam of wavelength
� = 0.85 Å. The CRYOPAD was used together with the Cryocradle setup in order to have
access to several scattering planes. The sample was mounted with (hhl) scattering plane. The
UB-matrix was determined according to the observed nuclear Bragg peaks. The nine channels
of the polarization matrices at base temperature T = 1.5 K were obtained by measuring the
initial and final neutron polarization after the scattering process. The standard local coordination
system has been employed, where x is parallel to the scattering vector Q, z is the vertical
direction of the diffractometer, and y completes the right-handed coordination system). The final
neutron polarization was analyzed using a 3He spin filter, whose efficiency was tested regularly
by measuring the Pxx element of a nuclear Bragg reflection (1, 1, 0). The observed data were
corrected for the time-dependent spin filter efficiency, and the initial neutron polarization of
p0 = 0.91 was taken into account for all calculations. For the selected magnetic Bragg peaks,
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three points were measured: one at the top of the peak, and two others on opposite sides of the
peak, which determined the background level.

For the refinement, five peaks in total were used, the choice of which was due to their intensity
compared to the background. We present the results of the experiment in Table 4.2. On the
left, one can see the measured polarization matrices for the specific Q vectors. In addition, the
experimental integrated intensity in counts is specified. We have refined polarization matrices
with Mag2Pol software [77] assuming �1 irreducible representation symmetry operations in
order to obtain the inclination of the magnetic moment. The refined magnetic moment yields
m = (0.017(2),�0.068(8), 0.997(1)), and, in the right column of the table below, we present
calculated polarization according to the obtained magnetic moment. Nonzero Pyx, Pzx channels
could indicate the presence of magnetic chirality. However, in our case, they are most likely
zero, especially considering the errorbars. Overall, the experimental data show a good agreement
within the framework of �1 irreducible representation, what also confirmed by a value of
�2 = 8.40.

Measured Calculated
Q = (0, 2,�0.5), Iexp = 1375

-0.88(2) 0.06(2) -0.00(2) -0.91 0 0
-0.067(2) 0.76(2) 0.38(2) 0 0.82 0.39
-0.01(2) 0.34(2) -0.79(2) 0 0.39 -0.82

Q = (�1, 2, 1.5), Iexp = 445

-0.76(4) 0.01(4) 0.07(5) -0.91 0 0
-0.04(5) 0.88(5) 0.09(5) 0 0.90 0.13
0.01(5) 0.09(5) -0.71(5) 0 0.13 -0.90

Q = (2,�2,�0.5), Iexp = 2578

-0.87(1) 0.03(1) 0.00(1) -0.91 0 0
0.02(1) 0.73(1) -0.47(1) 0 0.76 -0.49
0.00(1) -0.47(1) -0.71(1) 0 -0.49 -0.76
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Q = (2,�7,�1.5), Iexp = 207

-1.1(1) 0.12(9) -0.1(1) -0.91 0 0
0.04(9) 0.7(1) 0.2(1) 0 0.90 0.15
0.18(9) 0.3(1) -1.0(1) 0 0.15 -0.90

Q = (2,�5,�0.5), Iexp = 345

-1.04(3) 0.02(3) 0.01(3) -0.91 0 0
0.02(3) 0.85(3) 0.12(3) 0 0.91 0
0.02(3) 0.14(3) -1.08(3) 0 0 -0.91

TABLE 4.2
Results of D3 experiment

From the D3 experiment, the refined value of a magnetic moment corresponds to a 5� tilt
from the c-axis. We have calculated spin-wave spectra for tilted structure (Fig.4.4) for the
same Q directions as in [73]. We have used the following parameters: Jc = 10.6(1) meV,
Jab = �1.2(1) meV and A = 0.14(1) meV and m = (0.017,�0.068, 0.997). Single ion
anisotropy was applied on each copper spin in accordance with its direction, which is determined
by �1 irreducible representation. The calculated spectra show no evidence of additional mode
splitting. Moreover, there is no hint for the broadening observed in [73].

FIGURE 4.4
LSWT calculations for a model Heisenberg Hamiltonian from [73] taking into 5� tilt of the magnetic

moment.
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4.3 MAGNETIC EXCITATIONS IN ORDERED STATE

To verify that additional scattering observed in [73] is of magnetic origin, we performed a
polarized inelastic ThALES@ILL experiment.

The spectrometer was used with Helmholtz coils in order to perform XYZ polarization analysis.
Polarized neutrons were produced and analyzed by a horizontally focused Heusler(111) mono-
chromator and analyzer with kf = 1.5 Å�1. No collimation was used. The sample was mounted
with (hhl) scattering plane. The measurements were carried out below TN at base temperature
T = 1.5 K of a standard Orange cryostat.

With a linear combination of different spin-flip (SF) and non spin-flip (NSF) cross-sections, one
can obtain a pure magnetic scattering free of any background:

|M?|2 = �yy
NSF + �zz

NSF � 2�xx
NSF = 2�xx

SF � �yy
SF � �zz

SF . (4.2)

In order to understand which scans we have to perform, we did LSWT calculations for a
given scattering plane and applied finite energy �E = 0.13 meV and momentum transfer
�Q = 0.01 rlu resolution, the results of which is shown in Fig.4.5. As for magnetic structure, we
used spin directions according to the moment obtained in the D3 experiment and �1 irreducible
representation. For the exchange parameters and anisotropies, we have used Jc = 10.6(1) meV,
Jab = �1.2(1) meV and A = 0.14(1) meV. Single ion anisotropy was applied on each copper
site in accordance with its direction. Since there are two distinct branches expected at E = 2 meV
and E = 5 meV, we decided to perform constant Q cuts in order to have an idea of an energy
gap size and bandwidths for both dispersion modes.
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FIGURE 4.5
LSWT calculations for a model Heisenberg Hamiltonian from [73] for (hhl) scattering plane
taking into account the tilt of 5� from the c-axis. Magenta solid lines indicate the constant Q cuts
measured during ThALES experiment. Finite energy resolution �E = 0.13 meV and momentum
transfer �Q = 0.01 rlu are applied. All LSWT calculations were scaled with the same parameter

A, which was chosen according to Q = (0, 0, 1.5) data-set.

The results of the experiment are shown in Fig.4.6. We present only the magnetic scattering part
obtained with Eq.4.2. Due to the experimental time available and magnetic scattering intensity,
different data-sets were measured with different statistics as evidenced by various errorbars,
although they were normalized to the same monitor. In addition, we have included LSWT
calculations for each Q value obtained with the collinear structure and parameters from [73]
(in green) and LSWT calculations for the tilted structure (in blue). It has to be noted that for
our calculations, we have adapted single ion anisotropy value A = 0.151 meV to match the
experimental signal with the theory. However, this adjustment worked only for the low-energy
region E  3 meV, whereas for the high-energy region, the calculations are systematically
shifted in energy. Moreover, theoretical spectra obtained using exchange parameters given in
[73] do not match the experimental data at all. A proper fit of exchange parameters and different
types of anisotropy requires a verification of the stability of the ground state. This has not
been attempted. However, on the other hand, for every Q value, we see very broad features
that are not described in terms of spin-wave excitations. By including finite energy resolution
�E = 0.13 meV and momentum transfer resolution �Q = 0.01 rlu, one naturally observes
the broadening of the spectrum, however still not enough to describe the whole shape. The
first thought that comes to mind since we are dealing with a quasi-one-dimensional system (we
cannot exclude this since the interaction between the chains is still small compared to the main
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interaction within the chain), consisting of copper S = 1/2 atoms, the remaining scattering can
be a feature of a spinon continuum, and to prove that, we need to perform measurements above
TN . This will be a subject of the following Section.
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FIGURE 4.6
Experimental magnetic scattering |M?|2 measured at different Q vectors at ThALES instrument.
Solid green line corresponds to the LSWT calculations according to the parameters given in [73].
Solid blue line corresponds to the LSWT calculations according to the direction of the magnetic

moment obtained in D3 experiment.

4.4 EVIDENCE OF QUANTUM FLUCTUATIONS ABOVE AND

BELOW TN

In order to show that observed broad excitations could be related to spinon excitations, we have
performed IN20@ILL experiment. The experimental setup was equipped with Helmholtz coils
for the XYZ polarization analysis. The spectrometer was used in W configuration. The neutron
energy was selected by a horizontally focusing polarizing Heusler(111) monochromator and
analyzed with Heusler(111) operating at fixed kf = 2.662 Å�1. A PG(002) filter was positioned
at kf . No collimation was used. The diaphragms were placed next to the sample. The sample
was mounted into the Orange Cryostat, and the data were collected at T = 1.5 K and T = 22 K.
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We have used the (hhl)-oriented crystal previously used for the D3 and ThALES experiments.
We measured spin-flip and non spin-flip xx, yy, zz cross-sections at the constant energy transfer
E = 7 meV. The measured spectra, together with LSWT calculations, are shown in Fig.4.7. For
the exchange parameters and anisotropies, we have used Jc = 10.6(1) meV, Jab = �1.2(1) meV
and A = 0.14(1) meV. For the ground state, we have used spin directions according to the
magnetic moment tilt obtained in the D3 experiment and �1 irreducible representation. The
single ion anisotropy was applied to each copper site in accordance with its magnetic moment
direction.
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FIGURE 4.7
Top: Calculated spin-wave dispersion along (00l) direction convoluted with energy �E = 1 meV
and momentum transfer �Q = 0.01 rlu IN20 instrument resolution. Bottom: Inelastic spectra
measured above (red) and below (blue) TN . Three different contributions (total cross-section,

incoherent cross-section and magnetic cross-section) are shown.

Since the sample contains hydrogen atoms that mainly scatter incoherently, magnetic signal
makes a small contribution to total scattering, which is excellent distinguishable in experiments
with polarization analysis. We see the redistributing of maximal intensity when we measure above
TN . The presence of the magnetic scattering at both temperatures near the AFM zone center
(0 0 1.5) and its absence above (0 0 2) are not compatible with purely spin-wave excitations
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and becoming a clear evidence quantum fluctuations like in [7]. Therefore, this material indeed
requires further study and analysis and contrary to [76] we were able to observe quantum spin
chain-like behaviour.

4.5 SUMMARY

In this chapter, we presented the first evidence of quantum fluctuations in the green mineral
dioptase Cu6[Si6O18] · 6H2O. Despite the numerous studies about classical three-dimensional
Néel antiferromagnet behaviour, we have shown by means of inelastic scattering that observed
excitations are not only of "classical" spin-wave nature. We determined the magnetic structure
using spherical neutron polarimetry and found an inclination of the magnetic moment of 5�

from the c-axis. And given that the structure of an individual chain in the unit cell is chiral, this
inclination might result, for example to a helicoidal magnetic ordering. We have to admit that a
lot of analytical work is still needed, namely for resolving the exchange interaction scheme.
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CHAPTER 5

DYNAMICS IN FRUSTRATED TRIANGULAR

ANTIFERROMAGNET CUSB2O6

5.1 FRUSTRATION

The inability of the system to satisfy all the magnetic interactions simultaneously, or in other
words, the absence of a single state with minimal energy, can be related to the lattice or the
competing magnetic interactions. Instead, there are variety of low-energies states realized,
leading to the degeneracy of the ground state. The reason for such behaviour is frustration. The
simplest realization of this effect is two-dimensional triangular lattice with only nearest-neighbour
antiferromagnetic interactions (Fig.5.1 left). In fact, this is an example of geometrical frustration
that implies the situation when a third spin cannot satisfy the condition to be antiparallel to each
of its first neighbours. In this case, the system will possess the multiplicity of unsatisfied states
[78].

The other example of geometrical frustration in two dimensions is the kagome lattice which is
a triangular network of corner-sharing triangles, and in three dimensions – pyrochlore lattice
with corner-share tetrahedra (Fig. 5.1 middle and right ). These materials usually demonstrate
the absence of the long-range magnetic ordering down to millikelvin temperatures and show
non-trivial collective dynamics of spin fluctuations.
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FIGURE 5.1
Left : Examples of geometrical frustration. Left: two-dimensional triangular lattice (adapted from
[79]); Middle: two-dimensional kagome lattice (adapted from [78]); Right: three-dimensional

pyrochlore lattice (adapted from [80])

Frustration may arise not only from the lattice geometry but from competing interactions. As
an example, one can consider square lattice (Fig.5.2) with nearest-neighbour antiferromagnetic
interactions. Indeed, with only nearest-neighbour AFM interactions, the classical Néel state is
realized. However, by adding AFM interactions along the diagonal bonds, the frustration arises
and ultimately leads to entanglement of the ground state [81, 82].

?

J1 J1

J2

FIGURE 5.2
Left : Frustration caused by competing interactions: square lattice. Left: classical Néel order,
where J1 stands for AFM interaction between neighbouring spins. Right: frustration on square

lattice when adding another AFM interaction J2 along the diagonals.

The same situation is observed for honeycomb lattice (Fig. 5.3). According to the Heisenberg
J1 � J2 � J3 model [83], depending on the sign and magnitude of the J2/J1 and J3/J1 ratios,
nontrivial spin configurations can be realized, such as zigzag orderings, stripe orderings, various
spiral structures etc.
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FIGURE 5.3
Left : Possible ground states for J1 � J2 � J3 model. a classical Néel ordering, b zigzag-type
structure, c spiral ordering, d stripe-type structure; e Phase diagram for S = 1/2 honeycomb

structure and AFM nearest-neighbour interaction J1 [84].

The situation of the competing interactions may be observed on the geometrically frustrated
lattices. Moreover, in the real systems additional contributions to the Hamiltonian may be also
important such as single ion anisotropy [85], dipolar interactions [86, 87], Dzyaloshinskii-Moriya
interactions [88], magnetoelastic coupling [89], site dilution [90, 91] and exchange randomness
[92]. In some cases, these terms may induce magnetic order or spin freezing.

One of the parameters which can somehow estimate the "degree" of frustration is defined as
f = |⇥CW |/TC , where ⇥CW – Curie-Weiss temperature, TC – Néel temperature or spin freezing
temperature if any. As one can see, in an ordered Néel-type magnet, the ratio f is of the order
of 1, whereas for frustrated systems, f should be significantly larger given the absence of the
ordered state.

With this small introduction, one can see that there is a variety of different cases in terms of
frustration and its consequences. However, according to the scope of this chapter, I will consider
only triangular lattices with dominant AFM interactions.

5.2 TRIANGULAR LATTICE

In order to link the lattice symmetry with the observed magnetic properties, one has to have a
clear idea about the symmetry of the spin. It is essential to establish whether the spin direction is
restricted and therefore has a discrete symmetry for Ising spins or continuous rotational symmetry
for the Heisenberg spins.
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ISING MODEL

Historically, the Ising model on the triangular net with nearest-neighbour antiferromagnetic
interaction was exactly solved by Wannier [93]. The corresponding ground state is described
by finite entropy at T = 0, and power-law decaying spin correlations with the critical exponent
⌘ = 1/2 [94] and shows the absence of any long-range magnetic order at any finite temperature.
For the next 50 years, studies of the Ising triangular antiferromagnets had several trajectories.
One of them was devoted to the general-S spin considerations. Numerous studies [95–99]
showed that for the infinite spin S �! 1 (or S > 11

2 in [97]) the magnetic system tends to
have an antiferromagnetic long-range order at finite temperature. In addition, the accompanying
Monte Carlo simulations confirm the absence of a critical point for the spin S = 1/2. As the
value of spin S increases and exceeds some critical value SC , the critical exponent becomes zero,
thereby confirming the presence of magnetic ordering at zero temperature. In these studies, by
increasing the magnitude of spin variable S, the multiplicity of the local degrees of freedom is
also increasing. The latter reduces the effect of frustration and induce the magnetic order.

Further-nearest neighbor interactions play a crucial role in this model. Depending on the next-
nearest neighbor interaction sign, one can obtain different kinds of LRMO and corresponding
ground state. FM coupling leads to the so-called

p
3⇥

p
3 ordered structure, firstly demonstrated

by Metcalf [100]. This structure is a three-sublattice ground state, where two sublattices have
spin-up, and the third has spin down. By increasing the temperature, the system will occur
first in Berezinskii-Kosterlitz-Thouless (BKT) phase [101–104], followed by high-temperature
paramagnetic phase [105–108]. In contrast, next-nearest neighbor AFM interactions lead to
another form of LRMO, namely to superantiferromagnetic (SAF) state where antiferromagnetic-
ally coupled spins in rows alternate [108] and no intermediate phase is expected. Both of the
"unusual" ground states are demonstrated on the phase diagram Fig.5.4.
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FIGURE 5.4
T = 0 K phase diagram of the triangular Ising model with nearest Jnn and next-nearest-neighbor
Jnnn interactions. Plus "+" corresponds to the spin-down, minus "-" – spin-up. Positive values of

J correspond to AFM interactions. The figure was adopted from [108]).

Although the experimental realizations of such ideal systems are extremely rare, one of the recent
examples, TmMgGaO4, demonstrates very promising evidence [109] of BKT phase, which up to
now has never been observed experimentally in 2D magnets.

XY MODEL

Increasing the symmetry of the spin, one would approach the XY model with continuous
symmetry SO(2). This model has attracted much interest since the 1980s due to its relevance
to Josephson junction arrays in the applied magnetic field [110], helimagnetic materials [111],
discotic liquid crystals [112] and many others [113].

Even though Mermin and Wagner [114] demonstrated that continuous symmetry cannot be
broken for dimensions d  2, another type of phase transition is possible – the one already
mentioned and discovered independently by Berezinskii [101, 102] and by Kosterlitz and
Thouless [103, 104]. This transition is not a transition in common sense since there is no local
order parameter. No long-range magnetic order is expected, except the algebraic decay of the
correlation function at low temperatures, leading to a quasi-long-range order associated with
topological phase transition.

In contrast to the Ising-type triangular antiferromagnet, the ground state for the classical XY-
model is the well-known – 120� coplanar structure. This ground state combines two types of
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symmetry – continuous symmetry U(1) according to the global rotation of spins, and discrete
symmetry Z2 associated with chirality [115, 116]. Depending on the sense of spins rotation
around each triangle (Fig. 5.5), clockwise or anticlockwise, two types of chirality are possible,
which explains Z2 belonging to the Ising universality class and according to the discrete nature
of Z2 symmetry, its breaking would induce long-range magnetic order.

FIGURE 5.5
Ground state of the 2D antiferromagnetic XY model on the triangular lattice. Pluses "+" and

minuses "-" stand for different chiralities.

As stated above, in this model, two types of symmetry can be broken through BKT phase
transition and Ising-type phase transition. However, the questions about whether these transitions
appear at the same temperature or they belong to one or another universality class are still under
debate e.g., [117–119].

Less interest was devoted to the quantum XY model [120–123]. I would address that to the fact
stated in [120] that "classical spins are really two-dimensional objects whereas the quantum
spins are basically three-dimensional objects and third z spin component which is not present
in the original Hamiltonian can be involved in "the low-temperature phase order" due to the
commutation relations". Therefore, I will not discuss the quantum analog of the classical XY
model in this thesis.

5.3 QUANTUM SPIN LIQUID CONCEPT

As for the Heisenberg system, in 1973, Philip Anderson theoretically proposed [9] an idea of the
quantum spin liquid state considering the two-dimensional triangular arrangement of spins-1/2
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in which neighboring spins are antiferromagnetically coupled and cause uncertainty in their
directions (Fig. 2.1 left). In fact, this is an example of geometrical frustration, which implies
the situation when a third spin cannot satisfy the condition to be antiparallel to each of its first
neighbours. In the case of only nearest-neighbour Heisenberg interaction, there is a classical
solution that avoids the frustration by 120�-structure realization and leads to the long-range
magnetic order. Anderson suggested a resonating valence bond (RVB) model to describe the
quantum state in which any two antiparallel spins pair up to form a spin singlet state with a total
spin S = 0 and vanishing magnetic moment (Fig. 2.1 right). It should be noted that there is no
strict arrangement of these singlets but a linear combination of all possible configurations.

FIGURE 5.6
Left : Example of the triangular arrangement of spins. J stands for the Heisenberg exchange
interaction; Right : Possible RVB state showing singlets with a total spin S = 0. Each singlet is

formed by antiparallel pair of spins (the figure was adapted from [2]).

Since Anderson’s work, many efforts have been done to explore deeper both theoretically and
experimentally the QSL state. As for now, there are several requirements that need to be met in
order to discuss this state. Small spin, absence of long-range order or spin freezing, long-range
entanglement, and the associated fractional spin excitations. The main requirement for the
material to be a QSL candidate is the absence of any magnetic phase transition even at T = 0 K.
In this case, strong quantum spin fluctuations prevent any long-range magnetic order but remain
the liquid-like dynamics.

This chapter presents a new potential QSL candidate, trigonal CuSb2O6. The sample is available
only in powder so we had to use experimental techniques adapted for polycrystalline samples.

5.4 SAMPLE CHARACTERIZATION
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5.4.1 POWDER DIFFRACTION

Rosiaite-type CuSb2O6 crystallizes in the P 3̄1m (No. 162) space group with a = b = 5.05 Å
and c = 4.59 Å. In this structure, the magnetic Cu2+ ions with S = 1/2 are arranged in trigonal
layers. Since structural disorder and anisotropic spin interactions due to site mixing or lattice
distortions in QSL candidates often result in a spin glass or magnetically ordered ground state,
one has to have a clear idea of possible imperfections in a crystal structure.

Neutron powder diffraction at room temperature (RT) on CuSb2O6 was performed at D2B
instrument with incident neutron wavelength of � = 1.594 Å. All the observed Bragg peaks
can be successfully indexed in the frame of P 3̄1m (No. 162) space group, which implies the
presence of crystallized rosiaite-type structure of CuSb2O6. The following full-profile refinement
by means of Rietveld method was performed in FullProf software [21]. The data demonstrate
the presence of broad diffuse features at small-scattering angles similar to the previous lab x-ray,
which are characteristic of an amorphous phase with short correlation length [124]. Additional
background points were used in order to describe the observed diffuse features. Layered crystal
structure of CuSb2O6 is represented by the stacking of trigonal layers with the magnetic Cu2+

ions divided by the non-magnetic Sb-contained layers (Fig.5.7 right). All cations are located
in an octahedral oxygen environment. It should be noted that the diffraction pattern consists
of broadened peaks compared to D2B resolution function, which suggests the presence of
microstructural effects. Basically, the diffraction line broadening may occur due to two factors:
crystalline size (finite coherent domain size of scattering grains) and/or local lattice strains. The
isotropic strain model allowed us to sufficiently describe the peak broadening in the CuSb2O6

diffraction pattern. On one hand, strain-type broadening can be caused by crystal imperfections,
such as lattice dislocation or stacking faults. There are other sources of strain, which are the
grain boundary triple junction, coherency stresses, contact or sinter stresses, etc [125]. The
refined parameters are shown in Table 5.1.
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FIGURE 5.7
RT powder neutron diffraction pattern measured at D2B@ILL.

TABLE 5.1
Crystallographic data of CuSb2O6 within the framework of the P-31m (No. 162) space group
at RT observed using neutron powder diffraction (D2B, � = 1.594 Å) data refinement. Lattice
parameters are a = b = 5.0562(4) Å and c = 4.5888(5) Å. Global �2 = 2.96. Agreement factors

are Rp = 4.04, Rwp = 5.41, and Rexp = 3.14.

Atom Site x/a y/b z/c Occupancy
Cu 1a 0 0 0 1
Sb 2d 1/3 2/3 1/2 1
O 6k 0.337(2) 0 0.243(1) 1

We understand that the crystal structure is not ideal and may contain microstructural defects
such as stacking faults and/or lattice dislocations. However, for us, the main result from
powder diffraction is that the measured powder sample contains a highly-symmetric triangular
arrangement of Cu2+ ions, what makes this material interesting for research.

5.4.2 DC SUSCEPTIBILITY

As was mentioned in Section 2.4, one of the methods, which can be used for sample characteriz-
ation is a dc susceptibility, which can be well adapted for powder samples. We have performed
temperature dependence of magnetic susceptibility on the PPMS instrument down to T = 2K.
The results are presented in Fig. 5.8 left. Temperature dependence of the magnetic susceptibility
does not show any anomaly or peaked feature down to 2 K, which supports the absence of the
long-range magnetic order.
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The data were fitted to the Curie-Weiss equation � = �0 +
C

T�⇥ to obtain the effective para-
magnetic moment µeff and ⇥. The Curie constant C yields an effective paramagnetic moment
following the expression µeff =

p
3kBC/NA, Weiss temperature ⇥ = �S(S+1)

Pz
j=1 Jij

3kB
stands

for the strength and nature of the magnetic interactions, and �0 is temperature-independent sus-
ceptibility (background) term. By varying the fitted temperature range (changing Tmin), one can
observed a plateau starting from Tmin ⇡ 110 K (Fig. 5.8 right). Therefore, for the fitted values
C = 0.51 ± 0.01 emu·K

mol·Oe , ⇥ = �24 ± 1 K, �0 = (0.38 ± 0.01) · 10�3 emu
mol·Oe , the mean values

in the temperature range T = 110 – 290K were taken, and the corresponding error bars were
estimated as its divergence from the mean value in the same temperature range. The effective
magnetic moment per Cu2+ ion obtained from Curie constant C is µeff = 2µB. The spin-only
magnetic moment is given by µS = g

p
S(S + 1) and equals 1.73 for Cu2+ considering g = 2.

The deviation of the µeff from the spin-only value naturally occurs from the larger value of
g-factor g = 2.196, which was reported in [124], and thus gives the value of µeff = 1.9µB. The
inverse dc susceptibility diverges from Curie-Weiss law below 50K. The negative sign of Weiss
temperature indicates dominant AFM interactions. The absence of zero-field cooled (ZFC) and
field cooled (FC) splitting in Fig. 5.8 inset rules out any spin freezing down to 2K.
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FIGURE 5.8
Left : Temperature dependence of the magnetic susceptibility of CuSb2O6 measured at B = 0.1T ;
Inset : The dependencies of magnetic susceptibility measured in the field cooled and zero-field
cooled regimes. Right : Fitted parameters C,⇥,�0 from Curie-Weiss law vs Tmin (explained in

the text).

With the same instrument, we measured field dependence of magnetization M(H) up to 14 T. As
it is evident from Fig. 5.10, at the lowest temperature T = 1.7 K, there is no hint of a plateau that
would indicate a transition of the sample to a ferromagnetic state, thus this is further evidence
of significant antiferromagnetic interactions. At 8 K, magnetization isotherms start to show a
curvature, which becomes prominent at lower temperatures. The 50 K data-set is in agreement
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with susceptibility data, which at 50 K follows Curie-Weiss law. Measured magnetic isotherms
in the temperature range 1.7-8 K were analyzed within the framework of the following equation:

M(H, T ) = �(T )H +NAµBfimpSimpgimpBS

✓
gimpSimpHµB

kB(T �⇥imp)

◆
, (5.1)

where �(T ) represents the intrinsic susceptibility which we assume to be the same in the certain
temperature range, fimp, gimp, Simp, and ⇥imp denote the impurity/disorder concentration, the
Lande g-factor, spin, and correlation temperature for impurity spins. The symbols H , NA, kB,
µB , and BS refer to the magnetic field, the Avogadro number, the Boltzmann constant, the Bohr
magneton, and the Brillouin function, respectively.
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FIGURE 5.9
The magnetization isotherms measured in the field range (-14 – 14 T) and in the temperature

range 1.7 – 50 K.

There are five parameters to be varied, and a simultaneous fitting of these parameters gives
non-physical values. Additionally, by fixing Simp to 1/2 and let the other four parameters be free,
one obtains a high g-factor value. Since there is still a doubt about the actual value of g-factor,
we have fixed the values to 2.3 and 2.2 in different series of fitting. The result of different fittings
is presented in Table 5.2, where (f) denotes the fixed parameter. The temperature range in the
first column defines the number of data sets fitted simultaneously. As a result, the value of ⇥imp

is almost zero, which suggests the absence of magnetic correlation among impurity spins so
one can treat them as purely paramagnetic. The obtained free-spin concentration is around 3%
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and remains stable during different fitting configurations and in the following analysis will be
neglected.

Temp range Simp gimp �(T ) ⇥imp fimp

1.7 – 8K 1/2 (f) 2.5028 0.0113 -0.58 0.0257
1.7 – 5K 1/2 (f) 2.6531 0.0117 -0.66 0.0236
1.7 – 3K 1/2 (f) 2.8864 0.0121 -0.84 0.0213
1.7 – 2K 1/2 (f) 3.8756 0.0122 -1.76 0.0158
1.7 – 8K 1/2 (f) 2.3 (f) 0.0119 -0.24 0.0271
1.7 – 5K 1/2 (f) 2.3 (f) 0.0121 -0.20 0.0267
1.7 – 3K 1/2 (f) 2.3 (f) 0.0121 -0.24 0.0267
1.7 – 2K 1/2 (f) 2.3 (f) 0.0122 -0.29 0.0266
1.7 – 8K 1/2 (f) 2.2 (f) 0.0122 -0.08 0.0279
1.7 – 5K 1/2 (f) 2.2 (f) 0.0122 -0.07 0.0277
1.7 – 3K 1/2 (f) 2.2 (f) 0.0121 -0.14 0.0279
1.7 – 2K 1/2 (f) 2.2 (f) 0.0122 -0.19 0.0278

TABLE 5.2
Results of various fits to the magnetization curve with Eq.5.1.

FIGURE 5.10
The magnetization isotherms measured in the field range (0 – 14 T) and in the temperature
range 1.7 – 8 K are shown. The dashed lines are fits to an equation described in the text. Left :
Simultaneous fitting of 1.7 – 8 K data-sets with only Simp = 1/2 fixed; middle: simultaneous
fitting of 1.7 – 8 K data-sets with Simp = 1/2 and gimp = 2.3 fixed; right : simultaneous fitting of

1.7 – 8 K data-sets with Simp = 1/2 and gimp = 2.2 fixed;

5.4.3 SPECIFIC HEAT

Another important bulk characteristic to measure (Section 2.5) is specific heat, which is a sum
of all the fluctuations present in the system. The Cp(T ) data, specific heat at constant pressure,
obtained in the temperature range 2 – 200 K in zero field and in 14 T magnetic field is shown in
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5.11. The Cp(T ) above 80 K for both fields is essentially the same, increasing monotonically
with increasing temperature. None of the curves show a peak like feature (or �-anomaly), which
in turn again indicates the absence of long-range magnetic ordering.

In the absence of non-magnetic analogue of CuSb2O6, in order to extract the magnetic contri-
bution of the specific heat Cm(T ) and to deduce the corresponding entropy Sm, we simulated
the lattice contribution from the high temperature data by taking into account Debye (CD) and
Einstein (CE,i) contributions Cp = CD +

P
i CE,i with:

CD = 9nDR

✓
T

⇥D

◆3 Z xD

0

x4ex

(ex � 1)2
dx,

CE = 3nER

✓
⇥E

T

◆2 exp
�
⇥E
T

�
�
exp

�
⇥E
T

�
� 1
�2 ,

where R is the gas constant, ⇥D and ⇥E are Debye and Einstein temperatures respectively, and
nD and nE are the numbers of corresponding modes; the sum nD+nE is the total number of atoms
per formula unit. The best fit to zero-field data was obtained using one Debye and two Einstein
modes with the corresponding temperatures ⇥D = 715K, ⇥E,1 = 190K, ⇥E,2 = 1071K, and
the numbers nD = 5, nE,1 = 2, nE,2 = 2. The solid line in Fig. 5.11 is the fit result for the total
lattice contribution. While the parameters in the phenomenological phonon fit may not be directly
physical, they provide a parametrization of the lattice contribution to the specific heat, which
can be subtracted to estimate the magnetic specific heat. The red symbols in Fig. 5.11 show the
resulting Cm/T over temperature. The inset shows the magnetic entropy Sm(T ) obtained by
integrating Cm/T over temperature. The magnetic entropy saturates around 100(2) % of R ln 2

per formula unit, which is in agreement with the entropy of a two-level spin-half system.
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FIGURE 5.11
Specific heat Cp as a function of temperature in zero field (green). The solid black line is the
fitted lattice contribution. The red curve (right vertical axis) corresponds to the magnetic part of
the specific heat Cm/T . The inset shows the magnetic entropy Sm (blue). The red dashed lines

show confidence interval.

A similar analysis was performed on 14 T data (Fig. 5.12). The magnetic contribution in the 14 T
field has slight differences compared to 0 T data, and at T ⇡ 25 K two curves start to coincide.
One has to notice that the magnetic part of the specific heat drops to zero slightly above 50 K,
which is in good agreement with the experimental results discussed above.
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FIGURE 5.12
Magnetic contribution to the specific heat at 0T and 14T applied magnetic field.

Overall, experimental findings so far indicate the absence of magnetic ordering down to 1.7K.
The susceptibility data indicate the presence of significant antiferromagnetic interactions, while
the magnetic specific heat data showed that all magnetic fluctuations are concentrated up to 50K.
No splitting of ZFC and FC magnetic susceptibility is observed, thereby confirming the absence
of a spin-glass state.

5.5 ABSENCE OF LONG-RANGE MAGNETIC ORDER

By now, we were still missing low-temperature measurements having the experimental findings
down to T = 1.7 K only. However, thermodynamic studies at temperatures as low as possible
are necessary to demonstrate the quantum spin-liquid character for this material. With muon
spectroscopy, one can probe the local fields resulting from static moments, even disordered ones.
So, performing such experiment at very low temperatures could reveal the presence or absence
of long-range magnetic order and spin freezing.

Muon spin relaxation experiment has been performed using MUSR instrument at ISIS facility.
In this experiment, we have used dilution refrigerator (down to 46 mK) and orange cryostat
(2 – 200 K). For the measurements, about 2 g of powder CuSb2O6 (separately for dilution and
cryostat) was attached to a silver plate for a good thermalization.

Figure 5.13 represents muon relaxation signal in zero field for the selected temperatures below
2 K. At all temperatures, the signal decreases continuously without oscillations up to 15 µs.
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Note that the data are shifted vertically by 0.02 successively, starting from 0.046 K for better
visualization.
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FIGURE 5.13
Selected low-temperature ZF-µSR signals up to 2 K. The data are shifted vertically starting from

0.046 K by 0.02 a.u.

The absence of LRMO was reported previously [124] down to 2 K. Figure 5.14 represents muon
relaxation signal in zero field at 0.046 K and 2 K. Since these two curves do not show any muon
precession or significant drop of the asymmetry, it may be concluded that there is no LRMO
down to 46 mK in this compound.
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FIGURE 5.14
ZF-µSR signals at T = 46 mK and T = 2 K.

Our ZF data are well-fitted with the following function:

A(t) = A0

✓
exp

✓
��

2t2

2

◆�
1��2t2

� 2
3
+

1

3

◆
exp (��t) + Abkg,

where exp
⇣
��2t2

2

⌘
(1��2t2) 2

3 +
1
3 – Kubo-Toyabe relaxation function, which is related to

the nuclear static fields [126]. Here, A0 ⇡ 0.25 is the initial asymmetry, � is the µ+ spin
relaxation rate, and Abkg is a background constant. As background constant depends on the
sample environment, from the low temperature fit we fixed Abkg at the values 0.008 and 0.018 for
the cryostat and dilution fridge respectively, and background-subtracted data will be shown in the
following. The spectrum at 200 K was fit with� = 0.11 µs�1, a typical rate for depolarization by
Cu nuclear moments [127], which we fixed and used for all temperatures. We have also attempted
to describe the data using a product function of Gaussian Kubo-Toyabe and stretched exponent
function A0 · GKT · exp (� (�t)�). However, at all temperatures it showed small deviations
around � = 1. Another fit was assuming only stretched exponent function A0 exp (� (�t)�),
but nonphysical negative value of background constant Abkg, and nonphysical "intermediate"
1 < � < 2 were obtained. Overall, neither of these expressions capture the behavior well across
the whole temperature range.

In figure 5.15 zero-field asymmetry curves at 0.046, 10, 50 and 200 K are shown. As can be seen,
the muon depolarization is slow, indicating weak magnetism, and the variation with temperature
is very weak. However, the fact that the data can be described only with the product of GKT
and exponential decay indicates the contribution from nuclear moments and electronic local
moments.
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FIGURE 5.15
Zero field background-subtracted muon asymmetry curves at 0.046, 10, 50 and 200 K.

Any spin freezing can be ruled out on the following arguments. Zero-field muon decay asymmetry
data relax to the same baseline value at all temperatures. This is significant – if the system were
to undergo a spin freezing transition at low temperatures, one would expect to observe a recovery
of the polarization to one-third tail below the transition due to the presence of disordered, static,
local fields at the muon stopping site [128]. In a spin glass, the relaxation rate will typically
increase by several orders of magnitude below the freezing point (� ⇡ 1� 20 µs�1) [128–130].
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FIGURE 5.16
Temperature dependence of the µ

+ spin relaxation rates from the zero field µSR measurements.
Blue circles represent dilution fridge data, red circles – cryostat data.

Figure 5.16 shows the temperature dependence of the muon spin depolarization rate, �. Above
⇡ 30 K, the system is in a fast fluctuating regime from which there is a slowing of spin
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dynamics down to 1 K. Below 1 K the data show a plateau in the depolarization rate – a
clear indicator of persistent dynamics at low temperatures. In our case, relaxation plateau
�(T )T<1 reaches the value of 0.075 µs�1. The magnitude of the plateaus, however, for potential
QSL candidates, can vary significantly between systems [131], from e.g. � = 0.05 µs�1 in
Herbertsmithite [132],[133] and ZnCu3(OH)6SO4 [134] to � = 0.45 µs�1 in Kapellasite [135]
and [NH4]2[C7H14N][V7O6F18] [136].

Overall, according to static magnetic properties, CuSb2O6 has met the essential requirement of
QSL – the absence of any static ordering down to 46 mK. Now we move to dynamic magnetic
properties measured by means of neutron scattering.

5.6 MAGNETIC EXCITATIONS IN CUSB2O6

First, to have an overview of possible magnetic excitations, inelastic neutron scattering measure-
ments were performed at 1.6 K < T < 100 K on the neutron time-of-flight spectrometer IN5 at
the ILL using incident neutron energies of 3.55 and 12.1 meV. A powder sample of mass 10.5 g
was held in an annular aluminium can.

The data reduction for each energy and temperature was performed with MANTID software
[58] as follows. The data were loaded and normalized to monitor counts. We calibrated incident
energy and fitted elastic channel in order to adjust the time-of-flight axis. The solid angle and
detector efficiency was corrected by dividing the measured counts by measurement of vanadium.
Finally, the TOF axis was converted to energy transfer ~!, scattering angle 2⇥ was converted
to Q, and we get S(Q,!) map as an output. The same procedure was applied to the empty
container data measured at the lowest T = 1.6 K temperature in order to subtract the background
caused by neutron scattering on the sample environment and sample holder (cryostat), and by
the instrument.

Standard data reduction gave the neutron scattering function S(Q,!), shown in Fig. 5.17 and
5.18 for Ei = 3.55 and 12.1 meV respectively. With high incident energy, one can observe
steep dispersion that reaches out to about 6-7 meV at 1.6 K and its absence at T = 100 K,
which, to some extent, tells us that observed scattering can be attributed to the magnetic one.
The “dispersive feature” near 1.5 Å�1 is spurious, it is absent at Ei = 3.55 meV. Moreover, at
lower energy, we observe structure-less paramagnetic scattering already at T = 50 K, which
fully agrees with previous macromagnetic measurements. Two lobes of the excitations at
Q ⇡ 0.7 and 1.5 Å�1 at Ei = 3.55 meV are clearly of magnetic origin, whereas at higher energy
Ei = 12.1 meV other two lobes interfere with nuclear scattering.
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FIGURE 5.17
S(Q,!) measured at T = 1.6, 10, 25 and 50 K at IN5 with neutron incident energy Ei = 3.55 meV

FIGURE 5.18
S(Q,!) measured at T = 1.6, 50 and 100 K at IN5 with neutron incident energy Ei = 12.1 meV
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Complementary to IN5, we have performed low-temperature T = 60 mK and T = 1.7 K
inelastic scattering experiment at LET instrument with incident energies 12.14, 3.7, 1.77 and
1.03 meV (Fig. 5.19) to find out if there is any gap at lower energies, which makes sense to
study only at dilution temperatures. The same sample was used and loaded to the copper can
in order to provide a good thermalization. Unfortunately, empty container measurements were
not conducted since it makes sense to perform such measurements only with a dilution fridge
setup. One can observe Bragg peaks from copper container at Ei = 12.14 meV starting from
Q = 3 Å�1.

FIGURE 5.19
S(Q,!) measured at T = 60 mK at LET with neutron incident energy Ei = 1.03, 1.07, 3.70, and

12.14 meV
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FIGURE 5.20
S(Q,!) measured at T = 1.7K at LET with neutron incident energy Ei = 1.03, 1.07, 3.70, and

12.14 meV

Using detailed balance, we can extract the imaginary part of dynamic susceptibility �00(Q,!)

using the following equation

S(Q,!) =
1

⇡

1

1� e�~!/kBT
�00(Q,!).

The advantage of �00(Q,!) is that trivial temperature dependence of S(Q,!) related to the
population of excitations has been removed (Fig. 5.21 and 5.22).
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FIGURE 5.21
�
00(Q,!) measured at T = 1.6, 10, 25, and 50 K at IN5 with neutron incident energy Ei =

3.55 meV

FIGURE 5.22
�
00(Q,!) measured at T = 1.6, 50, and 100 K at IN5 with neutron incident energy Ei = 12.1 meV

The imaginary part of the magnetic susceptibility �00(Q) obtained by integrating �00(Q,!) over
the energy range 0.4 meV < E < 2 meV is shown in Fig. 5.23. This energy range was chosen to
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avoid the elastic line, the remaining IN5 background at energies E > 2 meV and an additional
spot at E ⇡ 2.5 meV on LET data. At low temperature, one can observe two broad features
centered at Q ⇡ 0.65 Å�1 and Q ⇡ 1.5 Å�1, which gradually disappears with increasing
temperature (Fig. 5.23 left). Interestingly that LET data at 1.7 K and 60 mK (Fig. 5.23 middle)
show no qualitative change and only a small increase of intensity at the lowest temperature. An
additional feature occurs at LET data on the first peak around Q ⇡ 1 Å�1. However, further
comparison with scaled IN5 data (Fig. 5.23 right) confirms the same character of the observed
excitations, and most likely, this feature was hidden in the IN5 experiment due to the worse
instrument resolution.
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FIGURE 5.23
Wave-vector dependence of �00(Q) integrated over the energy range 0.4 < E < 2 meV: left
IN5 data; middle LET data; right comparison of IN5 data (Ei = 3.55 meV) and LET data
(Ei = 3.70 meV). Integrated LET and IN5 data was prepared with the same momentum transfer

Q = 0.025 Å�1 and energy E = 0.02 meV binning.

Low-energy LET data with neutron incident energies Ei = 1.77 and 1.03 meV were used in order
to study the presence or absence of an anisotropic gap in the spectra of CuSb2O6. For this purpose,
we have integrated the imaginary part of the dynamic susceptibility over 0.5 Å�1 < Q < 0.8 Å�1

range, which corresponds to the first broad and most intensive feature (Fig.5.24). As a result, we
observe paramagnetic-like scattering with a maximum around E ⇡ 0.5 meV. An encouraging
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intensity drop of 60 mK data on both data-sets around E ⇡ 0.035 meV might indicate the
presence of an anisotropic gap, which might be hidden due to the instrument resolution. If a gap
exists, it is smaller than � < 0.035 meV.
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FIGURE 5.24
Energy dependence of the imaginary part of the magnetic susceptibility �

00(E) integrated over
momentum transfer range 0.5 < Q < 0.8 Å�1 for T = 1.7 and 0.06 K. LET data with incident

energy left : Ei = 1.77 meV and right : Ei = 1.03 meV

It is worth to mention that the observed broad continuous-like scattering appearing at specific |Q|
values (e.g. Fig.5.21), was evidenced in several other potential QSL candidates [135], [137], [11].
Indeed, the observed spectra are very far from the classical paramagnons, which are prototypes
of magnons in a paramagnetic state. Despite that we are limited only to S(|Q|,!), from S(|Q|)
one can extract information about spin-spin correlations in the system, and this will be a subject
of the following Section.

5.7 CHARACTER OF SPIN CORRELATIONS IN CUSB2O6

We have already discussed in Section 2.1.3 that diffraction experiment is actually the same
spectroscopy method but without analyzing final energies. The main aspect of the diffraction
experiment is that all final energies are integrated, hence all excitations (lattice and magnetic)
are integrated and ultimately contribute to the diffraction pattern. We have performed a powder
neutron diffraction experiment at D4 instrument with the incident neutron wavelength of � =

0.5 Å. The advantage of using D4 instrument is high incident energy Ei > 300 meV.

106



CHAPTER 5 – DYNAMICS IN FRUSTRATED TRIANGULAR ANTIFERROMAGNET CUSB2O6

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4
104

Base T = 4K
T = 20K+30K+40K

FIGURE 5.25
Diffraction patterns measured at D4 instrument at T = 4 K (blue) and at T = 20, 30 and 40 K,

which were merged into one data-set (red).

The diffraction patterns were measured at T = 4 K (base and stable temperature of D4 instru-
ment), and at several higher temperatures T = 20, 30, and 40 K. No difference was observed
between those high temperature data, hence, we have merged them into one data-set (Fig. 5.25).
Simple subtraction of these two data-sets is shown in Fig. 5.26. Interestingly that we could
observe very weak but significant intensities at the same characteristic vectors Q ⇡ 0.65, 1,

and 1.5 Å�1, as were captured at IN5 and LET data. Therefore, despite the fact that we have
integrated IN5 and LET data in a certain energy range excluding elastic line, we can extrapolate
that range to 0 meV, since we have detected those features in difference diffraction pattern, and
determine the energy integrated inelastic signal as S(Q).
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FIGURE 5.26
Difference diffraction pattern measured at D4 (blue) and integrated LET signal (red) in 0.4 < E <

3 meV energy range. Dashed lines are the guides to the eye depicting common characteristic
wave-vector features.

With the reverse Monte Carlo method implemented in SPINVERT software [35], one can
reconstruct spin pair correlation function by fitting diffuse magnetic scattering independently
of Hamiltonian. For the diffuse magnetic scattering data, we have taken S(Q) obtained by
integration of LET inelastic data at T = 60 mK and 1.7 K over the energy range 1 < E <

12 meV.

First of all, technical variables (box, moves, and runs) have been tested in order to get optimal
solution for the limited time of calculations. For the following calculations, we have used a
12x12x12 box with 1728 randomly oriented spins (1 magnetic atom per unit cell), fixed to
their crystallographic positions. Refinements were performed for 2000 proposed moves per
magnetic moment, demonstrating satisfactory convergence. To minimize the statistical noise,
the calculated neutron scattering was averaged over 30 independent spin configurations for each
temperature.

The fit of the experimental data is shown in the first row of Fig. 5.27) Top left. As one can
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notice, there is no significant difference between the two temperatures, which is somewhat
agreed with the muon spectroscopy experiment in terms of low-temperature plateau starting at
T ⇡ 1 K in Fig.5.16. Moreover, the fit of the experimental data is very good (shown by dashed
line) – all the features are sufficiently described. The spin pair correlation function (Fig. 5.27
Top right) demonstrates sharply faded dependence with the distance between magnetic atoms.
One can conclude that there is no point in considering neighbours further than that in the fifth
coordination shell. For clarity, we have added the crystal structure of CuSb2O6 with specified
distances between the neighbors in order to match with the observed spin pair correlations.
Surprisingly, the strongest correlations are found to be of FM character (first positive value in
Fig. 5.27 Top right). Moreover, that distance corresponds to the interlayer spacing. As of the
most intriguing in-plane correlations within the triangular motifs, they are of antiferromagnetic
origin. In addition, for the further neighbour, which is on the diagonal with distance 6.83 Å 5.27
Right), the weaker antiferromagnetic spin pair correlations can be observed. The obtained spin
pair correlation function shows an intriguing result, which, at the same time, does not contradict
the previous experimental findings. However, one should keep in mind that hS(0) · S(r)i gives
us the information about correlations and not interactions so that e.g. strong FM correlations
between the planes might be a result of a strong AFM interaction along the diagonal etc.

Stone in [138] shows that for an isotropic powder sample, the first moment K1 could be expressed
as

K1(Q) = �2

3

���
g

2
f(Q)

���
2 1

N

X

r,d

JdhSr · Sr+di
✓
1� sinQd

Qd

◆
. (5.2)

S(Q) has as coefficients of sinQd
Qd the correlation function hS(0) ·S(r)i in Eq.2.17. K1(Q) has as

coefficients of sinQd
Qd the correlation function hS(0) · S(r)i multiplied with the exchange Jd apart

from proportionality constants. Therefore, we can try to fit the first moment with SPINVERT
and expect to obtain the same spin pair correlation function multiplied by exchange interactions.
The results are shown in the second row of Fig.5.27
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FIGURE 5.27
First row: left SPINVERT fit results of S(Q) right Temperature dependence of spin-pair cor-
relation function obtained from S(Q). Second row: left SPINVERT fit results of K1(Q) right
Temperature dependence of spin-pair correlation function obtained from K1(Q). Right : Crystal

structure of CuSb2O6 with indicated distances.

As one can notice, the first moment K1(Q) does not differ a lot from S(Q), qualitatively only
the position of the first peak is shifted. As well as for S(Q), there is no obvious change between
the two temperatures. The results for JdhSr · Sr+di are shown in Fig.5.27. Since the data for
the first moment K1(Q) very likely resemble S(Q), one would not expect a huge change in a
spin pair correlation function (or its "analog" for K1(Q)). If one divides K1(Q) result by S(Q)

result shown in the right column of Fig.5.27, one will obtain numbers of the same sign, which
correspond to exchange interactions Jd. This directly indicates interactions of the same sign,
which obviously cannot be of a ferromagnetic nature, hence antiferromagnetic.

Now we will look closer on the obtained results (Fig.5.28). If we consider only triangular planes,
which are the neighbors numbered as 2,4,7, we can see that first two of them (J1 and J2 in the
phase diagrams given by [12] and [139]) clearly correspond to the AFM interactions, whereas
the ratio for the third one (J3 in the phase diagram given by [139]) is of the opposite sign, which
might result to FM exchange. However, for our case we would exclude this FM interaction from
our consideration, because if there is one, it is very weak or even zero. Therefore, since we
have those two of AFM nature, and since we do not observe any long-range order, most likely
CuSb2O6 falls into the J1 � J2 region with spin liquid phase [12, 139] and of course, additional
interactions between the planes of AFM nature will only create more disorder and frustration in
the system.
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FIGURE 5.28
First row: left SPINVERT fit results of S(Q) right Temperature dependence of spin-pair cor-
relation function obtained from S(Q). Second row: left SPINVERT fit results of K1(Q) right
Temperature dependence of spin-pair correlation function obtained from K1(Q). Right : Crystal

structure of CuSb2O6 with indicated distances.

5.8 SUMMARY

We presented a potential QSL compound CuSb2O6, in which Cu2+ ions arrange in a triangular
structure. The sample is available only in powder, so we were limited to those experimental
techniques adapted for polycrystalline samples. Susceptibility, specific heat, and inelastic neutron
scattering suggest the presence of magnetic fluctuations up to T = 50 K. Muon spectroscopy
ruled out any sign of a static magnetic moment. Low-temperature inelastic scattering showed
gapless continuous-like scattering, emerging at specific Q values, which is believed to be
associated with the fractionalized quasiparticles, spinons, that are expected for a QSL state.
Reverse Monte Carlo simulations of the first moment obtained by integrating over the whole
energy region conclude the fully frustrated, most-probably three-dimensional AFM interaction
scheme.
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CHAPTER 6

CONCLUSION

This thesis presented an experimental study of spinon-like excitations in three examples of
quantum S = 1/2 Heisenberg antiferromagnets. Constantly evolving experimental techniques
allow to explore exotic and usually weak phenomena with unmatched precision. Research
findings contribute greatly to many-body physics understanding and stimulate more intensive
theoretical research.

The results of the dynamics CuSO4 · 5D2O in the applied magnetic field would probably be the
final point in quantum Heisenberg S = 1/2 chain studies since it is clear that any discrepancies
with theory will be due to the imperfection of the sample. For the first time, full field-dependent
dynamics of Heisenberg spin-1/2 model material have been studied. All results indicate model
behaviour of CuSO4 · 5D2O. Further study requires paramagnetic mode subtraction in time-of-
flight experiment and following quantitative analysis.

As of Cu6[Si6O18] · 6H2O, despite a large number of experimental and theoretical findings, the
results are still controversial and do not fall on the same curve. Therefore, further analytical
study is needed in order to reveal the nature of the observed spinon-like continuum.

Finally, CuSb2O6 is a promising material to demonstrate a quantum spin liquid behaviour. The
dimensionality of this QSL state is still under question, although it could be revealed with
theoretical or numerical calculations.
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