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Abstract

Frustrated spin systems are highly sensitive to fluctuations due to their enlarged clas-
sical ground-state manifold. In most cases, fluctuations stabilize one of the classically
degenerate ordered ground states through either quantum zero-point motion or en-
tropic selection. This is called order by disorder (OBD). In this thesis I study various
instances of the OBD effect in frustrated quantum spin systems with spin-wave theory.

The first part is dedicated to the study of fractional magnetization plateaus in the
kagome and pyrochlore antiferromagnets. They are attributed to the stabilization by
quantum fluctuations of a given collinear spin state over a field region that exceeds its
classical stability point. This is one emblematic manifestation of OBD. I obtain full
magnetization curves that exhibit a large fractional plateau for both systems solely
within linear spin-wave theory (LSWT). In the case of the kagome lattice, the plateau
width fits very well to available numerical data for spins greater than a half. This tends
to validate the technique for the pyrochlore case as well, where numerics are much
harder to perform due to 3-dimensionality of the lattice. I also derive full analytical
expressions for the spin-wave spectra of the canted states.

In the second part of the thesis, I study ground-state selection in the face-centered-
cubic Heisenberg antiferromagnet. The classical degeneracy is broken at the harmonic
level in spin-wave theory and there is selection of a given state at zero temperature.
Surprisingly, at low temperature, thermal population of low-lying magnons results in a
different selection. To complement the study, I go to higher order in spin-wave theory
and include the effects of magnon-magnon interactions self-consistently. I find that
the ground state selected at zero temperature is different from what was found in the
harmonic approximation, even at large spin. The failure of LSWT is argued to be due
to the large number of accidental gapless modes in the harmonic spin-wave spectrum,
reminiscent of the classical ground-state degeneracy. The values for the energies of
competing ground states in function of spin compare well to newly available numerical
data.
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Chapter 1

Introduction

The field of magnetism in condensed matter offers a rich playground to study a plethora
of theoretical concepts, which can in some cases be rather general to other areas of
physics [1]. One noteworthy feature of this field is the fact that complex and beautiful
theoretical objects can actually emerge from simplistic toy models. Another major
advantage is that magnetic materials do exist in nature, or at least can be designed
and grown in laboratories, such that there is at least hope - if it is not already a
reality - that the predicted behaviours are accessible experimentally. In this thesis we
focused on one prominent process, namely order by quantum disorder in frustrated
antiferromagnets. This introduction aims at providing the notions which are at the
basis of the whole remainder of the work here presented.

Condensed matter physics focuses on the study of large (if not infinite) collections
of atoms arranged in periodic geometries called lattices. When their outer orbitals are
only partially filled with electrons, atoms (or ions) carry a non-zero magnetic moment.
If such magnetic ions are present in a compound and interact with each other, the
material is said to be magnetic. Throughout this thesis, we focus on the study of
magnetic insulators only. The behaviour of any physical system is dictated by energy
considerations, and all energetics are encapsulated in the Hamiltonian operator Ĥ. In
magnetic insulators, Ĥ only depends on the spin degrees of freedom:

Ĥ = Ĥ(S1,S2, . . . ,SN) , (1.1)

where Si is a spin of length S located at position Ri, and N is the total number of
sites in the lattice. Such a Hamiltonian is called a spin Hamiltonian, and this is our
starting point to the theoretical study of magnetic lattices.

A crucial question to the study of a given magnetic system, is the nature of its
ground state. Indeed, the behaviour of the system at T = 0 and at low tempera-
ture is completely determined by its ground state and corresponding excited states.
Practically, this means we wish to diagonalize and minimize the Hamiltonian given in
Eq. (1.1). In general, this minimization leads to the stabilization of an ordered state,
within which spins are oriented in a periodic arrangement at T = 0. This is called
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magnetic long-range order (LRO). Note that the periodicity of the magnetic structure
is not necessarily commensurate to that of the lattice.

We also are interested in the other eigenstates of the Hamiltonian, which necessarily
have a higher energy: the excited states. As the temperature increases, the lowest-
lying excited states become energetically accessible, which drives the energetics of the
system at low T . Furthermore, as will be explained in more details later on in the
context of spin-wave theory, even the energy of the T = 0 quantum ground state
involves knowledge of its full excitation spectrum. As temperature is increased further,
LRO is gradually destroyed by the thermal population of excited states, until the
transition temperature at which the material becomes fully paramagnetic. In this PhD
work, I studied low-temperature properties only, far below the magnetic transition
temperature.

1.1 Heisenberg interaction

The simplest type of magnetic interaction is the isotropic, bilinear Heisenberg exchange
interaction1. The Heisenberg Hamiltonian is given by:

Ĥ =
∑
(i,j)

JijSi · Sj −H ·
∑
i

Si . (1.2)

The first term represents Heisenberg exchange: the sum is made over all inequivalent
spin pairs (i, j) of the lattice, and Jij is the quantum mechanical exchange interaction.
The strength and sign of Jij depends on the specific properties of the material. The
second term is called the Zeeman term and accounts for the interaction of spins with
an external magnetic field H. Its effect is to reduce the symmetry of the Hamiltonian
from SU(2) (global rotational symmetry) to U(1) (rotational symmetry around the
field), and to induce a preferential direction for the spins as it is increased. Let us
forget the Zeeman term for the moment and only consider the zero field situation.

When Jij is negative, the interaction is called ferromagnetic (FM). When Jij is
positive, the interaction is called antiferromagnetic (AF). The sign of exchange inter-
action is of major importance to the ground state’s structure. Indeed, in materials
with dominant ferromagnetic interactions, spins tend to all align in the same direction
below the transition temperature. Such materials are called ferromagnets. Conversely,
in materials with dominant antiferromagnetic interactions, or antiferromagnets, neigh-
boring spins tend to be oriented as antiparallel as possible. In its most isotropic form,
the exchange coupling Jij only depends on the distance between the two spins2.

Other kinds of interactions can emerge from the specific environment and electronic
structure, and may induce anisotropy. However, Heisenberg exchange is present in
all magnetic materials, and apart from very specific cases, it is in general dominant

1Here ”isotropic” refers to spin space: the strength of exchange interaction is the same for all spin
components.

2Here, ”isotropic” is meant regarding real space: all spatial directions are equivalent.
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compared to other types of interactions. It is therefore an appropriate starting point to
the study of any magnetic lattice. Throughout this whole PhD thesis, we focus solely
on the Heisenberg Hamiltonian of Eq. (1.2). More specifically, we consider isotropic
nearest-neighbor interactions. Besides being relevant to most magnetic materials, we
will see that it gives a great illustration of how already a simplistic model can lead to
complex and interesting physics.

As said earlier, determination of the ground state is key to the understanding of
a magnetic system. In this quest for the ground state, it is important to distinguish
between classical and quantum ground states. Indeed, in most situations they are dif-
ferent, although not necessarily very different. Let me illustrate these concepts below,
through the simple example of a bipartite lattice with nearest-neighbor Heisenberg
interactions. This serves also as a toy demonstration of how LRO arises in magnetic
systems.

1.2 Example of bipartite lattices

We consider nearest-neighbor, isotropic exchange interactions on a given lattice:

Ĥ = J
∑
⟨i,j⟩

Si · Sj . (1.3)

In the above, ⟨.⟩ stands for the summation over all pairs of spins which are nearest
neighbors to one another in the lattice. There is no external magnetic field, so the
Zeeman term in Eq. (1.2) has been removed. We further assume that the lattice is
bipartite. This means that it can be decomposed into two Bravais sublattices, in a way
that all nearest neighbors of a given site belong to the sublattice opposite to the one
of that site. This is for example the case of the square and honeycomb lattices in 2D,
or the cubic and body-centered cubic (bcc) lattices in 3D. We wish to determine the
ground state of such a system. Let us focus first on the classical situation, where spins
are treated as 3 dimensional vectors in real space.

1.2.1 Classical ground state

In Eq. (1.3), the energy associated to a given pair of spins (or bond) ij is:

Eij = JSi · Sj . (1.4)

The total energy of the system can then be written from Eq. (1.3) as a sum over
nearest-neighbor bond energies:

E =
∑
⟨i,j⟩

Eij . (1.5)

Obviously, the sign of J is a decisive parameter in the minimization. We therefore look
at the two options separately.
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Ferromagnets

When the exchange interaction J is of negative sign, Eij is minimized if the two neigh-
boring spins Si and Sj are aligned to each other in the same direction, see Eq. (1.4).
Therefore, the state which minimizes the total Hamiltonian is the ferromagnetic (FM)
state, where all spins in the lattice point in the same direction. It is illustrated on the
left panel of Fig. (1.1) on the square lattice. Note that in that state, all bond energies
Eij are simultaneously minimized with value Eij = JS2 (with negative J). As a result,
we have for the classical ground-state energy:

Ecl
FM =

Nz

2
JS2 , (1.6)

where N is the total number of spins in the lattice, and z is the coordination number3.
The FM state has net magnetization Mtot = NSê, where ê is a unit vector of arbitrary
orientation in spin space.

Antiferromagnets

When the exchange interaction J is of positive sign, the interaction is antiferromagnetic
and Eij is minimized if the two neighboring spins are completely antiparallel to each
other. In a bipartite lattice, this condition can be fully satisfied on all bonds simulta-
neously. In the corresponding configuration, all spins of a given sublattice point in the
same direction, while all spins of the other sublattice point in the opposite direction.
The resulting state is called the Néel state, and is illustrated on the right panel of
Fig. (1.1) in the case of the square lattice. We have Eij = −JS2 for all bonds, and for
the total ground-state energy:

Ecl
Néel = −Nz

2
JS2 . (1.7)

The Néel state has no net magnetization: Mtot = 0. However, there is still ordering,
and the relevant order parameter here becomes the staggered magnetization.

Spontaneous symmetry breaking

On Fig. (1.1), the spins are pointing along the ±êy direction for the sake of simplicity,
but in both the FM and Néel states, the orientation of the (staggered) magnetization
is completely arbitrary. This is a result of the global rotational symmetry SU(2) of
the Hamiltonian of Eq. (1.3). Below the transition temperature, the spin structure
freezes along one given orientation. Actually, there are several magnetic domains,
within which all spins are oriented along the same direction. This is a typical occur-
rence of spontaneous symmetry breaking (SSB), where the system ”picks” one of many
degenerate configurations. As a result, the ground state has lower symmetry than the
Hamiltonian.

3z = 4 in the case of the square lattice
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(a) J < 0: FM state (b) J > 0: Néel state

Figure 1.1: Classical ground states of the square lattice with nearest-neighbor Heisenberg
exchange interaction J .

1.2.2 Quantum ground state

Spins are quantum mechanical objects, and in a complete theory they should be treated
as such. To that end, one should use quantum spin operators Ŝα

i , α ∈ {x, y, z} rather
than classical vector components in the Hamiltonian of Eq. (1.3). The dimension dH of
the Hilbert space is determined by all possible sets of local Sz

i projections. Each spin
Si can have 2S + 1 quantized values for Sz

i , given by Sz
i ∈ {−S,−S + 1, . . . , S − 1, S}.

Then we have dH = (2S + 1)N . We chose the following basis states:

|ϕn⟩ = |m1,m2, . . . ,mN⟩ , (1.8)

where n ∈ {1, · · · , dH} and mi = Sz
i is the local projection of spin Si along the z axis.

Any spin state |ψ⟩ can be written as a superposition of the above defined basis states:

|ψ⟩ =
dH∑
n=1

cn |ϕn⟩ . (1.9)

The scalar product of two spins can be written as follows [2]:

Si · Sj = Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j + Ŝz

i Ŝ
z
j =

1

2

(
Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

)
+ Ŝz

i Ŝ
z
j , (1.10)

where we have used the spin-lowering and spin-raising operators Ŝ−
i and Ŝ+

i . They are
more convenient than Ŝx

i and Ŝy
i , as they allow one to work easily within the basis set

by Eq. (1.8). One can rewrite the Hamiltonian of Eq. (1.3) as follows:

Ĥ =
J

2

∑
i

∑
δ(i)

(
S−
i S

+
i+δ + Sz

i S
z
i+δ

)
, (1.11)
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where the second sum spans the nearest-neighbor vectors δ(i) from a given site in
position Ri. For the sake of simplicity, I dropped the hats on quantum spin operators.
Note that this Hamiltonian remains hermitian due to the summation over all sites and
over all nearest neighbors for each site. Indeed, each nearest-neighbor pair is counted
twice, which also explains the 1/2 prefactor.

Ferromagnets

Consider the ferromagnetic case (J < 0). Classically, the ground state is given by the
FM state, see left panel of Fig. (1.1). With appropriate choice for the quantization
axis ẑ, the FM state corresponds to the state of full saturation, that is:

|ψFM⟩ = |ϕSat⟩ = |S, S, . . . , S⟩ . (1.12)

This state is an eigenstate of the quantum Hamiltonian of Eq. (1.11). Indeed, the
spin-raising operator Ŝ+

i does not act on a fully polarized spin, while the Ŝz
i operator

preserves any state written as in Eq. (1.8). The FM state defined in Eq. (1.12) is also
the lowest energy eigenstate of the quantum system, and has the same ground-state
energy as the classical FM state, see Eq. (1.6). It is therefore the true quantum ground
state of the Hamiltonian.

Antiferromagnets

Let us now consider the interaction to be antiferromagnetic (J > 0), in which case the
Néel state is the classical ground state of the Hamiltonian, see right panel of Fig. (1.1).
The quantum mechanical equivalent of the Néel state is written as:

|ψNéel⟩ = |ϕ↑↓⟩ = |S,−S, S, . . . ,−S, S⟩ . (1.13)

It is easy to see that this is not an eigenstate of the quantum Hamiltonian. Indeed,
consider the effect of the operator S−

i S
+
j , where Si and Sj are nearest neighbors.

Provided that the spin Si has magnetization mi = S in the chosen Néel state, then
necessarily we have mj = −S, and:

S−
i S

+
i+δ |ϕ↑↓⟩ = 2S · |ϕij⟩ ̸∝ |ϕ↑↓⟩ . (1.14)

In the above, |ϕij⟩ is constructed from the Néel state, by flipping from one unit one
pair of antiparallel nearest-neighbor spins i and j:

|ϕij⟩ = |S,−S, S, . . . , S − 1
i

,−S + 1
j

, . . . ,−S, S⟩ . (1.15)

Therefore, the first term of the Hamiltonian of Eq. (1.11) acts on all ↑↓ nearest-neighbor
spin pairs of the Néel state. It creates a superposition of states |ϕij⟩ with corresponding
local paired spin-flips. The second term of Eq. (1.11) does preserve |ϕ↑↓⟩, with associate
energy equal to that of the classical Néel state, see Eq. (1.7). Since the Hamiltonian
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acts on the Néel state, it is not an eigenstate, and therefore it cannot be the true
quantum ground state.

Then what is the true quantum antiferromagnetic ground state? Any other |ϕn⟩
state written as Eq. (1.8) has a a different set of local magnetizations mi, and conse-
quently has a higher classical energy. Thus, they can definitely not be the true ground
state either. Actually, none of the |ϕn⟩ states is an eigenstate of the Hamiltonian,
except the fully saturated state |ϕSat⟩, which has the highest possible energy in the AF
case, see Eq. (1.6). Then the true ground state |ψgs⟩ can only be a superposition of
|ϕn⟩ states as in Eq. (1.9).

Let us look at this problem through the angle of perturbation theory. The second
term in the Hamiltonian of Eq. (1.11) is the unperturbed Hamiltonian Ĥ0, and the
first term is treated as a perturbation V̂ :

Ĥ =Ĥ0 + V̂ ,

Ĥ0 = J
∑
⟨i,j⟩

Sz
i S

z
j , V̂ =

J

2

∑
i

∑
δ(i)

S−
i S

+
i+δ . (1.16)

The eigenstates of Ĥ0 are given by Eq. (1.8), the ground state being the Néel state |ϕ↑↓⟩
in the AF case, see Eq. (1.13). Then the true quantum ground state is constructed
perturbatively from the eigenstates of Ĥ0:

|ψgs⟩ = |ϕ↑↓⟩+ |ψ(1)⟩+ |ψ(2)⟩+ . . . ,

|ψ(1)⟩ =
∑
n̸=↑↓

⟨ϕn|V̂ |ϕ↑↓⟩
Ecl

Néel − En

|ϕn⟩ =
S

1− 2zS

∑
⟨i,j⟩

|ϕij⟩ . (1.17)

The first order quantum correction to the antiferromagnetic ground state, mixes the
Néel state with states of pairs of nearest-neighbor spin flips |ϕij⟩, see Eq. (1.15). This
gives us the general trend, namely, that the true quantum ground state can be seen as
the Néel state dressed with quantum fluctuations. The ground-state energy also gets
quantum corrections, and is lowered compared to its classical value.

Note that individual local magnetizationsmi are not well-defined anymore in the an-
tiferromagnetic quantum ground state. The quantum fluctuations are shared through-
out the whole lattice, as will be developed further when introducing spin-waves. The
mean value of on-site staggered magnetization however, can be computed in the dressed
quantum ground state. Due to the presence of fluctuations, it gets reduced compared
to its classical value S: the quantum antiferromagnet undergoes spin reduction.

8



1.3 Frustrated magnets

In the example of bipartite lattices presented in the previous section, the classical
ground state could be easily determined by minimizing all bond energies Eij simulta-
neously. However, this is not necessarily possible in all models, and this idea is at the
origin of the concept of frustration. To illustrate in more details what is commonly
meant when talking about frustration, or frustrated magnets, let me use the example
of the J1-J2 square lattice antiferromagnet (SLAF):

Ĥ = J1
∑
⟨i,j⟩

Si · Sj + J2
∑
⟨⟨i,j⟩⟩

Si · Sj . (1.18)

J2 represents interaction between next-nearest-neighbors (NNN): it acts on the diago-
nals of the square plaquettes of the lattice. We have J1, J2 ≥ 0 (AF interactions).

J2 < J1/2: Frustrated bonds

In the model of Eq. (1.18), all pair-wise interactions between spins cannot be minimized
simultaneously. Indeed, it is impossible to have all nearest-neighbor spins antiparallel
to each other (Néel state), and all NNN spins antiparallel to each other within the same
classical configuration. Whatever the configuration, there will be some spin pairs, of

Figure 1.2: J1-J2 SLAF, J2 < J1/2:
Néel state with frustrated bonds.

which the energy Eij does not take its minimal
possible value, namely Emin

ij = −JijS2. The cor-
responding bonds are referred to as frustrated
bonds.

Despite the presence of frustrated bonds, the
classical ground state might still be uniquely de-
fined. This happens in the J1-J2 SLAF, when
J2 < J1/2. In that case, physics is dominated by
the nearest-neighbor AF exchange, and the AF
Néel state is the classical ground state. It has or-
dering wave vector QNéel = (π, π). This state is
depicted on Fig. (1.2). The diagonal NNN bonds
are frustrated, as is illustrated by the red dotted
square. However, this is the state of lowest clas-
sical energy, and it is unique 4. Note that in that

state the frustrated bonds are maximally frustrated, in the sense that Eij takes its
maximal possible value, namely Emax

ij = JijS
2.

The definitions for a frustrated magnet can vary. Frustration is sometimes referred
to simply as the presence of frustrated bonds. This is not however the definition I will
use throughout this thesis, even though frustrated bonds are a necessary ingredient to
frustration in a magnetic lattice.

4Up to global symmetries of the Hamiltonian and lattice.
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J2 > J1/2: Frustrated lattice (weak frustration)

When J2 > J1/2 in Eq. (1.18) on the SLAF, the NNN AF interaction dominates,
and the classical ground state is degenerate: it consists of two interpenetrating Néel
sublattices, with arbitrary relative orientation. Such a state is shown on the left panel
of Fig. (1.3). One sublattice is represented with full arrows, the other sublattice with
empty arrows. All NNN bonds are minimized and thus non frustrated, as is indicated
by the blue dotted square. The relative angle between the two is also shown in light
blue. This angle is a continuous parameter that allows us to navigate in the infinite
ground-state manifold.

Such a situation illustrates what is most commonly referred to as frustration, or
frustrated lattices. In the remainder of this thesis, I use this definition of frustration,
namely: a system of which the classical ground state is degenerate beyond the symme-
tries of the Hamiltonian. The J1-J2 SLAF with J2 > J1/2 is frustrated following this
definition 5.

(a) Arbitrary state. (b) Qy = (0, π): The stripe-y state.

Figure 1.3: Classical ground states of the J1-J2 SLAF with J2 > J1/2. Frustrated bonds
are highlighted in red.

However, the ordering wave vectors associated to the classical ground states are
only two-fold degenerate. They are indeed given by Qx = (π, 0) and Qy = (0, π). In
that sense, the system is considered to be only weakly frustrated.

Note that among the classical ground-state manifold, two states have a collinear spin
structure. They correspond to the situation where the blue angle on the left panel of
Fig. (1.3) is equal to either 0 or to π. These states are the two single-Q states associated
to the two ordering wave vectors Qx and Qy. They correspond to ferromagnetic chains
stacked antiferromagnetically along the x and y direction, respectively. They are called

5Note that the J1-J2 SLAF with J2 < J1/2 is not frustrated according to this definition.
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stripe states, and one of such states is shown on the right panel of Fig. (1.3). Similar to
the Néel state, all frustrated bonds in a stripe state are maximally frustrated. All other
states of the classical ground-state manifold, with arbitrary relative angle between the
two sublattices, are double-Q states: their structure involves contributions from both
ordering wave vectors at the same time.

J2 = J1/2: Frustrated lattice (strong frustration)

At the precise classical phase boundary point J2 = J1/2, the situation is more compli-
cated. Not only all the aforementioned states (Néel and interpenetrating Néel, includ-
ing the two stripe states) are degenerate, but the classical degeneracy is even further
enlarged. This is related to the fact that in this case, the Hamiltonian of Eq. (1.18)
can be rewritten as a sum over square plaquettes p:

Ĥ =
J1
2

∑
p

(
S2
p − 4S2

)
, Sp =

∑
i∈p

Si . (1.19)

Sp is the total spin on plaquette p, that is, the sum of the 4 spins on that plaquette.
Then it is easy to see that the classical Hamiltonian of Eq. (1.19) is minimized by
imposing the ground state condition that the total spin per plaquette vanishes, for all
plaquettes:

Sp = 0 .

The above condition can be satisfied by infinitely many spin structures, including some
lacking LRO.

The possibility to write the Hamiltonian using new spin variables, namely the spins
over a given block or plaquette, is often a property of strongly frustrated magnets.

Figure 1.4: Incommensurate spiral
state with Q = (q, π), q being the
blue angle.

The fact that frustration is stronger in that situa-
tion, is also reflected in the dimensionality of the
manifold of classically degenerate ordering wave
vectors.

In the example exposed here, degenerate Q
vectors form whole lines in reciprocal space given
by Q = (π, q) or Q = (q, π), where q can take
any real value. These lines connect the discrete
ordering wave vectors of the surrounding phases,
namely QNéel, Qx and Qy. Any state described
by one (or a combination of) ordering-wave vector
along these lines is a valid classical ground state.
Note that in general, single-Q states are incom-
mensurate spiral states, as shown on Fig. (1.4).
Although the classical ground-state manifold also
contained an infinity of states in the previous para-

graph, the infinity is somewhat ”larger” here at the classical phase boundary.
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1.3.1 Geometrical frustration

In the example of the frustrated J1-J2 SLAF discussed above, the system is frus-
trated by explicit competition between different types of exchanges, namely the nearest-
neighbor exchange J1 and NNN exchange J2. Frustration can, however, also arise solely
from the geometry of the lattice, in which case we talk about geometrical frustration.

Typically, frustrated geometries are made from triangle-based units, where two
nearest neighbors of a given site are also nearest neighbors to each other. Emblem-
atic examples in 2D are the triangular and kagome lattices, which are made of edge-
sharing or corner-sharing triangles, respectively. In 3D, the face-centered-cubic (fcc)
and pyrochlore lattices are made from edge-sharing and corner-sharing tetrahedra, re-
spectively. Let us mention as well the hyperkagome lattice, made from corner sharing
triangles in 3D.

In such lattices, the enlarged classical ground-state degeneracy is already present
with only one type of interaction. The simplest example is nearest-neighbor Heisenberg

Figure 1.5: 120 ◦ structure in the
triangular antiferromagnet.

interaction of AF sign. Similar to the case of the
J1-J2 SLAF with J2 = J1/2, this is related to
the fact that the Hamiltonian can be rewritten
as a sum over frustrated blocks, which makes its
minimization under-constrained. Note that the
triangular lattice is not frustrated per se in zero
field, in the sense that there is a unique classical
ground state (up to global rotations): the planar
120◦ structure. It is shown in Fig. (1.5). In that
case, frustration is equally shared by all bonds of
the lattice, contrary to the Néel and stripe states
of the J1-J2 SLAF. The triangular lattice AFM
becomes frustrated in applied magnetic filed.

The present PhD work focuses on geometrically frustrated lattices, namely the
kagome lattice in 2D, and pyrochlore and fcc lattices in 3D. The nearest-neighbor
Heisenberg model is highly frustrated on all these lattices. Details and pictures of the
lattices will be given in the dedicated chapters.

1.3.2 Ground states of frustrated magnets

A key feature of frustration, is that one cannot go from a given classical ground state
to another through the true symmetries of the Hamiltonian. This is why the classical
degeneracy is said to be accidental, in the sense that it is an artefact of the classical
approximation. This degeneracy must be lifted in a complete theory, such that ulti-
mately, only degeneracies related to the true symmetries of the Hamiltonian should
remain. This may be achieved either by the selection of one of the classically degen-
erate states over the others, or by the stabilization of a new quantum ground state,
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which has no simple classical counterpart 6.
Nevertheless, many low energy states still have close-by energies in frustrated mag-

nets, which makes them highly sensitive to small perturbations. This is another key
feature of frustration, and actually both aspects (the degeneracy being accidental, and
high sensitivity to perturbations) are closely related. For example, small additional
anisotropic interactions in the Hamiltonian allow us to explicitly break the spurious
symmetry and can lift the degeneracy of the Heisenberg model, already at the classical
level. This is what happens a lot in reality, where the specific properties of a given
material lead to (at least weak) additional interactions. Indeed, perfectly classically
degenerate systems are not entirely realistic.

Even neglecting such additional interactions, frustrated systems remain very sen-
sitive to fluctuations as well. As seen above, the strength of frustration is associated
to the size of the ground-state manifold. Then the tendency is that the stronger is
the frustration, the stronger become fluctuations as well. In the worst (or best?) case
scenario, when fluctuations are very strong, LRO may be completely destroyed in frus-
trated magnets, even at very low temperatures. Indeed, due to the large classical
ground-state degeneracy, the switching of temperature implies that many states are
accessible at once, which may lead to a classical spin liquid state [3]. Even at zero
temperature, quantum fluctuations can destroy LRO. This is manifested by the afore-
mentioned spin reduction being large enough to overcome the spin length S. This has
more chances to happen for low-spin values, especially for the extreme quantum case
S = 1/2. Then the quantum ground state cannot be described at all from an intuitive
classical counterpart like the dressed Néel state discussed above. If no other long-range
spin correlations are present, like in valence-bond crystals [4] or spin nematics [5], such
states are called quantum spin liquids [6, 7].

However, in most cases, the scenario is much less dramatic, and fluctuations are
not strong enough to destroy order. They even have the opposite effect and actually
select one - or at least a subset - of the classically degenerate ordered ground states
over the others. This surprising effect in which fluctuations induce order goes by the
beautiful name of order by disorder.

1.3.3 Order by disorder

In the early 80s, a number of seminal works reported the phenomenon where LRO
was achieved in frustrated magnetic systems due to inclusion of fluctuations [8–10].
Fluctuations can be of various origins: thermal, quantum, structural. The term ”Order
by disorder” (OBD) specifically emerged from the paper from Villain et al. [8]. In that
paper, the system under study is a classical 2D lattice with competing interactions, and
the disorder is of thermal and structural origin. Already before that however, other
authors have remarked a possibility that LRO is stabilized by quantum fluctuations in
anisotropic ferromagnets [11, 12]. We leave aside structural disorder for now.

6Note that this quantum state may or may not retain the symmetries of the Hamiltonian.
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Thermal OBD

In the classical picture, the OBD phenomenon stems from thermal fluctuations and
the stabilization of a given classical ground state is made from entropic selection [13].
This is shown schematically on Fig. (1.6). Let us say that there is a continuous pa-
rameter which allows one to span the classical ground-state manifold in parameter
space. This is represented by the white line on Fig. (1.6). Any point on this line

Figure 1.6: Thermal OBD scheme
represented in parameter space.

in parameter space, is a classical ground state of
our frustrated system. Then for each classical
ground state, one can evaluate the energy cost
of slightly going away from it. If by doing so
we leave the ground-state manifold (red arrow
on Fig. (1.6)), this energy cost will be non zero
7. This is typically done by twisting part of
the spins away from their classical equilibrium
position in the considered ground state. The
excitation spectrum so defined, is schematized
on the figure as well, regions of smaller energy
corresponding to areas of darker blue color. The
ground state which has the softest dispersion
gains all statistical weight, and becomes the one

selected at low temperature. This would correspond to the white dot on Fig. (1.6).
Such a scenario is called thermal order by disorder [8, 10].

Note that in a quantum spin system, the relevant excitations become the quantum
spin-waves, rather than the aforementioned classical excitations. However, the principle
remains the same: states with softest excitations are favored by thermal fluctuations.
During my PhD work, I focused solely on the study of quantum spin systems, and
therefore will be referring to this last situation when using the terminology thermal
OBD.

Quantum OBD

At absolute zero temperature, no thermal fluctuations are allowed, and only quan-
tum fluctuations are at play. Competing classical ground states become dressed by
quantum fluctuations, as was shown in the previous section in the case of the Néel
state. Corresponding energies of the quantum states are reduced compared to the
classical ground-state energy. In principle, this quantum energy correction is a state-
dependant quantity, which induces an energy difference between competing classical
ground states. This determines the ground-state selection, or at least reduces signifi-
cantly the ground-state manifold. In such a situation, on talks about quantum order

7Of course, when remaining in the ground-state manifold (blue arrow on Fig. (1.6)), the energy is
unchanged at the classical level.
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by disorder 8 [9, 11–16]. The quantum correction to a given ordered state is related to
the zero-point motion of its elementary excitations, or spin waves, as will be explained
in more details later.

General trends for the ground-state selection

Both types of fluctuations (thermal and quantum) have been argued many times to
act in favor of collinear or coplanar states over the others [8–10, 17]. This can be
illustrated going back to the case of the J1-J2 SLAF. Extensive quantum OBD studies
have been made on this model [18].

When J2 > J1/2, the system is weakly frustrated. Let me remind the reader that the
classical ground state is made of two interpenetrating Néel sublattices, with arbitrary
relative orientation, see left panel of Fig. (1.3). It was quite early on demonstrated,
that the true ground state selected by quantum fluctuations is actually one of the two-
fold degenerate collinear stripe states, see right panel of Fig. (1.3) [9, 17, 19]. In that
case, the quantum OBD phenomenon is quite straightforward.

At the classical phase boundary between the Néel state and the stripe states, namely
J2 = J1/2, determination of the true quantum ground state becomes more complicated.
It is expected from the collinearity argument - and from the fact that those are the
ground states in surrounding phases - that either the Néel or a stripe state should
be selected by quantum fluctuations. However, it was shown that for S = 1/2, spin
reduction is strong enough to destroy LRO, both in the Néel and stripe phases, when
approaching this phase boundary [15, 20]. This is directly related to the system be-
coming strongly frustrated when J2 = J1/2. At least the window of parameter space
where order is completely destroyed in the ordered phases by quantum fluctuations,
one can suspect the true quantum ground state to be a quantum spin liquid [21–23].

OBD can also arise from structural disorder, that is, a material with some concen-
tration of vacancies in the lattice, or with vacant or modified bonds [8, 10]. Let me
mention that in that case, the selection is expected to select the least collinear states,
as opposed to the effect of quantum and thermal fluctuations [10]. One can therefore
expect a competition effect between structural OBD and thermal/quantum OBD [24].

In this thesis I focused on the study of ground-state selection by OBD in quantum
spin systems, the fluctuations being either of quantum or thermal origin. The major
analytical tool to study the quantum OBD is spin wave theory, of which the principle
is explained below.

8Or sometimes: order by quantum disorder.
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1.4 Spin-wave theory in a nutshell

The results that will be presented in the following chapters were obtained using Spin-
wave theory (SWT) as an analytical tool. The detailed analytical steps of the method
are give in appendix A, which will serve as a reference throughout the text. The present
section is aimed at introducing the general ideas behind a SWT derivation. Let us say
we have a spin Hamiltonian Ĥ as in Eq. (1.1). We wish to find the eigenvalues of
this quantum Hamiltonian, in order to determine the ground state of the system it
describes. In all the projects exposed in this thesis, the spin Hamiltonian only involves
isotropic Heisenberg interaction, and interaction with an external field. However, SWT
applies in principle to any spin Hamiltonian.

For a few special models, mostly in low dimensions, the quantum ground state is
known exactly [25–27]. In general however, exactly solving the eigenvalue problem for
such a Hamiltonian is possible analytically only for a very small number of quantum
spins. Indeed, we remember that the dimension dH of the Hilbert space grows expo-
nentially with N , and even faster for large spin values S. Numerically, one can find the
exact ground state of larger systems using exact diagonalization. Nevertheless, even
with today’s most powerful computers, one is still restricted to small system sizes of
the order of a few tens of spins, even for small spin values. Although these numerical
techniques are exact, they require huge computing power and cannot reproduce the
behaviour of the system in the thermodynamic limit. One relies on extrapolation in
order to infer the behaviour when N → ∞ from the finite-size results. Furthermore,
they do not provide a view on the physical mechanism at play behind the ground-state
selection.

SWT is a semiclassical analytical approach in which the quantum Hamiltonian is
approximated by a bosonic Hamiltonian that can be solved analytically (or numerically
but with light computing power) in the thermodynamic limit. In SWT, one considers
quantum states which are not far from a given classical ordered ground state, similar
to the dressed Néel state discussed above. Quantumness is accounted for as quantum
fluctuations (which are presumably small) around this classical ground state: the spin
waves. Quantum effects are then manifested as small corrections to the spin orientation,
spin length, and ground-state energy of that state. SWT is therefore very suited to
the quantum OBD problem. Indeed, in a frustrated system, the true quantum ground
state might be one of the classically degenerate ordered states ”dressed” by quantum
fluctuations. In that case, one can use SWT to compute the quantum corrections of the
competing states, in order to determine which state has lowest energy and is ultimately
selected.

Working directly with spin operators is complicated. For that reason, the key
analytical starting point of a SWT derivation is the Holstein-Primakoff transformation,
which is a mapping of the spin operators to bosonic creation and annihilation operators.
This allows us to work in second quantization with bosons, which sets a well understood
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framework. The Holstein-Primakoff transformation is given by [28]:

S+
i =Sx

i + iSy
i =

√
2S − ni · ai

S−
i =Sx

i − iSy
i = a†i ·

√
2S − ni , ni = a†iai . (1.20)

Sz
i =S − ni

In the above, ai and a
†
i are bosonic annihilation and creation operators, respectively,

and ni is the particle number operator. Using this representation, the number ni of
bosonic particles present at a given lattice site i is directly equal to the number of
times the spin Si in this position is lowered from fully polarized position along the
z−axis. For that reason, let me refer to these a particles as ”local spin-lowerings”.
The Holstein-Primakoff transformation reproduces exactly the behaviour of original
spin operators, meaning that the spin commutation relations are preserved. However,
the Hilbert space of bosons is infinite, whereas the number of times a given spin can
be lowered is not. The correct, finite size of the spin Hilbert space would be ensured
by a constraint on the boson occupation number:

ni ≤ 2S .

This constraint leads to the so-called kinematic interactions, which are neglected in
the vast majority of spin-wave studies of the literature. Following this tendency, in my
work I also did not take this constraint into account, assuming the effects of kinematic
interactions to be small.

Exactly evaluating the square roots in S+
i and S−

i cannot be done analytically. For
that reason, they are expanded, such that the original spin Hamiltonian of Eq. (1.1)
is approximated by a new Hamiltonian in expanded form. We refer to this expanded
bosonic Hamiltonian as the spin wave (SW) Hamiltonian ĤSW :

ĤSW =
∞∑
n=0

Ĥ(n) . (1.21)

In the above, Ĥ(n) contains only products of n bosonic creation or annihilation opera-
tors. Terms of increasing orders are proportional to increasing powers of 1/

√
S:

Ĥ(n) ∼ S2−n/2 .

The term Ĥ(0) is a constant and corresponds to the classical ground-state energy Ecl ∼
S2. It is the same for all classically degenerate ground states. Provided that the
SW expansion is made around a valid classical ground state, the first order term Ĥ(1)

necessarily vanishes. Indeed, any classical ground state is at least a local minimum of
the energy. Linear terms in bosonic operators would indicate an instability of the chosen
spin configuration. Higher-order terms of even powers Ĥ(2), Ĥ(4) and so on, correspond
to quantum corrections to the ground-state energy, proportional to increasing orders
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of 1/S. Terms of odd powers Ĥ(3), Ĥ(5) and so on, correspond to quantum corrections
to the original classical spin orientations 9.

No information was given so far, about the classical ground-state spin configuration
from which the SW expansion is made. Yet, if we aim at comparing the ground-state
energies of different competing states, such information must appear somewhere in our
derivations. This is explained in the next subsection.

1.4.1 On the validity of SW expansion

The point of using bosonic operators is to obtain a Hamiltonian of which we know
how to find the eigenvalues and eigenstates. In other words, we want to have well-
defined energy levels. Firstly, let me stress that this is only possible when linear terms
in bosonic operators vanish. Such a condition is ensured by applying the Holstein-
Primakoff transformation to local spin coordinates for each spin. Those local spin
coordinates are defined such that the local z axis of a given spin Si coincides with the
orientation and direction of this spin in the classical ground state. The square roots
in Eq. (1.20) are to be expanded only after this rotation to the local basis is made.
This is precisely what is meant by ”expanding the Hamiltonian around a classical
ground state”. Information about the specific spin configuration we started from is
then contained in this rotation to the local coordinates.

Secondly, we want to be able to truncate the expanded Hamiltonian of Eq. (1.21)
at a given desired order, so as to obtain a problem that can be solved with reasonable
effort. For this truncation to be valid, one needs the higher-order terms beyond the
truncation order to be vanishingly small. In other words, the expansion of the square
roots in the Holstein-Primakoff transformation (see Eq. (1.20)) should be well-behaved.
This is guaranteed if the expansion parameter is small, that is, if the following condition
is satisfied:

ni

2S
≪ 1 . (1.22)

This criterion is obviously always verified for very large S, which is why SWT is usually
efficient in describing the behaviour of systems of large spins. From Eq. (1.22) however,
it is clear that the reliability of a spin-wave derivation not only depends on the spin
length S, but also on the ni parameter, that is, the number of local spin-lowerings on
a given site. For that reason, if ni is very large, the SW expansion might be badly
behaved, even for large spins. Oppositely, if ni is very small, the SW expansion could
be very efficient, even for small spins, including S = 1/2 [18].

Following the validity criterion set by Eq. (1.22), one wishes to construct the
Holstein-Primakoff transformation of Eq. (1.20) in such a way, that the number ni

of elementary local spin-lowerings is small. This has to be true for each lattice site.
Within SWT, it is assumed that the ordered state, after being dressed by quantum
fluctuations, is not too far from the classical ground-state configuration. Under this
assumption, ni is small if the z axis coincides with the classical orientation of the spin

9Note that these odd terms vanish in a collinear ground state.
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Si, which is precisely the case when working in the above-mentioned local spin coordi-
nates. Therefore, not only is the transformation to local coordinates necessary for the
SW derivation to have a physical meaning, but it also leads in many cases to a simple
well-behaved expansion.

The way to compute the corrections associated to Ĥ(n) is of increasing complexity
with increasing expansion order n. However, it is most common to stop at the har-
monic approximation, that is, to neglect terms beyond Ĥ(2) in Eq. (1.21). Within this
approximation, only the first quantum correction to the ground-state energy is consid-
ered. This correction is attributed to the quadratic Hamiltonian Ĥ(2) and is of order
1/S with respect to the classical ground-state energy. It generally gives good results
for large spin values S ≥ 1. This approximation is often referred to as linear spin-wave
theory, as the correction is linear in 1/S. Thus ”harmonic” refers to the Hamiltonian,
”linear” to the associated energy correction.

1.4.2 Linear spin-wave theory

The linear spin-wave theory (LSWT) consists in truncating the expanded SW Hamil-
tonian of Eq. (1.21) to second order, that is, throwing out all terms involving products
of more than 2 bosonic operators. This gives:

ĤLSW = Ĥ(0) + Ĥ(1) + Ĥ(2) .

As any classical ground state is a local minimum of the energy, the term linear in
bosonic operators Ĥ(1) vanishes.

It is more convenient to work in the reciprocal space (or k-space), such that all
relevant information is encoded in the first Brillouin zone, which has finite boundaries.
For this reason, one applies a discrete Fourier transformation to the bosonic operators
ai, a

†
i , and the SW Hamiltonian is expressed as a function of ak, a

†
k. Then the harmonic

contribution to the Hamiltonian is generally written as follows:

Ĥ(2) =
∑
k

{
Aka

†
kak −

1

2
Bk

(
a†ka

†
-k + a-kak

)}
. (1.23)

The coefficientsAk andBk set the behavior of normal and anomalous terms in quadratic
operators, respectively.

If Bk is non vanishing, the quadratic bosonic Hamiltonian is not diagonal. The
a†k spin-waves, made of local spin-lowerings a†i , are thus not well-behaved excitations,
and do not have a definite energy. They interact with their own vacuum, leading
to spontaneous creation or annihilation of pairs of spin-flips of opposite momenta.
In other words, the basis set by these local excitations is not a good basis to the
quadratic Hamiltonian. Consequently, one cannot simply establish the ground state
as the vacuum of these spin-lowerings, and the original classical ground state is not a
true ground state of the Hamiltonian.
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In order to determine the true ground state - up to harmonic approximation - we
need to define a proper basis for the quadratic Hamiltonian, in which it is diagonal.
New bosonic excitations βk, β

†
k are thus defined through the canonical Bogolyubov

transformation:
ak = ukβk + vkβ

†
-k ,

[
βk, β

†
k

]
= 1 . (1.24)

Those new particles are defined so as to not interact with their own vacuum (cancel-
lation of anomalous term). Then the ground state indeed corresponds to the vacuum
of such well-behaved particles: the spin-waves (or magnons).

The quadratic Hamiltonian of Eq. (1.23) becomes diagonal in this new basis:

Ĥ(2) =
∑
k

ϵk

(
β†
kβk +

1

2

)
+ C , (1.25)

where ϵk is the harmonic spin-wave spectrum, and C is a constant term that is the
same for all classically degenerate ground states. The ground state - relative to the
classical ground state the expansion was started from - is now redefined as the vacuum
of Bogolyubov particles, taking β†

kβk = 0. The harmonic quantum correction to the
ground-state energy is finally given by:

∆Eq =
1

2

∑
k

ϵk + C . (1.26)

Then the ground state that is selected by quantum fluctuations is the one with lowest
zero-point motion of the spin-wave spectrum. It corresponds to the state with ”most
low-lying” spectrum, which in most cases coincides with the state having softest low-
lying excitations. This is the quantum order-by-disorder phenomenon.

Take note that the vacuum of β†
k particles does not correspond to the vacuum of a†k

particles. In other words, we have in principle ni > 0. For that reason, the staggered
magnetization in the quantum ground state is lowered by quantum fluctuations: we
recover the spin reduction effect discussed earlier.
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1.5 Thesis outline

In the first part of this thesis, chapter 2 is devoted to the study of fractional magnetiza-
tion plateaus in the kagome and pyrochlore antiferromagnets. Only nearest-neighbor
Heisenberg interactions are considered. After an introduction to the topic and the
method (section 2.1), I give the general form of the spin-wave Hamiltonian which is
applicable to both lattices (section 2.2). Then, in sections 2.3 and 2.4 I specifically
derive analytical expressions for the harmonic spin-wave spectrum of the kagome and
the pyrochlore lattices, respectively. The magnetization curves, which are obtained
from these spectra, are also shown. They exhibit the expected fractional magnetiza-
tion plateaus for both systems. A discussion of the results, as well as a summary of
the chapter, are given in section 2.5.

The second part of the thesis focuses on the study of order by disorder in the quan-
tum fcc antiferromagnet. Once again, only nearest-neighbor Heisenberg interactions
are considered 10. Chapter 3 introduces frustration in this system. Then chapters 4 and
5 are dedicated to the results from linear spin-wave theory and interacting spin-wave
theory, respectively.

In chapter 4, section 4.1 presents the ground-state selection operated by quantum
fluctuations at zero temperature. The harmonic spin-wave spectra are given for the
competing classical states, and corresponding quantum energy corrections are com-
puted. At this harmonic level the AF3 state is selected by quantum OBD at T = 0.
Then, section 4.2 focuses on the thermal selection due to population of low-lying
magnons. The AF1 state is selected by thermal OBD at T > 0. The different se-
lections operated by the two types of OBD induce a competition effect between the
two, leading to a first-order phase transition at low temperatures. Concluding remarks
are given in section 4.3, along with a summary of the chapter.

In chapter 5, section 5.1 is devoted to the inclusion of interactions in the spin-wave
derivation. The spectra for the two competing states (AF1 and AF3), are obtained
analytically. In section 5.2, the quantum OBD at T = 0 is being addressed again,
with now inclusions of the effects of interactions. After self-consistent renormalization
of the Bogolyubov vacuum, new values for the quantum energies of the two states
are obtained. After inclusion of interactions, the AF1 state becomes the ground state
selected by quantum fluctuations at T = 0 for spin values S ≲ 10. In section 5.3, ther-
mal OBD is looked at. The ground-state selection is unchanged compared to the result
without interactions and remains the AF1 state. As a result, no competition between
quantum and thermal OBD is found anymore. A discussion about the peculiarities of
both spin-wave theory and OBD in that system, as well as a summary of the chapter,
are given in section 5.4.

Finally, chapter 6 summarises and concludes all the findings of the thesis.

10There is no interaction with an external magnetic field in that case.
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Chapter 2

Fractional magnetization plateaus
in the kagome and pyrochlore
antiferromagnets

I apply spin-wave theory to the canted states that are surrounding the plateau phase,
and restrict to harmonic order. Although diagonalization of the spin-wave Hamiltonian
in the kagome and pyrochlore lattices is in principle a 3- and 4-dimensional eigenvalue
problem, it can be reduced to a quadratic equation in both systems. This allows us to
obtain full analytical expressions for the harmonic spin-wave spectra.

The first quantum correction to the ground-state energies of the canted states is
obtained by computing the zero-point motion of the harmonic magnons. The mag-
netization in each canted state is computed as well, by differentiating the corrected
ground-state energy with respect to magnetic field. The extent of the plateau is then
determined by intersecting those curves with the expected fractional magnetization,
which permits to obtain full magnetization curves for the two systems.

The curves exhibit a clear magnetization plateau, both for the kagome and py-
rochlore lattices. The plateau width decreases with spin length, as expected provided
that such magnetization plateaus are a quantum feature. The plateau width for the
kagome lattice compares well with available numerical data from various techniques,
for S > 1/2.
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2.1 Introduction

The magnetization process of frustrated magnetic insulators offers a striking example
of their inclination to challenge the established classical picture of magnetism. At
zero magnetic field, spins in an AFM are arranged in such a way that there is no net
magnetization. Local magnetic moments interact with an external magnetic field H
via the Zeeman energy:

ĤZ = −gµBH ·
∑
i

Si , (2.1)

where g is the gyromagnetic ratio and µB is the Bohr magneton. In the rest of this
chapter, I absorb these constants in the magnetic field variable H to ease reading.

Figure 2.1: Classical magnetization pro-
cess of a Heisenberg antiferromagnet

Classically, spins behave as 3-dimensional
vectors and smoothly cant along the field
direction as its strength is increased, in or-
der to gain energy through this Zeeman
interaction. When only Heisenberg inter-
actions are considered, this leads to a net
magnetization M along the field direction
which is linear in magnetic field up to satu-
ration, as depicted in Fig. (2.1). At satura-
tion, all spins are polarized along the field
and we have Msat = NSêz0 , where N is
the total number of spins in the lattice, S
is the size of the magnetic moments, and

by convention we took the z0 axis oriented along the field direction. It is convenient
to define the following dimensionless magnetization per site m:

m =
M

Msat

, (2.2)

such that at saturation we have m = 1, see Fig. (2.1).
This simple picture does not hold once the effects of quantum fluctuations are

incorporated. Indeed, the curve acquires curvature due to the gradual suppression
of quantum fluctuations, already in non frustrated systems [29]. More spectacular
features may arise when geometric frustration is at play, due to the large classical
ground-state degeneracy. The magnetic field acts as an external handle to trigger
competition between many - not necessarily classically stable - states which become
available at different field values. As a result, various phase transitions occur along the
magnetization process. This leads to the appearance of anomalies in the magnetization
curve, like discontinuous slope of the magnetization, or more impressive magnetization
jumps or magnetization plateaus, see [30] for example. The latter are the focus of the
present chapter.
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2.1.1 What are fractional magnetization plateaus?

A fractional magnetization plateau appears as a constant rational value mp of the
magnetization over a finite field interval, as shown in the purple curve of Fig. (2.2).
It originates from the stabilization of a given ground state with corresponding mag-
netization ⟨Ŝz

tot⟩ = mp · NS, which is gapped to spin excitations over the field range
[31].

In Ising systems, plateaus appear in a most intuitive manner. Indeed, consider
that the field is applied along the Ising axis and is continuously increased. Then,
as soon as the energy gained from the Zeeman term by flipping a spin overcomes
the corresponding energy cost from the exchange interaction, it becomes energetically
favorable to flip the whole fraction of equivalent spins. Consequently, the magnetization
jumps from a constant value to another. In the case where we have further-neighbor
interactions, this leads to magnetization plateaus. There is no intermediate phase
between successive plateaus, and the magnetization grows in a staircase fashion (see
blue curve in Fig. (2.2)). Such Ising plateaus have been observed experimentally on
the metallic compound TmB4, in which magnetic ions lie on a Shastry-Sutherland
lattice [32–35]. In another recent work, a plateau at half-saturation was observed in
the stacked triangular Ising antiferromagnet Fe1/3NbS2 [36].

Contrary to Ising spins, Heisenberg spins are allowed to cant towards the field to
gain energy. Thus, in a simple classical picture, there is in principle no reason for
the magnetization not to be smoothly increasing with magnetic field, as shown on
Fig. (2.1). Yet magnetization plateaus also appear in Heisenberg spin systems. Both
the nature of the plateau states and the mechanisms leading to their appearance are
diverse.

In most cases the plateau state corresponds to a collinear spin arrangement along
the field direction. The magnetization mp is then directly related to the fraction of
down-pointing spins in the lattice. Such plateaus were predicted for example in the 1D
Heisenberg spin-chains with next-nearest-neighbor interactions [37]. More generally,
fractional collinear spin arrangements are typically possible in geometrically frustrated
lattices [38]. Then mp is connected to the number of down-pointing spins by frustrated
block. A fractional plateau appears if the corresponding state has lowest energy over
a finite field range.

The appearance of a collinear plateau may be induced by a purely classical process,
such as thermal order by disorder (ObD) [39] or spin-lattice coupling [40]. Plateaus can
also originate from the quantum ObD effect, where quantum fluctuations stabilize the
collinear structure over a field range that exceeds its classical stability point in field, if
any. This phenomenon is fostered by the presence of a larger number of soft modes in
the spin wave spectrum for such collinear states, compared to non-collinear ones [10].
This is directly related to quantum fluctuations acting in favor of collinear states in
general, as mentioned in the introduction chapter. Contrary to canted states, which
spontaneously break the rotational symmetry around the field direction, these collinear
states preserve the symmetry of the Hamiltonian. Consequently, they are gapped to
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magnetic excitations [14, 31]. Their magnetization mp thus remains constant over the
field range where the gap is finite. In general, the states surrounding the plateau are
canted states, in which the magnetization smoothly increases with H, as depicted by
the purple curve in Fig. (2.2).

Figure 2.2: Magnetization processes exhibiting fractional plateaus, for Ising (blue curve)
and Heisenberg (dark red curve) systems. The dashed dark red reproduces the classical
magnetization curve.

Collinear plateau states stabilized by quantum ObD are semiclassical, in the sense
that they can be viewed as a classical collinear state ”dressed” by quantum fluctua-
tions. They were originally studied in the context of the triangular Heisenberg AFM
[14]. Later, plateaus were predicted to appear in a variety of frustrated lattices from
geometrical arguments [16, 38, 39]. It is such plateaus that we wish to investigate in the
present work. Magnetization curves have been extensively studied through a variety of
numerical and theoretical techniques [14, 30, 41–48]. In this chapter, we use harmonic
spin-wave theory (LSWT) to study the fractional magnetization plateaus appearing at
m = 1/3 and m = 1/2 of saturation value in the 2D kagome and the 3D pyrochlore
Heisenberg AFMs, respectively.

We only addressed semiclassical plateaus, but take note that plateau state itself can
be of fully quantum nature. For example, quantum plateau states have been proposed
int the form of crystals of localized magnons in the frustrated kagome lattice with
S = 1/2 [43, 44, 49–52]. Such states involve locally resonating spin-flips and have no
classical counterpart, which makes them impossible to study by using SWT.
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2.1.2 Plateaus in the kagome and pyrochlore antiferromagnets

Both kagome and pyrochlore lattices have a low connectivity due to their corner-sharing
structure (of triangles and tetrahedra), which leads to an extensive degeneracy of their
classical ground state at all fields below saturation [53–55]. This feature makes them
archetypal examples of highly frustrated magnets. There is extensive literature devoted
to the investigation of their spin-liquid ground states in zero field [56, 57]. Their
structure allows for simple fractional collinear states, which, as stated above, can be
stabilized as plateaus.

The kagome Heisenberg AFM with only nearest-neighbor interactions is a well-
known example of a 2D frustrated magnet. A plateau at m = 1/3 of full saturation
is expected to be present for all spin values from order-by-disorder arguments [38]. It
was already found numerically in 2001 from exact diagonalization by Hida [42]. In
the spin-1/2 case, several other plateaus have been predicted numerically, in particular
at m = 5/9 and m = 7/9 [30, 43, 44, 48, 58, 59]. The m = 7/9 plateau in the
spin-1/2 case is actually a particular instance of the plateau appearing at m = 1 −
1/(9S), which has been predicted analytically [49]. The state within the plateau is a
crystalline arrangement of independent localized magnons, of which the wave function
can be exactly constructed [49, 60]. The energy of these localized magnons becomes
negative right below the saturation field Hsat, hence, their condensation in a close-
packed structure at H ≲ Hsat leads to a finite magnetization jump from the plateau
to full saturation [43, 49–51, 61]. Actually, the m = 5/9 and m = 1/3 plateaus can
also be attributed to such a magnon crystal structure in the spin-1/2 case [30, 44, 52].
Finally, a m = 1/9 plateau corresponding to the stabilization of a purely quantum
state is also expected for S = 1/2 [30].

On the experimental side, difficulties to engineer undistorted compounds with sat-
isfying 2-dimensionality prevent one from obtaining very clear evidence of plateaus.
There exists nevertheless an appreciable number of relevant kagome compounds which
appear to exhibit the 1/3-plateau [62–67]. Note that the Cd-kapellasite studied in [66]
exhibits a very large number of plateaus, which the authors attribute all to magnon
crystals sitting on a large 12 sites unit cell.

Another well-known example of geometrical frustration is the nearest-neighbor
Heisenberg model on a pyrochlore lattice. Its highly frustrated nature was already
recognized by Anderson in 1956 in the case of Ising spins [68]. A fractional plateau
at m = 1/2 the saturation value is expected to be stabilized by quantum fluctuations
around its classical stability field H/Hsat = 1/2 [38]. It corresponds to the collinear
up-up-up-down (uuud) structure, where on each tetrahedron of the lattice, 3 spins are
aligned to the field, while the fourth one is antiparallel to it, resulting in the fractional
half-magnetization. On the one hand, the high dimensionality makes it almost impos-
sible to conduct numerical studies on such a lattice. On the other hand, it presents
the advantage of being much more accessible experimentally. Indeed, progresses in
the achievable magnetic field intensities made possible the observation of the half-
magnetization plateau on several pyrochlore magnets. In particular, many Chromium-
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based spinels (ACr2O4) have been reported to exhibit a very large 1/2 magnetization
plateau [69–78], although the robust plateaus in these compounds is probably stabilized
by strong magnetoelastic coupling leading to an effective biquadratic exchange term
in the Hamiltonian[40, 71, 79]. Some recent experiments also found magnetization
plateau in breathing pyrochlore compounds [80, 81]. Motivated by these experimental
and numerical results, we wish to investigate the m = 1/3 and m = 1/2 plateaus in
the kagome and pyrochlore AFMs.

2.1.3 Classical ground-state degeneracy

The Hamiltonian of a nearest-neighbor Heisenberg antiferromagnet (AFM) in a mag-
netic field is given by:

Ĥ = J
∑
⟨i,j⟩

Si · Si −H ·
∑
i

Si . (2.3)

where ⟨i, j⟩ sums over pairs of nearest-neighbors sites i and j, J > 0 is the nearest-
neighbor exchange interaction and H = H êz0 is the applied magnetic field. Both the
kagome and pyrochlore lattices can be seen as lattices of elementary corner-sharing
frustrated blocks, each of these blocks being composed of n spins. The elementary
block is a triangle (n = 3) in the case of the kagome lattice, and a tetrahedron (n = 4)
in the pyrochlore lattice. The Hamiltonian of Eq. (2.3) can then be rewritten as a sum
over these blocks as follows:

Ĥ =
∑
b

J ∑
(i,j)∈b

Si · Sj −
1

2
H · Sb

 , (2.4)

where the b index runs over all triangles (tetrahedra) of the kagome (pyrochlore) lattice,
and we defined the local spin variable Sb as the total spin on a given block:

Sb =
∑
i∈b

Si . (2.5)

The 1/2 factor in front of the Zeeman term accounts for the fact that each spin in the
lattice is shared by two elementary blocks, due to the corner-sharing nature of the two
lattices. Classically, spins are treated as vectors of fixed length S in real space, and
the following relation holds: ∑

(i,j)∈b

Si · Sj =
1

2

(
S2
b − nS2

)
. (2.6)

Substituting the above relation into Eq. (2.4), and using the fact that the total number
of blocks is given by 2N/n, where N is the total number of lattice sites, one obtains:

Hcl =
J

2

∑
b

(
Sb −

H

2J

)2

−NJS2 −N
H2

4nJ
. (2.7)
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Minimizing Hcl with respect to Sb leads to the following local constraint on each block:

Sb =
H

2J
. (2.8)

This constraint needs to be satisfied simultaneously on all blocks of the lattice to min-
imize the Hamiltonian. Due to the low connectivity of the blocks in the kagome and
pyrochlore lattices [55], many different classical spin configurations do meet this re-
quirement. Actually, one can even go from a given classical ground state to the other
through completely local excitations. As a result, the kagome and pyrochlore an-
tiferromagnets not only are classically degenerate, but exhibit an extensive classical
ground-state degeneracy, meaning that the classical ground-state manifold grows with
lattice size [53, 82, 83]. They are therefore highly frustrated, which explains that they
are two canonical examples of quantum spin liquids in zero magnetic field.

Classical ground-state energy and susceptibility

In any classical ground-state configuration, the local constraint of Eq. (2.8) is verified
on each frustrated block. Then obviously, increasing the magnetic field induces a
progressive canting of the spins towards the field direction - regardless of how the
constraint is satisfied. The total classical magnetization thus increases linearly with H.
Saturation of the magnetization is reached when all spins are aligned ferromagnetically
along the field direction, such that Sb = nSêz0 . This implies naturally the following
expression for the saturation field Hsat:

Hsat = 2nJS . (2.9)

It is useful to define the normalized field variable h:

h =
H

Hsat

, (2.10)

such that the value for the saturation field is always given by hsat = 1, irrespective of the
spin length S and the strength of exchange interaction J . The classical ground-state
energy Ecl as a function of h is then given by substituting Eq. (2.8) in Eq. (2.7):

Ecl = −NJS2(1 + nh2) . (2.11)

The classical magnetization per site mcl is linear in field and given by:

mcl = − 1

N

∂Ecl

∂H
= hS = χclH . (2.12)

The slope corresponds to the constant classical susceptibility χcl:

χcl =
1

2nJ
. (2.13)
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Competing states

Already at the level of a single block (triangle or tetrahedron), the constraint of
Eq. (2.8) can be verified in many different ways. For example, the classical degen-
eracy is parametrized by 3 continuous degrees of freedom for a single triangle. Only
one of these degrees of freedom is related to the U(1) symmetry of the Hamiltonian
around the field direction, such that the two others remain as an accidental degeneracy.
This accidental degeneracy is of even larger dimensionality in the case of a tetrahedral
block.

Let us now assume that we know the orientations of each spin on one given triangle.
In a triangular lattice, this is sufficient to know the spins orientations in the whole
lattice. This is due to the fact that a triangular block shares two spins with each of its
edge-sharing neighboring blocks. The kagome lattice, however, has lower connectivity
due to its corner-sharing nature. Indeed, only one spin is shared between two adjacent
blocks. Therefore, even if the spins orientations are known on one given triangle, this
does not provide enough information to know what should be the spins orientations
in the neighboring triangles. In principle, those spins orientations might be different
from one triangle to the next, except of course for the spin that is shared between the
two. This is at the origin of the extensive classical ground-state degeneracy discussed
above. Note that in the case of the pyrochlore lattice, this degeneracy is even larger
as the system is less constrained.

2.1.4 Degeneracy lifting: coplanar states

The spin-wave expansion relies on a classical ground state to expand around. Unfor-
tunately, as we just saw, the classical ground states of the systems we wish to study
are far from being uniquely defined. Fortunately, the question of order by disorder in
the kagome and pyrochlore antiferromagnets in field has already been addressed be-
fore, which gives us guidance in the choice of classical starting points to our spin-wave
calculations.

As said in the introduction, quantum fluctuations lift the infinite degeneracy and
select a ground state from the zero-point motion of the spin-waves (see Eq. (1.26)).
This selection acts in favor of collinear and coplanar spin structures. In such coplanar
states, all the spins of the lattice are in the same plane, which also contains the magnetic
field H, and they progressively cant towards it as the strength of the field is increased.
Since we are studying the quantum spin systems, we limit our study to coplanar spin
structures. As a result, only one parameter is needed to give the orientation of a given
spin Si: the canting angle θi with respect to the magnetic field direction z0. It is
straightforward to show, from the constraint of Eq. (2.8), that the following relations

30



hold on each frustrated block in a coplanar classical ground state:∑
i∈b

cos θi =nh , (2.14)∑
i∈b

sin θi =0 . (2.15)

These relations will be useful throughout the whole analytical derivation of the spin-
wave spectrum.

Imposing coplanarity restricts a lot the classical ground-state manifold. For exam-
ple, at the level of one triangular unit, the accidental classical degeneracy gets reduced
to only one continuous degree of freedom. Furthermore, in the kagome lattice, all copla-
nar states are such that the spins orientations in each triangle are the same. There
are therefore only 3 different spin orientations throughout the whole lattice. The way
these 3 orientations are placed in each triangle may however vary, and consequently
the degeneracy remains extensive. Indeed, there are exponentially many such possible
coverings [53]. In the pyrochlore lattice, the situation is more complicated. We restrict
to the same type of states, in which only 4 different spin orientations are present in
the lattice, and each tetrahedron contains one spin of each orientation.

If there is long-range order, the ordering wave-vector Q defines how adjacent blocks
are ”rotated”, and thus the periodicity of the lattice and size of the magnetic unit cell.
The ordered state that has the smallest magnetic unit cell is the Q = 0 state, where
adjacent blocks are identical to each other. In this situation, the magnetic unit cell
is exactly one block and there are n sublattices, corresponding to the different spin
orientations. In both the kagome and pyrochlore lattices, the canting coplanar states
that will serve as starting points to the spin-wave derivation will be some sort of Y or
V states with Q = 0, as we will see later in more details.

2.1.5 Method

We use linear spin-wave theory (LSWT) to obtain the first quantum correction ∆Eq

to the ground-state energies of the Y and V states. This correction is attributed to the
zero-point motion of the spin-waves, see Eq. (1.26). Following [29], the magnetization
curve is obtained for the canted states from the standard expression:

M = −∂Egs

∂H
, (2.16)

where Egs = Ecl +∆Eq is the corrected ground-state energy and H is the strength of
the external magnetic field. One does not need to go beyond the harmonic level to find
the plateau. Indeed, as was done for the triangular lattice in [46], the boundaries of the
plateaus are taken as the intersections of the magnetizations of the surrounding Y and V
states with the expected fractional value mp. These states being classical ground states
of the Hamiltonian in the corresponding field ranges, their magnon spectra remain real
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even in the harmonic approximation. The full magnetization curves are then obtained
solely from LSWT for both geometries.

The spin wave spectrum ϵk is required to compute the magnetization from Eqs. (1.26,
2.16). Somewhat counter intuitively, the large degree of frustration of the corner-
sharing kagome and pyrochlore lattices actually leads to a simplification of the diag-
onalization of the LSWT Hamiltonian, compared to the less degenerate edge-sharing
triangular lattice. This is due to the presence of full flat zero-energy bands in the
harmonic spectra. They are a signature of the extensive degeneracy of the classical
ground state mentioned above. These flat bands allow us to reduce the diagonalization
to an equation of degree 2. As a result, we obtain fully analytical expressions for the
two remaining dispersive bands of the harmonic spin-wave spectra of the kagome and
pyrochlore AFMs.
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2.2 General spin-wave derivation

The spin-wave derivation can be performed in quite a similar manner in the kagome
and pyrochlore lattices. Therefore, in this section, I explain this derivation in terms
that remain general enough to be suitable for both. This is made possible by the
fact that the two lattices share similar geometrical properties. They are constituted of
corner-sharing frustrated blocks of n sites 1, and each spin thus has 2(n − 1) nearest
neighbors.

A first property of such lattices is the following: nearest-neighbor bonds are center-
symmetric with respect to a given site. Take a given spin Si located at position Ri

in either lattice. Then for any of its surrounding nearest-neighbor sites located at

Figure 2.3: Center-symmetric lattice

position Ri + δ, there exists another nearest-
neighbor site located at position Ri − δ, as is
shown on Fig. (2.3).

As said previously, we focus on the case
Q = 0, such that the magnetic unit cell is
exactly one block (triangle or tetrahedron).
The spin structure is a periodic repetition of
such blocks along the lattice translation vec-
tors, each block having identical spin configu-

ration. The n sites within a block can in principle all have a different orientation. It is
then convenient to define n sublattices with n corresponding bosonic modes (one for
each site). In the following, the bosonic mode - or equivalently the sublattice - will be
identified by the index α, with α ∈ {a, b, c, . . . }. Since sublattices and bosonic modes
coincide, in the remainder of this chapter I will refer to both indifferently. With this
definition, all the spins in a same sublattice have the same orientation. A given spin
site is then completely specified by its position R and its sublattice index α: Si = SR,α.

The Q = 0 order implies a further symmetry. Indeed, each spin SR,α belonging
to sublattice α has (n − 1) pairs of nearest-neighbor spins from all other (n − 1)
sublattices β ̸= α. Such pairs are located in opposite symmetric positions with respect
to R: R+ rαβ and R− rαβ. This is schematized on Fig. (2.3). These symmetries allow
us to reformulate the Hamiltonian of Eq. (2.3) as follows:

Ĥ = J
∑
Rc

̸=∑
α,β

SR,α ·
(
SR+rαβ ,β + SR−rαβ ,β

)
−H

∑
Rc

∑
α

Sz0
R,α , (2.17)

where the sum over Rc spans the positions of the unit cells. The vector rαβ is the
nearest-neighbor vector that links a spin of sublattice α to one of its nearest neighbors
belonging to the sublattice β. We will now show how to obtain a general expression
for the LSWT Hamiltonian.

1We remind the reader that n = 3 and n = 4 in the kagome and pyrochlore case, respectively.
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2.2.1 Spin-wave matrix in reciprocal space

We use the spin-wave formalism described in appendix A. First, we apply the rotation
to local spin coordinates (x, y, z) given by Eq. (A.7) to Eq. (2.17). Then, the Holstein-
Primakoff transformation of Eq. (1.20) is applied to the spin operators in this rotated
basis. The square root is expanded in the fashion of Eqs. (A.4, A.5). Then one obtains
the expression for a given scalar product between two spins. As an example, the
expression in terms of bosonic operators is given below for a pair of spins belonging to
sublattices a and b, keeping only up to quadratic terms:

SR,a · SR′,b =S
2 cos θab +

S
√
2S

2
sin θab

(
bR′ + b†R′ − aR − a†R

)
+
S

2
(cos θab − 1)

(
aRbR′ + a†Rb

†
R′

)
(2.18)

+
S

2
(cos θab + 1)

(
aRb

†
R′ + a†RbR′

)
− S cos θab

(
a†RaR + b†R′bR′

)
,

where θab = θa − θb is the opening angle between two spins of sublattices a and b.
Similar expressions are obtained for each type of scalar product involving each possible
pairs of different sublattices. We also have, for a spin of sublattice a for example:

Sz0
R,a =S cos θa −

√
2S

2
sin θa(aR + a†R)

− cos θaa
†
RaR . (2.19)

Similar expressions are obtained for any type of sublattice. Substituting these expres-
sions into Eq. (2.17) leads to the expanded form of the LSWT Hamiltonian ĤLSW:

ĤLSW = Ĥ(0) + Ĥ(1) + Ĥ(2) . (2.20)

In both Eq. (2.18) and Eq. (2.19), The first and second terms of first line are of
zeroth and first order, respectively, while the remaining lines are of second order. By
construction of SWT, Ĥ(0) corresponds to the classical ground-state energy. Indeed,
from Eqs. (2.18, 2.19), we have:

Ĥ(0) = J
∑
Rc

̸=∑
α,β

2S2 cos θαβ −HS
∑
Rc

∑
α

cos θα . (2.21)

In any classical ground state, the local constraint of Eq. (2.8) is verified. Substituting
the resulting relations of Eqs. (2.14,2.15) in Eq. (2.21), we obtain:

Ĥ(0) = −NJS2(1 + nh2) = Ecl , (2.22)
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where we used the fact that the total number of magnetic unit cells Nc is given by
Nc = N/n. This expression corresponds to the classical ground-state energy Ecl given
by Eq. (2.11).

The SW expansion being done about a classical ground state, Ĥ(1) naturally van-
ishes. The first quantum contribution to the ground-state energy comes from the
quadratic part of the Hamiltonian Ĥ(2). Substituting Eq. (2.18) and Eq. (2.19) into
Eq. (2.17), and retaining only the terms that are quadratic in bosonic operators, we
obtain Ĥ(2). The bosonic operators are Fourier transformed following Eq. (A.10). We
remind the reader of the relation:∑

Rc

eik·R = Nc · δk,0 , (2.23)

from which we obtain the phase factors associated to the various quadratic terms of the
harmonic spin-wave Hamiltonian in k-space. As there are more than one sublattice,
it becomes convenient to express the quadratic Hamiltonian in the matrix form of
Eq. (A.11), which we repeat below:

Ĥ(2) =
1

2

∑
k

(
X̂†

kHkX̂k − Tr[Ak]
)
, (2.24)

where X̂†
k is a row vector containing all the Holstein-Primakoff bosonic operators:

X̂†
k =

(
a†k, b

†
k, ..., a-k, b-k, ...

)
. (2.25)

In Eq. (2.24), Hk is a (2n)× (2n) matrix with the following block structure:

Hk =

(
Ak −Bk

−Bk Ak

)
. (2.26)

Ak and Bk are n× n matrices, containing the coefficients in front of the diagonal and
anomalous terms of the Hamiltonian, respectively. The coefficients of the matrices Ak

and Bk are explicitly given by:

Aαα
k = 2JS , Bαα

k = 0 ,

Aαβ
k = JS

(
1 + cos θαβ

)
cos(k · rαβ) . Bαβ

k = JS
(
1− cos θαβ

)
cos(k · rαβ) .

(2.27)

Then the trace of Ak is given by:

Tr[Ak] = 2nJS = Hsat . (2.28)

Finally, summing the classical ground-state energy of Eq. (2.22) and the harmonic
quantum corrections given by Eqs. (2.24 - 2.28), we obtain the full LSW Hamiltonian
in momentum space:

ĤLSW = Ĥ(0) + Ĥ(2) = −NJS(S + 1)−NJS2h2n+
1

2

∑
k

X̂†
kHkX̂k . (2.29)
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2.2.2 Diagonalization and spin-wave spectra

The quadratic Hamiltonian of Eq. (2.24) is not diagonal in the basis of the bosonic
operators defined in the Holstein-Primakoff transformation. As a consequence, one
needs to diagonalize it in order to work with well-behaved quasiparticles, which will
propagate on the whole lattice and have a definite energy: the spin-waves. This di-
agonalization is done through the Bogolyubov transformation, of which the detailed
procedure is given in appendix A. After the transformation, the quadratic part of the
Hamiltonian has a diagonal form:

1

2

∑
k

X̂†
kHkX̂k =

1

2

∑
k

Ŷ †
kΩkŶk , (2.30)

where Ωk is a diagonal matrix, its elements being the (doubly-degenerate) harmonic
spin-wave modes ϵik (i ∈ {1, .., n}). The vectors Ŷ †

k and Ŷk contain the new bosonic
operators:

Ŷ †
k =

(
β†
k,1, β

†
k,2, ..., β-k,1, β-k,2, ...

)
. (2.31)

In order to find expressions for the spin-wave modes ϵik, one needs to apply the
canonical Bogolyubov transformation. It is used to diagonalize the system under the
constraint of preserving bosonic commutation relations for newly defined particles βk.

As is shown in appendix A, this 2n× 2n diagonalization procedure can be reduced
to a much simpler, n× n eigenvalue problem:∣∣∆kΣk − ϵ2In

∣∣ = 0 , with

{
∆k = Ak −Bk

Σk = Ak +Bk
. (2.32)

This is due to the block structure of Hk (see Eq. (2.26)). The matrix elements of ∆k

and Σk are obtained from Eq. (2.27):

∆αα
k = 2JS , Σαα

k = 2JS ,

∆αβ
k = 2JS · Cαβtαβ , Σαβ

k = 2JS · Cαβ ,
(2.33)

where we defined the following notation to ease reading:

Cαβ = cos(k · rαβ) ,
tαβ = cos θαβ .

(2.34)

For the sake of completeness, let me as well give the coefficients for the matrix Γk =
∆kΣk:

Γαα
k =(2JS)2

1 +
∑
β ̸=α

C2
αβtαβ

 , (2.35)

Γαβ
k =(2JS)2

Cαβ(1 + tαβ) +
∑
γ ̸=α,β

CαγCγβtαγ

 . (2.36)
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Note that this matrix is not symmetric. Note as well the following property obtained
from Eqs. (2.14, 2.15):

̸=∑
α,β

tαβ =
1

2

[
(nh)2 − n

]
. (2.37)

This will serve in the following analytical derivations.

2.2.3 ground-state energy and magnetization

The quadratic part of the Hamiltonian given by Eq. (2.30) can be written as follows
in terms of the harmonic spin-wave modes ϵik:

1

2

∑
k

Ŷ †
kΩkŶk =

∑
k

n∑
i=1

ϵik

(
β†
k,iβk,i +

1

2

)
, (2.38)

The ground state of the system corresponding to the vacuum of excitations, we have
the following expression for the total ground-state energy:

Egs = −NJS(S + 1)−NJS2h2n+
1

2

∑
k,i

ϵik = Ecl +∆Eq . (2.39)

The magnetization per site m is deduced from Eq. (2.39) through Eq. (2.16). Let me
write the expression in terms of the dimensionless field h = H/(2nJS):

m = hS − 1

2

1

N

1

n

∑
k,i

∂

∂h

(
ϵik
2JS

)
. (2.40)

The eigenvalue problem of Eq. (2.32) may now be solved explicitly and independently
for the kagome and pyrochlore lattices.
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2.3 The kagome lattice

The kagome lattice is a 2D lattice of corner-sharing triangles, such that each lat-
tice site is shared by 2 triangles, one up-pointing and the other down-pointing (see
pink and blue triangles on Fig (2.4), respectively). As I said in section 2.1, the
nearest-neighbor Heisenberg model on the kagome lattice has an extensive classical

Figure 2.4: The kagome lattice with a 3-sublattice
structure. The elementary unit cell contains a site
of each sublattice a, b and c.

ground-state degeneracy. This
is related to the fact that the
Hamiltonian can be described as
a sum over local Hamiltonians
on elementary triangular units of
n = 3 sites, see Eq. (2.4). The
classical ground-state constraint
given by Eq. (2.8) must be veri-
fied on each triangle:

S△ =
H

2J
, (2.41)

where H is the applied magnetic
field and S△ is the total spin on
a triangle, that is, the sum of the
3 spins of the triangle.

When we restrict to coplanar orderings, the above constraint on a single triangle
leaves one accidental continuous degree of freedom. Then for a given set of 3 coplanar
vectors Sa, Sb and Sc that satisfy Eq. (2.41), classical ground states are constructed
by imposing that on each triangle there is one spin of each orientation a, b, c. There
are many such coverings - which may exhibit LRO or not - but two are special: the
Q = 0 and

√
3 ×

√
3 ordered structures. Their ordering wave-vectors correspond to

high symmetry points of the Brillouin zone, namely the Γ and K points, respectively.
They are also the two structures that sustain LRO with the smallest magnetic unit cell
size (3 and 9 sites, respectively).

It has been shown previously that among the classically degenerate coplanar con-
figurations, the states favored by quantum fluctuations are the Y and V states for the
low-field and high-field regions, respectively [14, 38, 84]. Those states will be described
in more details later on. It is important to note however, that those two states do
accommodate a collinear spin arrangement, which precisely corresponds to the plateau
state. Furthermore, it was found that the Q = 0 order is favored over the

√
3 ×

√
3

[84]. We thus take this as our starting point to the spin wave expansion. The final
geometry is shown on Fig. (2.4).

I remind the reader that when Q = 0, each elementary triangle has the exact
same spin structure, with spins of a same sublattice placed on the same corner of the
plaquette. Then the magnetic unit cell is exactly one triangle of a given kind, let
us say for example the down-pointing (blue) triangles on Fig. (2.4). We only need
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to define n = 3 sublattices a, b, c, all the spins of a given sublattice having the same
orientation. To each sublattice is attributed a different bosonic species. The spin-wave
Hamiltonian is thus expressed in terms of the 3 corresponding sets of bosonic creation
and annihilation operators a

(†)
k , b

(†)
k , c

(†)
k . Each unit cell is located in the lattice by a

vector Rc which is a combination of the translation vectors α1 and α2, as given below:

Rc =n1α1 + n2α2 , n1, n2 ∈ Z ,

α1 =
a

2

(
1,
√
3
)
, (2.42)

α2 =
a

2

(
1,−

√
3
)
,

in which a is the characteristic length of the lattice. We also define α3 = −(α2 +α1).
Note that this structure can be seen as a triangular superlattice of magnetic cells.
A given spin site is completely specified by its position R and its sublattice index
α ∈ {a, b, c}: Si = SR,α. Each spin SR,α has four nearest neighbors, two of sublattice
β located at positions R ± rαβ, and two of sublattice γ located at positions R ± rαγ
(with α ̸= β ̸= γ). The displacement vectors are given by:

rab =α1/2 = a/4(1,
√
3) ,

rbc =α3/2 = a/2(−1, 0) , (2.43)

rca =α2/2 = a/4(1,−
√
3) .

They are to be substituted into the general Hamiltonian given in Eq. (2.17).

2.3.1 Spin-wave spectrum of an arbitrary coplanar state

We will now explicitly search for the 3 eigenvalues ϵ2ik of the 3× 3 matrix Γk = Σk∆k

(see Eq. (2.32)), in order to obtain the harmonic spin-wave spectrum. For the sake of
simplicity, we define the following:

C1 = Cbc = cos (k · rbc) t1 = tbc = cos θbc
C2 = Cca = cos (k · rca) , t2 = tca = cos θca .
C3 = Cab = cos (k · rab) t3 = tab = cos θab

(2.44)

From Eq. (2.33), the matrices ∆k and Σk are given by:

∆k = 2JS

 1 C3t3 C2t2
C3t3 1 C1t1
C2t2 C1t1 1

 , Σk = 2JS

 1 C3 C2
C3 1 C1
C2 C1 1

 . (2.45)

To find the eigenvalues, we simply use the characteristic polynomial method. We want
to find the roots of the polynomial p(λ) defined as:

p(λ) = det(Γk − λ · I3) .
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Then the root equation is of order 3 in λ:

p(λ) = −λ3 + bλ2 + cλ+ d = 0 , (2.46)

with the following coefficients:

b =Γaa + Γbb + Γcc = Tr(Γk) ,

c =

̸=∑
α,β

(
ΓααΓββ − ΓαβΓβα

)
, (2.47)

d =det (Γk) .

First of all, we notice that the determinant of Σk vanishes. This comes from the
fact that the unit cells are closed loops, with rab + rbc + rca = 0. Indeed, we have
rbc = −(rab + rca), which induces:

C1 = C2C3 − S2S3 , (2.48)

where Si = sin(k · ri). Using this relation, one easily shows that the determinant of Σk

is given by:
det (Σk)

(2JS)3
= 1 + 2C1C2C3 − C2

1 − C2
2 − C2

3 = 0 . (2.49)

The relation det(AB) = det(A) det(B) implies det (Γk) = 0. Since the determinant
of a matrix is the product of its eigenvalues, we conclude that at least one of the
eigenvalues of our system is equal to 0, which simplifies the diagonalization process
further. Indeed, the root equation to solve becomes:

p(λ) = −λ(λ2 − bλ+ c) = −λ.p′(λ) = 0 , (2.50)

of which the 3 roots are λ0k = 0 and the two roots λ±k of the polynomial p′(λ). Note that
this property is true for all values of k and h, such that there is a completely flat band
of zero energy in the harmonic spin-wave spectrum of the kagome Heinseberg AFM
in field, at any field value up to saturation. This feature remains true for any Q = 0
coplanar classical ground state. Indeed, it is completely encoded in Σk, which only
contains information on the geometry of the lattice but not on the relative orientations
of the spins in a triangle. This full band of zero energy is not protected by the Goldstone
theorem and is an artefact of the harmonic approximation. It should in principle
acquire dispersion, or at least become gapped when one includes higher-order processes.
One should understand this as the signature of the extensive classical ground-state
degeneracy in the harmonic spin-wave spectrum.

The problem thus reduces to solving the following quadratic equation:

p′(λ) = λ2 − bλ+ c = 0 , (2.51)
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of which the determinant is given by:

∆ = b2 + 4c ,

where b and c are given in Eq. (2.47). After explicitly substituting the matrix coeffi-
cients given in Eqs. (2.35, 2.36), and making use of Eq. (2.49), we obtain, in terms of
the Ci and ti variables introduced in Eq. (2.44):

∆

(2JS)4
=1 + 8C1C2C3 (1 + χ123) + 4

3∑
i=1

C2
i ti(1 + ti) , (2.52)

where we defined
χ123 = t1 + t2 + t3 + t1t2 + t2t3 + t3t1 . (2.53)

The two roots λ±k of Eq. (2.51) are then given by:

λ±k
(2JS)2

=
1

2

3 + 2
3∑

i=1

C2
i ti +±

√
∆/(2JS)4

 . (2.54)

The corresponding spin-wave modes are finally:

ϵ±k =
{
λ±k
}1/2

. (2.55)

To summarize, the kagome Heisenberg AFM withQ = 0 has 3 spin-wave modes. In the
harmonic spin-wave approximation, one of these modes has a completely flat, gapless
dispersion ϵ0k = 0. The two remaining modes ϵ±k are given by Eqs. (2.52-2.55).

So far, there is no explicit dependency with respect to the magnetic field strength
h. The only (implicit) mention of h resides in the fact that we assumed the classical
ground-state constraint of Eq. (2.8) to be verified. The expressions derived above are
thus in principle applicable to any coplanar classical ground state with Q = 0. The
explicit dependency with respect to field h of the spectrum of a specific classical ground
state is contained in the expressions for the azimutal canting angles θα of the spins in
that ground state - and consequently, in the ti variables.

2.3.2 The Y and V states

At H = 0, the constraint of Eq. (2.41), required to minimize the Hamiltonian, reduces
to the condition that the sum of all spins on a given triangle vanishes (S△ = 0). The
coplanar state that satisfies this constraint, is the 120◦ structure, where each spin of
the triangle sustains a 120◦ opening angle with the two others. When H is finite, the
spins cant towards the magnetic field to gain energy, so as to fulfill the constraint of
Eq. (2.41), but this canting can be done in several ways. As quantum fluctuations
select coplanar states, we assume the spins to lie in the z0x0 plane during the whole
magnetization process. The classical ground states favoured by quantum fluctuations
for the kagome lattice in field are the coplanar Y and V states. These two configurations
are shown on Fig. (2.5).

41



Figure 2.5: Classical ground-state spin configurations on a plaquette for the kagome
Heisenberg AFM in magnetic field. From left to right are shown the low-field Y state,
the collinear plateau uud state and the high-field V state.

The Y state

In the low-field region, the system is in the Y state (left panel on Fig. (2.5)): one spin
(say of sublattice a) remains antiparallel to the field, while the two others cant towards
the field with a symmetric angle ±θY . Then the classical constraint of Eq. (2.14)
implies:

2 cos θY − 1 = 3h⇒ cos θY =
3h+ 1

2
. (2.56)

We have thus:

cos θa =− 1 , (2.57)

cos θb = cos θc =cos θY .

The constraint of Eq. (2.15) is naturally satisfied from the axial symmetry of the
structure with the z0 axis.

Since we have cos θY ≤ 1, the Y state is only stable for 0 ≤ h ≤ 1/3. At the critical
field h = 1/3, the two spins of sublattice b and c are completely parallel along the field,
while the spin of sublattice a is still completely antiparallel: it is the up-up-down (uud)
collinear state (middle panel of Fig. (2.5)). This state is of fractional magnetization
m = 1/3, as 1/3 of the spins of the lattice is pointing down and 2/3 is pointing up.

The V state

At higher fields, the antiparallel spin starts canting as well towards the field in order
to keep satisfying the constraint of Eq. (2.14). This canting induces a loss of the axial
symmetry, such that the other two spins need to compensate in order to satisfy the
constraint on the sines (see Eq. (2.15)). This is the V state (right panel of Fig. (2.5)),
where one of the spins has a canting angle θV 1 (say of sublattice a), while the other
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two spins sustain an angle θV 2. This configuration maintains some collinearity, which
as we know is favored by quantum fluctuations. We have from Eq. (2.14):

2 cos θV 2 + cos θV 1 = 3h⇒ cos θV 1 = 3h− 2 cos θV 2 . (2.58)

From Eq. (2.15):

sin θV 1 = 2 sin θV 2 ⇒ sin2 θV 1 = 4 sin2 θV 2

⇒4 cos2 θV 2 = 3 + cos2 θV 1 . (2.59)

Substituting Eq. (2.58) into Eq. (2.59), one obtains finally:

cos θV 1 =
3h2 − 1

2h
, cos θV 2 =

3h2 + 1

4h
. (2.60)

We have thus:

cos θa =cos θV 1 , (2.61)

cos θb = cos θc =cos θV 2 .

The requirement −1 ≤ cos θV i ≤ 1 makes this configuration physically realisable only
for the high-field region 1/3 ≤ h ≤ 1. At saturation (h = hsat = 1), all the spins of the
lattice are aligned with the field in the fully polarized ferromagnetic (FM) state. Note
that at the critical field h = 1/3, the V state is in the collinear uud configuration.

2.3.3 Specific spin-wave spectra

The Y and V states are our classical starting points to the spin-wave expansion, and
the explicit dependency of the spin-wave spectrum given by Eq. (2.54) with respect to
magnetic field h will come from the angles given in Eq. (2.56) and Eq. (2.60). We get
expressions for the opening angles ti defined in Eq. (2.44), which are then substituted
into Eqs. (2.52-2.55) to obtain analytical expressions for the spectra ϵ±k . First, let us
notice the following:

t1t2 + t2t3 + t3t1 =
1

2

[
(t1 + t2 + t3)

2 − t21 − t22 − t23

]
. (2.62)

From Eq. (2.37), this can be written as:

t1t2 + t2t3 + t3t1 =
1

2

[
1

4

(
(3h)2 − 3

)2 − t21 − t22 − t23

]
. (2.63)

Then the expression for χ123 given in Eq. (2.53) becomes:

χ123 =
1

8

[(
(nh)2 − 1

)2 − 4
(
1 + t21 + t22 + t23

)]
(2.64)
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We can thus rewrite Eq.(2.52) as:

∆

(2JS)4
= 1 + C1C2C3

[(
(3h)2 − 1

)2 − 4
(
t21 + t22 + t23 − 1

)]
+ 4

3∑
i=1

C2
i ti(1 + ti) . (2.65)

Analytical expressions for the non-zero energy modes ϵ±k of the magnon spectrum are
now derived independently for the Y and V states.

The Y state in the low-field region

From Eqs. (2.56 - 2.57), and remembering the definitions of ti opening angles given in
Eq. (2.44), we have:

t1 =(3h+ 1)2/2− 1 ,

t2 =t3 = −(3h+ 1)/2 . (2.66)

Substituting these expressions into Eq. (2.65), we obtain:

∆Y (h)

(2JS)4
= 1 + 2C1C2C3(3h+ 1)2(1− 6h) + C2

1(3h+ 1)2
[
(3h+ 1)2 − 2

]
+
(
C2
2 + C2

3

)
(3h+ 1)(3h− 1) . (2.67)

We now make use of the following relation, which is directly equivalent to Eq. (2.49):

2C1C2C3 = C2
1 + C2

2 + C2
3 − 1 . (2.68)

Substituting Eq. (2.68) into Eq. (2.67), we get:

∆Y (h)

(2JS)4
= 9h2

{
C2
1(3h+ 1)2 + 2(3h+ 1)

[
1−

(
C2
2 + C2

3

)]
+ 1

}
= 9h2δY (h) . (2.69)

The two eigenvalues λ±Y k are given by Eq. (2.54):

λ±Y k

(2JS)2
=
1

2

{
C2
1(3h+ 1)2 −

(
C2
2 + C2

3

)
(3h+ 1) + 3− 2C2

1 ± 3h
√
δY (h)

}
.

Finally, the two dispersive magnon modes ϵ±Y k are obtained by taking the square root
of λ±Y k (relation of Eq. (2.55)):

ϵ±Y k

2JS
=

√
2

2

{
C2
1(3h+ 1)2 −

(
C2
2 + C2

3

)
(3h+ 1) + 3− 2C2

1 ± 3h
√
δY (h)

}1/2

. (2.70)

From the above explicit expression of the spin-wave modes, one can finally compute the
harmonic ground-state energy correction of Eq. (2.39), and the corrected magnetization
of Eq. (2.40). For the sake of completeness, let me now express explicitly the derivative
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of λ±Y k with h, which is needed to evaluate the expression for the magnetization of
Eq. (2.40):

∂

∂h

[
λ±Y k

(2JS)2

]
=

3

2

{
2C2

1(3h+ 1)−
(
C2
2 + C2

3

)
± fY (h)√

δY (h)

}
, (2.71)

where I defined the function fY (h) as follows:

fY (h) = C2
1(3h+ 1)(6h+ 1)−

(
C2
2 + C2

3

)
(9h+ 2) + 9h+ 3 . (2.72)

The V state in the high-field region

From Eqs. (2.60 - 2.61), we have for the ti variables in the V state:

t1 =1 ,

t2 =t3 = (9h2 − 5)/4 . (2.73)

This has been obtained using the relations between sines given by the classical ground-
state constraint of Eq. (2.15):

cos θca = cos (θV 1 + θV 2)

= cos θV 1 cos θV 2 − 2 sin2 θV 2

= cos θV 2 (cos θV 1 + 2 cos θV 2)− 2 .

We now substitute the expressions of Eq. (2.73) into Eq. (2.65). Making use of
Eq. (2.68) again, we get:

∆V (h)

(2JS)4
=

9

4

[
C2
1

(
3h2 + 1

)2
+ 2

(
C2
2 + C2

3

) (
3h2 + 1

) (
3h2 − 1

)
−
(
3h2 − 1

) (
3h2 + 3

) ]
=

9

4
δV (h) . (2.74)

From Eq. (2.54) we obtain:

λ±V k

(2JS)2
=

1

4

{
6 + 4C2

1 − 5
(
C2
2 + C2

3

)
+ 9h2

(
C2
2 + C2

3

)
± 3
√
δV (h)

}
. (2.75)

The square root of the above expression finally gives the expressions for the two non-
zero magnon modes ϵ±V k:

ϵ±V k

2JS
=

1

2

{
6 + 4C2

1 − 5
(
C2
2 + C2

3

)
+ 9h2

(
C2
2 + C2

3

)
± 3
√
δV (h)

}1/2

. (2.76)

The derivative of λ±V k with respect to h is given below for completeness:

∂

∂h

[
λ±V k

(2JS)2

]
=

9h

2

{
C2
2 + C2

3 ±
(3h2 + 1)

(
C2
1 − 1

)
+ 6h2

(
C2
2 + C2

3

)√
δV (h)

}
. (2.77)
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2.3.4 Magnetization curve

From the above analytical expressions for the harmonic spin-wave spectrum of the
kagome Heisenberg AFM in the Y and V phases, it is now possible to compute the
quantum correction ∆Eq to the ground-state energy. We define the normalized energy
correction per spin ∆eq as:

∆eq =
∆Eq

NJS
= −1 +

1

N

∑
k,i

ϵik
2JS

, (2.78)

where the last equality readily follows from Eq. (2.39). The integral is performed using
standard Monte-Carlo integration over the first Brillouin zone of the kagome lattice.

The top panel of Figure 2.6 shows ∆eq as a function of the applied magnetic field
h. For h ≤ hc = 1/3, the classical ground state is the Y state and one uses Eq. (2.70)
for the spectrum ϵik, whereas for hc ≤ h ≤ 1, the system is in the V state and one uses
Eq. (2.76). We see a clear cusp in the zero-point energy at the critical field hc = 1/3,
which indicates a discontinuity in the first derivative, that is, the magnetization. The
quantum corrections are suppressed at saturation field.

From Eq. (2.40), one can now obtain the magnetization curve for the Y and V
states. We remind the reader of the relation of Eq. (2.55). The derivative of λ±k
is given by Eqs. (2.71, 2.72) for the Y state, and Eq. (2.77) for the V state. The
integral in Eq. (2.40) is computed using standard Monte Carlo integration over the
first Brillouin zone. The resulting magnetization curve is shown on the bottom panel
of Fig. (2.6) for S = 1. We used NMC = 4 · 106 Monte-Carlo points to compute this
curve.

The magnetization diverges in the Y and V states in the limit h → 1/3. As a
consequence, a big discontinuity in the form of an infinite negative jump is expected
from the LSWT calculation. Such a behaviour is obviously nonphysical and demon-
strates a failure of LSWT to correctly predict the magnetization close to the classical
phase transition between the two states. This failure can however be corrected by a
phenomenological argument. Indeed, we know that we expect a magnetization plateau
around hc, which is the result of the stabilization over a wide field range of the uud
collinear state. Since the collinear phase restores the U(1) symmetry of the Hamilto-
nian, as opposed to the surrounding canted phases, Sz

tot is conserved in the uud phase
and the magnetization remains of constant value m = 1/3. One can therefore simply
cut the magnetization curve at m = 1/3 to obtain the final magnetization curve [46]
(purple line on the bottom panel of Fig. (2.6)).

With this approach, the boundary fields at which the plateau state appears and
disappears are determined by the intersection of the analytical curves and m = 1/3.
The values for the plateau field boundaries as a function of 1/S have been reported on
Fig. (2.7). As is clearly seen, the plateau width decreases with increasing spin length
S, and ultimately vanishes completely in the classical limit S → ∞. Furthermore, the
extent of the plateau phase appears to be asymmetrical with respect to the critical
field h = 1/3. Indeed, the plateau phase extends further to the high field region inside
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Figure 2.6: Quantum correction ∆eq to the ground-state energy and magnetization
curve of the spin-1 kagome Heisenberg AFM as a function of magnetic field h = H/Hsat.
In the magnetization plot, dashed lines show the magnetization obtained within linear
spin-wave theory in the Y and V states. The purple line shows the final magnetization
curve. The arrows depict the spin configuration in each phase.

the V phase, than to the low-field region. Note that there is a clear magnetization
jump upon saturation at the end of the magnetization curve. This is directly related
to the suppression of quantum fluctuations in the polarized state, which becomes the
true quantum ground state when h ≥ 1. The height δm of this jump is surprisingly
close to the value predicted theoretically from the condensation of localized magnons
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Figure 2.7: Field boundaries hc1 and hc2 of the 1/3-magnetization plateau in the kagome
Heisenberg AFM, as a function of inverse spin. The dashed light brown line shows
hc = 1/3 as a guide to the eye.

right below saturation field [49]:

δm = 1/(9S) . (2.79)

However, let us not draw any definitive conclusion on whether these two jumps are
related or not at the moment. Indeed, the description of a magnon crystal falls beyond
the scope of semiclassical SWT.

Note as well that the magnetization curve acquires an upward curvature due to
the gradual suppression of spin reduction towards saturation [29]. This is clearly seen
on Fig. (2.6), at least in the low-field region. As a result, the magnetic susceptibility
at h → 0 is also renormalized by the effect of quantum fluctuations. Within the
linear spin-wave approximation, this renormalization appears as a 1/S correction to
the classical susceptibility χcl = 1/(6J). This correction was estimated by fitting the
quantum correction to the magnetization towards h → 0, and is given below for the
sake of completeness:

χ =
1

6J

(
1− 0.1890(1)/S

)
. (2.80)
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2.4 The pyrochlore lattice

The pyrochlore lattice is a 3D spin lattice of corner-sharing tetrahedra, see Fig. (2.8).
Each lattice site has 6 nearest neighbors and is shared between 2 adjacent tetrahedra
of opposite orientation (blue and pink tetrahedra on Fig. (2.8)). Due to this corner-

Figure 2.8: The pyrochlore lattice with a 4-
sublattice structure. The elementary unit
cell contains a site of each sublattice a, b, c
and d.

sharing nature, the Heisenberg Hamil-
tonian can be written as a sum over
local Hamiltonians on each tetrahedron
in the fashion of Eq. (2.4). Classical
ground states are thus only constrained
by Eq. (2.8) on each tetrahedron:

St =
H

2J
, (2.81)

where H is the applied magnetic field and
St is the local spin variable, that is, the
sum of the 4 spins of the tetrahedron.
So the minimal unit cell must contain at
least n = 4 sites.

Once again, we focus solely on copla-
nar structures, as being the best candi-
dates for quantum OBD selection. For a
given tetrahedron in the pyrochlore lat-

tice, there exists infinitely many possible coplanar arrangements that satisfy the con-
straint of Eq. (2.81). The ones selected by quantum fluctuations are expected to max-
imize the collinearity of spins and also to allow for fully collinear configurations. In
first approximation, the action of quantum or thermal fluctuations can be described by
an effective negative biquadratic term in the Hamiltonian. Penc and collaborators [40]
have shown that such a biquadratic interaction stabilizes a Y phase and two different
V phases, similarly as in the kagome lattice. Note that in [40], this was done to study
the effect of spin-lattice coupling in the stabilization of the 1/2 magnetization plateau.
Details about the Y and V phases are given later on. Let me only stress for now that a
collinear state can exist in the Y phase and one of the V phases. This collinear phase
precisely corresponds to the plateau state.

Even if the spins orientations are known in one tetrahedron, there remains an
extensive classical degeneracy related to the locations of these spins in neighboring
tetrahedra, similar to the kagome case. Indeed, let us say that we have a set of 4 spin
vectors Sa, Sb, Sc and Sd that verify Eq. (2.81). Then a classical ground state can
be constructed by imposing that all tetrahedra of the lattice contain one spin of each
orientation a, b, c and d 2. This ground-state construction can be done in many ways,

2Note that contrary to the kagome lattice, it is also possible to construct ground states in which a
different set of four spins is present in different tetrahedra, even with the coplanarity restriction.
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and if we have LRO, the relative orientation of adjacent tetrahedra is encoded in the
ordering wave-vector Q.

The ordered structure with smallest magnetic unit cell corresponds to Q = 0. In
that case, all the blue tetrahedra are identical, meaning that on each of them, spins
of same orientations are placed at the same position. The magnetic unit cell then
corresponds to one tetrahedron of one kind - say blue tetrahedra on Fig. (2.8) - and
contains thus n = 4 sites. This means that we can use 4 sublattices to describe our
lattice, which correspond to the 4 spin orientations a, b, c and d. To each sublattice
is attributed a different bosonic species. The spin-wave Hamiltonian is thus expressed
in terms of the 4 corresponding sets of bosonic creation and annihilation operators
a
(†)
k , b

(†)
k , c

(†)
k , d

(†)
k . The position Rc of a unit cell is given by:

Rc =n1α1 + n2α2 + n3α3 , n1, n2, n3 ∈ Z ,

α1 =
a

2
(0, 1, 1) , (2.82)

α2 =
a

2
(1, 0, 1) ,

α3 =− a

2
(1, 1, 0) , (2.83)

a being the characteristic length of the lattice. Note that the structure can be seen as
an fcc superlattice of tetrahedral magnetic unit cells. A spin Si is fully specified by its
position R and its sublattice index α ∈ {a, b, c, d}: Si = SR,α. A given spin SR,α has
6 nearest neighbors, two of all other sublattices β ̸= α, located at symmetric positions
R± rαβ. The lattice thus has the center-symmetric property as depicted in Fig. (2.3).
This allows us to write the Hamiltonian in the fashion of Eq. (2.17). The displacement
vectors rαβ between nearest-neighbor spins of different sublattices are given by:

rab = a/4(0, 1, 1) , rbc = a/4(1,−1, 0) ,
rac = a/4(1, 0, 1) , rbd = a/4(1, 0,−1) ,
rad = a/4(1, 1, 0) , rcd = a/4(0, 1,−1) .

(2.84)

These vectors are substituted inside the spin-wave matrix Hk, of which the coefficients
are given by Eqs. ( 2.26 - 2.27). Then we proceed to the diagonalization of the reduced
4× 4 system Γk, of which the coefficients are given by Eqs. (2.35, 2.36).

2.4.1 Spin-wave spectrum of an arbitrary coplanar state

We are looking for the 4 eigenvalues λik of the 4× 4 matrix Γk = ∆kΣk. Once again,
for the sake of simplicity, we define the following:

C1 = Cab = cos(k · rab) t1 = tab = cos θab
C2 = Cac = cos(k · rac) t2 = tac = cos θac
C3 = Cad = cos(k · rad) , t3 = tad = cos θad .
C4 = Cbc = cos(k · rbc) t4 = tbc = cos θbc
C5 = Cbd = cos(k · rbd) t5 = tbd = cos θbd
C6 = Ccd = cos(k · rcd) t6 = tcd = cos θcd

(2.85)
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These links are represented in Fig. (2.9) as colored numbers. The coefficients of the
matrices ∆k and Σk are then given by Eq. (2.33):

∆k = 2JS


1 C1t1 C2t2 C3t3

C1t1 1 C4t4 C5t5
C2t2 C4t4 1 C6t6
C3t3 C5t5 C6t6 1

 , Σk = 2JS


1 C1 C2 C3
C1 1 C4 C5
C2 C4 1 C6
C3 C5 C6 1

 .

(2.86)
As was the case for the kagome lattice, one can show that the determinant of Σk

vanishes identically. In the pyrochlore lattice, it is even possible to show that not only

Figure 2.9: One unit cell
(tetrahedron).

one, but actually two of the 4 eigenvalues of Σk vanish.
From the relation Γk = Σk · ∆k, this property directly
transfers to Γk. This induces the presence of two full flat,
gapless modes of the magnon spectrum, at any field value.
We stress that the matrix Σk only involves geometrical
terms, and no information on spin orientations or magnetic
field, such that this property is a geometrical property of
the pyrochlore lattice with Q = 0. Similarly to the kagome
lattice, it is a signature of the classical ground-state degen-
eracy which is here even larger. Let us now proceed to
finding the remaining two eigenvalues of Γk. Taking into

account the cancellation of two of the roots, the characteristic polynomial p(λ) of Γk

is given by:

p(λ) =det (Γk − λ · I4)
=λ2

[
λ2 − bλ+ c

]
= λ2 · p′(λ) , (2.87)

where we defined p′(λ) = λ2 − bλ+ c, and the b and c coefficients are given by:

b =Γaa + Γbb + Γcc + Γdd = Tr(Γk) , (2.88)

c =

̸=∑
α,β

(
ΓααΓββ − ΓαβΓβα

)
.

The quartic polynomial of Eq. (2.87) has two vanishing roots, as said just above, and
two non-vanishing roots which are the solutions of the quadratic equation p′(λ) = 0.
The determinant of this polynomial is given by:

∆ = b2 − 4c .

It is quite cumbersome to derive the analytical expression for ∆ in a compact form,
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and we give here only the result:

∆

(2JS)4
= 4

{ 6∑
i=1

C2
i

(
1 + t2i

)
− 2 + 2

∑
△

C△χ△

+ 2 (t1t6 · ζ16 + t2t5 · ζ25 + t3t4 · ζ34)
}
. (2.89)

The △ symbol in the sum at the end of the top line, refers to the ensemble of the 4
triangular faces of the tetrahedron (ijk) ∈ {(124), (135), (236), (456)}, see Fig. (2.9).
For such a triangle (ijk), we defined:

C△ =CiCjCk , (2.90)

χ△ =χijk = ti + tj + tk + titj + tjtk + tkti . (2.91)

The ζij variables are defined as follows:

ζ16 = C1C6 (C2C5 + C3C4 − C1C6) , (2.92)

and ζ25 (resp. ζ34) is obtained by swapping (2, 5) indices (resp. (3, 4) indices) with
(1, 6) indices in Eq. (2.92). Note that the pairs (1, 6), (2, 5) and (3, 4) appearing as
indices of ζij variables correspond to the 3 pairs of opposite bonds in the tetrahedron
(opposite in the sense that they have no common site). They are shown as bonds of
the same color in Fig. (2.9). The two non-zero roots of Eq. (2.87) have the following
form:

λ±k
(2JS)2

=
1

2

4 + 2
6∑

i=1

C2
i ti ±

√
∆/(2JS)4

 . (2.93)

The corresponding spin-wave modes are finally given by:

ϵ±k =
{
λ±k
}1/2

. (2.94)

The pyrochlore Heisenberg AFM with Q = 0 has 4 spin-wave modes. In the harmonic
approximation, two of these modes are dispersionless and of zero energy ϵ0k = 0. As
was the case in the kagome lattice, this is an artefact of the harmonic approximation,
and these zero-energy modes are unprotected by the Goldstone theorem. They are
related to the extensive classical ground-state degeneracy. The spectra ϵ±k of the two
remaining modes are given by Eqs. (2.89-2.94).

These expressions do not show any explicit dependency with respect to the magnetic
field strength h so far. The above derivation is thus applicable to any coplanar classical
ground state with Q = 0. The explicit dependency with respect to field h will be
contained in the azimutal canting angles θα of the spins in the classical ground state
- and consequently, in the ti variables defined in Eq. (2.85). Let me give the two
relations, which are useful in the upcoming analytical derivation of the spectra:

2C△ = C2
i + C2

j + C2
k − 1 ⇒

∑
△

C△ =
∑
i

C2
i − 2 . (2.95)
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This first equality is shown in the same way as was Eq. (2.49) in the kagome lattice.
Also we have, using the above and from cancellation of the determinant of Σk:

det(Σk) =0 = 1−
∑
i

C2
i + 2

∑
△

C△ − (ζ16 + ζ25 + ζ34)

⇒ζ16 + ζ25 + ζ34 =
∑
i

C2
i − 3 . (2.96)

2.4.2 The Y and V states

As for the kagome lattice, in zero field, the constraint of Eq. (2.8) imposes that the
total spin Sb vanishes on each frustrated block. Unlike in the kagome lattice however,
where this could be done uniquely - modulo global rotation - with the 120◦ structure
on a triangular cell, here there remains 2 continuous accidental degrees of freedom.
When one restricts to coplanar configurations, this reduces to one continuous degree
of freedom. Indeed, any two pairs of antiparallel spins with arbitrary orientations
satisfy the constraint of vanishing total spin on a tetrahedron. The continuous degree
of freedom is set by the relative angle ϕ between the two orientations. Among all
these configurations, only one is fully collinear. It is the collinear up-up-down-down
(uudd) state where two spins are pointing in a given direction (say spins of sublattices
a and b), and the two others point in the opposite direction (sublattices c and d). It
corresponds to the situation ϕ = 0 or ϕ = π, and is expected to be selected by quantum
fluctuations.

When H is increased, the spins progressively cant toward the field to keep satis-
fying Eq. (2.8). This increases even further the degree of degeneracy, even with the
requirement of a coplanar spin configuration. The classical states favored by quantum
or thermal fluctuations can in principle be guessed by adding a negative biquadratic
exchange term in the Hamiltonian, and solving the classical minimization problem at
the scale of one tetrahedron. From [40], the selected configurations are two different
V states and a Y state, all being coplanar. Fig. (2.10) shows a representation of these
configurations on a tetrahedron. Let me now describe them in more details.

The 22V state

The most intuitive canting configuration is the symmetric 22V state, as it keeps some
symmetry of the initial collinear configuration at H = 0. Indeed, in the 22V state,
spins are paired, and spins inside a given pair have the same orientation. Namely, we
chose that the spins a and b cant toward the magnetic field direction z0 with a given
angle θ22V , while the spins c and d cant towards the field with the opposite angle −θ22V .
It is shown on the bottom panel of Fig. (2.10). The classical constraint of Eq. (2.14)
implies:

cos θ22V = h . (2.97)
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Figure 2.10: Coplanar ground-state spin configurations of the pyrochlore Heisenberg
AFM in field. The top row shows (from left to right) the 211Y, the uuud and the 31V
configurations, while bottom row shows the 22V configuration.

Then we have:
cos θa = cos θb = cos θc = cos θd = cos θ22V . (2.98)

The constraint on the sines (Eq. (2.15)) is verified from the symmetry of this state. The
22V configuration remains a valid classical ground state over the whole magnetization
process, that is, for 0 ≤ h ≤ 1.

The 211Y state

Another possible coplanar canting configuration in low field is the 211Y state, and
is shown on the top left panel of Fig. (2.10). One of the spins (say of sublattice a)
remains antiparallel to the field, while two other spins (say sublattices c and d) are
paired together and cant towards the field with an angle θY 1. The last spin (sublattice
b) also cants towards the field with an angle −θY 2. The constraint of Eq. (2.14) on the
cosines leads to:

2 cos θY 1 + cos θY 2 − 1 = 4h⇒ cos θY 2 = 4h+ 1− 2 cos θY 1 . (2.99)

Then the constraint on the sines, given by Eq. (2.15), leads to:

2 sin θY 1 = sin θY 2 ⇒ 4 sin2 θY 1 = sin2 θY 2 ⇒ cos2 θY 2 = 4 cos2 θY 1 − 3 . (2.100)

Squaring Eq. (2.99) and substituting Eq. (2.100), one obtains finally the expression for
the two canting angles:

cos θY 1 =
4h2 + 2h+ 1

4h+ 1
, cos θY 2 =

8h2 + 4h− 1

4h+ 1
. (2.101)
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Then we have explicitly for each sublattice:

cos θa =− 1 ,

cos θb = cos θc =cos θY 1 , (2.102)

cos θd =cos θY 2 .

The condition that −1 ≤ cos θY i ≤ 1 (and choosing by convention h ≥ 0) implies
that this configuration is only a valid classical ground state in the low-field region
where 0 ≤ h ≤ 1/2. At the critical field hc = 1/2, three of the spins are pointing
along the field, while the 4th remains antiparallel to it. This is the collinear up-up-up-
down (uuud) structure shown on the top middle panel of Fig. (2.10). This collinear
configuration has the fractional magnetization m = 1/2.

The 31V state

At higher fields h ≥ hc, the antiparallel spin starts canting as well along the field in
order to keep satisfying the classical constraint of Eq. (2.8). The other three spins need
to compensate in order to satisfy the constraint on the sines (see Eq. (2.15)), and are
therefore canted as well. The collinearity of the state is maximized if these three spins
remain parallel to each other. This is the 31V state, shown on the top right panel of
Fig. (2.10). The single spin (say of sublattice a) has a canting angle θ3V 1, while the
other three spins sustain an angle θ3V 2. The constraint on cosines given by Eq. (2.14)
imposes:

3 cos θ3V 2 + cos θ3V 1 = 4h⇒ cos θ3V 1 = 4h− 3 cos θ3V 2 . (2.103)

The constraint on sines (Eq. (2.15)) gives:

3 sin θ3V 2 = sin θ3V 1 ⇒ 9 sin2 θ3V 2 = sin2 θ3V 1 ⇒ cos2 θ3V 1 = 9 cos2 θ3V 2 − 8 . (2.104)

Substituting this relation into the square of Eq. (2.103) leads to the following canting
angles:

cos θ3V 1 =
2h2 − 1

h
, cos θ3V 2 =

2h2 + 1

3h
. (2.105)

Then we have for each sublattice:

cos θa =cos θ3V 1 , (2.106)

cos θb = cos θc = cos θd =cos θ3V 2 .

The condition −1 ≤ cos θ3V i ≤ 1 implies that the 3:1V configuration is only valid in
the high field region 1/2 ≤ h ≤ 1. At saturation (h = hsat = 1), all the spins of the
lattice are aligned with the field in the fully polarized FM state. Note that at the lower
field boundary hc = 1/2, the 31V state is in the collinear uuud configuration.
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Summary

The 22V, 211Y and the 31V states are our classical starting points to the spin-wave
expansion. The 211Y and 31V states are classically stable in the low-field and high-
field regions, respectively, and become the collinear uuud state at their critical field
boundary hc = 1/2. This uuud state corresponds to the semiclassical plateau state with
fractional magnetizationmp = 1/2. The 22V state is classically stable at any field value
until saturation, and is thus competing with the 211Y and 31V states all along the
magnetization process. Note that although the 22V state retains more collinearity than
the 211Y and 22V states, it does not permit the fully collinear uuud configuration.

2.4.3 Specific spin-wave spectra

Expressions for the opening angles ti defined in Eq. (2.85) are obtained from the clas-
sical canting angles θα, see Eqs.(2.97 - 2.106). These ti variables are then substituted
into Eqs. (2.89-2.94), and one obtains analytical expressions for the spectra of the com-
peting states, which explicitly depend on h. For the sake of readability, all functions
or variables associated to the the symmetric 22V and asymmetric 31V states will be
indicated with the subscripts Vs and Va, respectively. Functions or variables associated
to the 211Y state will go with the subscript Y .

The symmetric 22V state

From Eqs. (2.97, 2.98), we have the following for the opening angles ti defined in
Eq. (2.85):

t1 = t6 = t1t6 = 1 ,
ti = t1ti = tit6 = 2h2 − 1 ,
titj = (2h2 − 1)2 ,

}
for i ∈ {2, 3, 4, 5}. (2.107)

Substituting these expressions into Eq. (2.89), we obtain:

∆Vs(h)

(2JS)4
=16h2

{(
h2 − 1

) [
5
(
ΣiC2

i − 2
)
−
(
C2
1 + C2

6

)
− 2ζ16

]
+ 4

(
ΣiC2

i − 2
)}

=16h2 · δVs(h) . (2.108)

Then the two eigenvalues λ±Vsk
are obtained from Eq. (2.93):

λ±Vsk

(2JS)2
= 2 + ΣiC2

i + 2
(
h2 − 1

) (
C2
2 + C2

3 + C2
4 + C2

5

)
± 2h

√
δVs(h) .

Finally, the two non-zero magnon modes ϵ±Vsk
are given by Eq. (2.94):

ϵ±Vsk

2JS
=

{
2 + ΣiC2

i + 2
(
h2 − 1

) (
C2
2 + C2

3 + C2
4 + C2

5

)
± 2h

√
δVs(h)

}1/2

. (2.109)
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I also give for the sake of completeness the expression for the derivative of λ±Vsk
with

respect to h, as it is useful for computing the magnetization curve from Eq. (2.40):

∂

∂h

[
λ±Vsk

(2JS)2

]
= 4h

[
ΣiC2

i −
(
C2
1 + C2

6

)]
± 2fVs(h)

δVs(h)
, (2.110)

where I defined the function fVs(h) as follows:

fVs(h) = 4
(
ΣiC2

i − 2
)
+
(
2h2 − 1

) [
5
(
ΣiC2

i − 2
)
−
(
C2
1 + C2

6

)
− 2ζ16

]
. (2.111)

The asymmetric 31V state in the high-field region

From the expressions for the canting angles of Eqs. (2.105, 2.106), we get the following
for ti variables defined in Eq. (2.85):

t4 = t5 = t6 = t4t5 = t4t6 = t5t6 = 1 ,
ti = tit4 = tit5 = tit6 =

(
8h2 − 5

)
/3 ,

titj =
[(
8h2 − 5

)
/3
]2

,

}
for i ∈ {1, 2, 3}.

(2.112)

Substituting these into Eq. (2.89), we obtain:

∆Va(h)

(2JS)4
=

64

9

{
6
(
1− h2

) (
2h2 + 1

) [
ΣiC2

i

(
2h2 + 1

)
− 6h2

+ 4
(
C2
1 + C2

2 + C2
3

) (
h2 − 1

) ]}
=

16

9
· δVa(h) . (2.113)

The two eigenvalues λ±Vak
are thus given by Eq. (2.93):

λ±Vak

(2JS)2
=

1

3

6 + 3
∑
i

C2
i + 8

(
h2 − 1

) (
C2
1 + C2

2 + C2
3

)
± 4
√
δVa(h)

 . (2.114)

The two branches of the spin-wave spectrum ϵ±Vak
are finally obtained from Eq. (2.94):

ϵ±Vak

2JS
=

1√
3

6 + 3
∑
i

C2
i + 8

(
h2 − 1

) (
C2
1 + C2

2 + C2
3

)
± 4
√
δVa(h)


1/2

. (2.115)

I give as well the derivative of λ±Vak
with respect to h:

∂

∂h

[
λ±Vak

(2JS)2

]
=

16h

3

{
C2
1 + C2

2 + C2
3 ±

fVa(h)√
δVa(h)

}
, (2.116)

where fVa(h) was defined as follows:

fVa(h) =
(
C2
4 + C2

5 + C2
6

) (
1− 4h2

)
+ 6h2

∑
i

C2
i − 3

(
1 + 2h2

)
. (2.117)
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The 211Y state in the low-field region

In the low-field 211Y state, all calculations are more cumbersome due to the low sym-
metry of this state. The expressions for opening angles ti are obtained from Eqs. (2.101,
2.102):

t6 = 1 ,

t1 = t1t6 = −
(
8h2 + 4h− 1

)
/ (4h+ 1) = −α , (2.118)

t2 = t3 = t2t6 = t3t6 = −
(
4h2 + 2h+ 1

)
/ (4h+ 1) = −β ,

t4 = t5 = t4t6 = t5t6 = 4h2 + 2h− 1 = γ .

Substituting these into Eq. (2.89) leads to very lengthy expression. After developing
the terms as a polynomial of h, we obtain:

∆Y (h)

(2JS)4
=

16

(4h+ 1)2
·
{
64h6p6 + 16h5p5 + 4h4p4 + 4h3p3 + h2p2 + hp1

}
=

16

(4h+ 1)2
· δY (h) . (2.119)

where the polynomial coefficients are given by:

p1 =Σ5
i=2C2

i − 2 [1 + ζ16] ,

p2 =Σ5
i=2C2

i + 4
(
C2
1 + C2

6

)
+ 8− 10 [1 + ζ16] ,

p3 =4C2
6 − 6

(
C2
2 + C2

3

)
+ 2

(
C2
4 + C2

5

)
+ 4 ,

p4 =12
(
C2
6 − 2C2

1

)
− 17

(
C2
2 + C2

3

)
+ 7

(
C2
4 + C2

5

)
+ 16 + 10 [1 + ζ16] , (2.120)

p5 =4
(
C2
6 − 2C2

1

)
− 5

(
C2
2 + C2

3

)
+ 7

(
C2
4 + C2

5

)
+ 4 + 2 [1 + ζ16] ,

p6 =2
(
C2
4 + C2

5

)
+ C2

6 − 1 .

The two non-zero eigenvalues λ±Y k are given by Eq. (2.93):

λ±Y k

(2JS)2
=
(
4h2 + 2h− 1

) (
Σ5

i=2C2
i

)
+ C2

1 + C2
6 + 2

− 8h(h+ 1)

4h+ 1

[
2h
(
C2
2 + C2

3

)
+ C2

1

]
±

2
√
δY (h)

4h+ 1

The magnon modes ϵ±Y k are then:

ϵ±Y k

2JS
=

{(
4h2 + 2h− 1

) (
Σ5

i=2C2
i

)
+ C2

1 + C2
6 + 2 (2.121)

− 8h(h+ 1)

4h+ 1

[
2h
(
C2
2 + C2

3

)
+ C2

1

]
±

2
√
δY (h)

4h+ 1

}1/2

.
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Finally, the derivative of λ±Y k with respect to h is:

∂

∂h

[
λ±Y k

(2JS)2

]
=

1

(4h+ 1)2

{
8h
[ (

16h2 + 12h+ 3
) (

C2
4 + C2

5

)
(2.122)

− (2h+ 1)
(
2C2

1 + C2
2 + C2

3

) ]
+ 2

(
C2
2 + C2

3 + C2
4 + C2

5 − 4C2
1

)
± fY (h)√

δY (h)

}
,

where fY (h) has been defined as:

fY (h) = 1024h6q6 + 192h5q5 + 16h4q4 + 16h3q3 + 12h2q2 + 2hq1 + q0 . (2.123)

The polynomial coefficients are given below:

q0 =− 2 + C2
2 + C2

3 + C2
4 + C2

5 − 2ζ16 ,

q1 =2 + 4
(
C2
1 + C2

6

)
−
(
C2
2 + C2

3 + C2
4 + C2

5

)
− 6ζ16 ,

q2 =4 + 4C2
6 − 6

(
C2
2 + C2

3

)
+ 2

(
C2
4 + C2

5

)
,

q3 =30 + 16C2
6 − 24C2
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(
C2
2 + C2

3

)
+ 9

(
C2
4 + C2

5

)
+ 10ζ16 , (2.124)

q4 =82 + 44C2
6 − 88C2

1 − 59
(
C2
2 + C2

3

)
+ 49

(
C2
4 + C2

5

)
+ 30ζ16 ,

q5 =4− 8C2
1 + 6C2

6 − 5
(
C2
2 + C2

3

)
+ 11

(
C2
4 + C2

5

)
+ 2ζ16 ,

q6 =2
(
C2
4 + C2

5

)
+ C2

6 − 1 .

2.4.4 Magnetization curve

From the above analytical expressions for the harmonic spin-wave spectra in the 22V,
211Y and 31V phases, it is now possible to compute the quantum correction ∆Eq

to the ground-state energy of the pyrochlore Heisenberg AFM in field. We remind
the reader of the definition of the normalized energy correction per spin ∆eq given in
Eq. (2.78). The integral is performed using standard Monte-Carlo integration over the
first Brillouin zone of the pyrochlore lattice.

The top panel of Fig. (2.11) shows ∆eq as a function of the applied magnetic field h.
The 22V state has lowest energy only in the very low-field region. At some field value
h∗ ≃ 0.18, there is a phase transition to the 211Y phase, which remains the ground
state until h = 1/2. For 1/2 ≤ h ≤ 1, the system is in the 31V state. We see a clear
cusp in the zero-point energy at the critical field h = 1/2, between the 211Y and 31V
states, similar to what was seen in the kagome lattice. The quantum corrections are
suppressed at saturation field.

The magnetization curve is obtained as for the kagome lattice. We use Eqs. (2.108-
2.111) for the 22V state, Eqs. (2.113- 2.117) for the 31V state, and Eqs. (2.119-2.124)
for the 211Y state. The integral in Eq. (2.40) is obtained using standard Monte Carlo
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integration over the first Brillouin zone. The resulting magnetization curve is shown
on the bottom panel of figure 2.11 for S = 1. We used NMC = 4 · 106 Monte-Carlo
points to compute this curve.
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Figure 2.11: Quantum correction ∆eq to the ground-state energy and magnetization
curve of the spin-1 pyrochlore Heisenberg AFM as a function of magnetic field h =
H/Hsat. In the magnetization plot, dashed lines show the magnetization obtained within
linear spin-wave theory in the 22V, 211Y and 31V states. The purple line shows the
final magnetization curve. The arrows depict the spin configuration in each phase.

The magnetization diverges in the 211Y and 31V states in the limit h→ 1/2, as is
seen from the dashed lines on Fig. (2.11). Using the same argument as for the kagome
lattice, we intersect those diverging curves with the plateau valuem = 1/2 to determine
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the boundary fields of the plateau phase. Note as well that the transition between the
22V and 211Y states at h = h∗, has to be taken into account. This induces a jump of
the magnetization, since the slope of the ground-state energy is discontinuous at this
phase transition, as is seen from the top panel of Fig. (2.11). The final magnetization
curve is shown by the dark purple line. As was the case in the kagome lattice, there is
a magnetization jump upon saturation due to quantum fluctuations being suppressed
in the polarized phase. Once again, the height of the plateau resembles the height that
is predicted theoretically from the condensation of localized magnons [49, 85]:

δm = 1/(12S) . (2.125)

The 1/S correction to the susceptibility was estimated by fitting the quantum
correction to the magnetization towards h→ 0:

χ =
1

8J

(
1− 0.526(1)/S

)
, (2.126)
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Figure 2.12: Field boundaries hc1 and hc2 of the 1/3-magnetization plateau in the
pyrochlore Heisenberg AFM, as a function of inverse spin. The dashed light brown line
shows hc = 1/2 as a guide to the eye.
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where the classical susceptibility is χcl = 1/(8J). The above correction is much larger
than the correction obtained for the kagome lattice, see Eq. (2.80). This is related
to the fact that the classical ground-state degeneracy of the Heisenberg model on the
pyrochlore lattice is larger than on the kagome lattice. Note that for the extreme
quantum case S = 1/2, Eq. (2.126) even leads to a negative value of the magnetic
susceptibility at H = 0, which is of course unphysical. This could be interpreted as
the signature of a possible disordered state. Indeed, the ground state of the quantum
pyrochlore AFM might be a quantum spin liquid state [57, 86]. This result should,
however, not be taken too seriously, as no true quantitative conclusion can be reason-
ably made regarding S = 1/2 in such a highly frustrated system from linear spin-wave
theory.

The values for the plateau field boundaries as a function of 1/S have been reported
on Fig. (2.12). Once again, the plateau width decreases with increasing spin length S,
and ultimately vanishes completely in the classical limit S → ∞. The asymmetry of
the plateau phase with respect to the critical field h = 1/2, is even more striking than
in the kagome lattice, and the lower field boundary remains rather close to h = 1/2,
even at S = 1/2.
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2.5 Discussion and conclusion

In order to evaluate the efficiency of an analytical technique, it is useful to compare
its results to other available numerical results. In this aim, Fig. (2.13) shows the
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0.3
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Harmonic Spin-Wave
Tensor networks
Exact diagonalization
DMRG

Figure 2.13: Field boundaries hc1 and hc2 of the 1/3-magnetization plateau in the
kagome Heisenberg AFM, as a function of inverse spin. The purple points with purple
curve were obtained in the present work from harmonic spin-wave theory. The blue
triangles, red circles and orange diamonds display numerical results obtained by the
Tensor Networks (iPEPS) in [58], the exact diagonalization of finite-size clusters in
[47, 87], and the DMRG calculations in [30], respectively.

plateau field boundaries for the kagome lattice, as a function of 1/S, obtained from
various numerical techniques, including the present work. The first observation that we
make is that the plateau width decreases with increasing S, until ultimately vanishing
completely for the classical limit S = ∞. This is because the magnetization plateau
is a quantum effect. Indeed, it is stabilized quantum fluctuations, which vanish in the
classical limit. In the classical limit, the uud state is only stable at h = 1/3, and the
two field boundaries indeed converge exactly to this value.

The values obtained in my work using LSWT match well the numerical values for
S ≥ 1, especially the tensor networks values. For the extreme quantum case S = 1/2, it
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seems that LSWT is still efficient in estimating the lower bound of the plateau, but fails
to obtain the upper bound, which is largely overestimated. This is not surprising, as it
is well established that the plateau state for S = 1/2 is a quantum valence-bond crystal
of localized magnons with 3 resonating spin-flips on one third of all the hexagons. This
state resembles a semiclassical uud state on the

√
3 ×

√
3 structure. Because this

plateau state is intrinsically quantum, obviously it cannot be well described by SWT.
The surrounding compressible phases also probably retain a similar order and cannot
be well described by SWT on the semiclassical canted Y and V states. The quantum
tunneling required to obtain this resonating state involves 6-th order processes in the
case of S = 1/2. Higher order processes are involved to obtain the same type of state
with larger spins, which makes its stabilization less probable.

The fact that the values obtained in my work fit quite well previous numerical
values, is an encouraging perspective for the plateau boundaries found in the case of
the pyrochlore lattice as well (at least for S ≥ 1). In general, such a simple analytical
technique to study magnetization plateaus stabilized by quantum fluctuations, is very
valuable in the context of 3D systems, where numerical studies are much more limited.

2.5.1 Magnetization singularities at plateau boundaries

Quantum fluctuations are also responsible for the divergence of the the magnetization
of the surrounding canted Y and V phases at h → hc, where hc = 1/3 in the kagome
lattice, and hc = 1/2 in the pyrochlore lattice. The quantum correction to the ground-
state energy leads to a cusp at hc, as we see on the top panels of Fig (2.6) and Fig. (2.11)
for the kagome and pyrochlore lattices, respectively. When we differentiate the ground-
state energy with respect to the field, this cusp intuitively gives rise to an increasing
slope of the magnetization toward hc. The asymptotic behaviour of m close to hc is
related to the extra softness of the zero-energy modes of the collinear phase, compared
to its surrounding canted counterparts.

In an AFM, the soft modes in the collinear phase have typically a quadratic dis-
persion around the zero-energy modes, similar to what is seen in a ferromagnet:

ϵ(k) ∼ δk2 , (2.127)

where δk is the distance to the zero-energy mode. In the canted phases, the dispersion
acquires a linear component around the zero-energy modes, which increases as h goes
away from hc. We have something like:

ϵ(k) ∼
√
∆hδk2 + δk4 , (2.128)

where ∆h = |h − hc|. One can show that such a dispersion leads to the asymptotic
form:

∆m ∼ ∆h ln∆h , (2.129)

where ∆m = mcl−m. For example, see [29] for the (non-frustrated) square lattice AFM
close to saturation field, or for the (frustrated) triangular AFM close to the plateau.
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The behavior described by Eq. (2.129) is singular but non divergent, as it retains a
finite value at hc. The derivative of m goes to ∞, such that the magnetization arrives
to the plateau with an infinite slope. As the quantum correction given by Eq. (2.129)
comes with a factor 1/S compared to the classical magnetization mcl = hS, the larger
is S, the less dramatic is the divergence, which comes back to the fact that the plateau
vanishes when S → ∞.

In the case of the kagome lattice, which is highly degenerate, the situation is more
complex and the magnetization obtained from the harmonic spectrum actually diverges
at hc. Expanding the analytical expressions for the dispersive bands of the spectrum
given by Eq. (2.70) and Eq. (2.76) for the Y and V states, respectively, around the Γ
point gives the following expression:

ϵ−k
2JS

∣∣∣∣∣
k→0

≃ 2

{
3∆hκ

2
x/y +

(
κ2x − κ2y

)2}1/2

, (2.130)

where κx/y = κx for the Y state, and κx/y = κy for the V state. It is possible to
show from this asymptotic expression of the low-energy modes, that the magnetization
obtained by differentiating the ground-state energy diverges as ln∆h when ∆h → 0.
This divergent behaviour is a consequence of the remaining lines of zero-energy when
κ2x = κ2y. Indeed, due to these lines, the dimensionality of the lattice is somehow
reduced. This leads to a more singular, divergent behaviour, compared to the typical
expected behaviour of a 2D AFM. Specifically, for the Y state, we obtain for the
asymptotic behaviour of the magnetization towards hc:

m

S

∣∣∣∣
∆h→0

∼ 1

3
−∆h +

1

S
(a− b ln∆h) , (2.131)

where a and b are constant terms.
It has been argued previously that the width of the plateau ∆p = hp2 − hp1 should

vanish as 1/S as S → ∞ [46]. This perception is challenged in the present work.
Indeed, on Fig. (2.13), it is clearly seen that we have some curvature that persists even
for large values of spins. Let me give an explanation for this property. The low-field
plateau boundary hp1 is obtained by intersecting this diverging magnetization with the
value mp = 1/3, which is equivalent to solving the following equation for ∆p1:

∆p1 =
1

S

(
a− b ln∆p1

)
=
b

S
ln

(
u

∆p1

)
, (2.132)

where we defined u = ea/b. This equation is transcendental, however, in the classical
limit S → ∞, it leads to the following behavior of the critical field ∆p1:

lim
S→+∞

∆p1(S) ∼
1

S
lnS . (2.133)
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For the pyrochlore lattice, similar arguments can be made, though the expansion of the
soft modes around the Γ point is more cumbersome. It is expected however, that the
usual critical behaviour at the plateau transition is recovered when the full spin-wave
analysis would be made.

2.5.2 Summary of the chapter

Using linear spin-wave theory, I have studied the fractional magnetization plateaus
appearing at 1/3 and 1/2 of full saturation in the nearest-neighbor Heisenberg kagome
and pyrochlore antiferromagnets, respectively. These plateaus result from the stabi-
lization of an ordered collinear phase by quantum fluctuations over a finite field range,
an archetypal example of quantum order by disorder. The spin-wave theory was not
applied to the collinear plateau phase, but rather to the surrounding canted phases,
which are classically stable in the whole field range, see Fig. (2.5) and Fig. (2.10) for
the kagome and pyrochlore lattices, respectively.

Due to the presence of full flat modes of zero energy in the harmonic spectrum in
both systems, I was able to derive analytical expressions for the spectra of canted states,
see Eq. (2.70) and Eq. (2.76) for the kagome lattice, and Eq. (2.109), Eq. (2.115) and
Eq. (2.121) for the pyrochlore lattice. From these spectra, I computed the ground-state
energy Egs with first, 1/S quantum corrections of the different canted states in the two
lattices. The magnetization curves were then derived using the following equation:

M = −∂Egs

∂H
. (2.134)

The plateau is obtained by intersecting the diverging magnetization curves of the sur-
rounding canted states with the expected m = 1/3 (resp. m = 1/2) values. The full
magnetization curves, as well as ground-state energy correction versus field, are shown
on Fig. (2.6) and Fig. (2.11) for the kagome and pyrochlore lattices, respectively.

For S > 1/2, the obtained plateau width as a function of spin compares well to avail-
able numerical data from other authors in the case of the kagome lattice, see Fig. (2.13).
This tends to confirm the efficiency of LSWT in investigating the magnetization curves
and semiclassical magnetization plateaus in frustrated quantum antiferromagnets.
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Part II
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Chapter 3

Frustration in an fcc lattice

The face-centered-cubic (fcc) lattice is one of the cubic close-packed structures, which
means that it corresponds to one of the densest ways to arrange spheres in an infinite
3D lattice. Namely, it is made of the stacking of 2D layers of close-packed spheres,

Figure 3.1: ABC stacking of
triangular layers in the fcc
close-packed structure. Green,
blue and pink spheres belong
to A, B and C layers, respec-
tively.

where each sphere sits on a vertex of a 2D triangular
lattice. Successive 2D layers are stacked in a regu-
lar ”ABC-ABC” arrangement, where the positions of
spheres in different A, B, and C layers do not over-
lap, see Fig. (3.1). As a 3D lattice, it corresponds to
4 interpenetrating cubic lattices, or to a cubic lattice
in which additional sites are inserted at the centers of
each face of the cube.

Close-packing of atoms is at the basis of the solid
state of many materials, and for that reason, elements
exhibiting an fcc crystal structure are numerous in the
periodic table (Ca, Sr, Ni, Cu, Ag, Au, Yb...). Not
only is the fcc lattice ubiquitous in nature, but many
chemical compounds crystallize in the fcc lattice as
well, making it of great experimental interest.

The Heisenberg AFM on an fcc lattice is one of the
oldest frustrated spin models [88–93]. It keeps attract-
ing significant interest because of numerous experimental realizations [94–101]. In the
following chapters, we will focus on the quantum and thermal order-by-disorder pro-
cesses at play in the quantum Heisenberg fcc antiferromagnet. The present chapter
serves as an introduction to this subject. First, I explain why the fcc Heisenberg an-
tiferromagnet is frustrated, by looking at its classical ground-state degeneracy. Then,
I focus on the description of the two collinear states within this classical ground-state
manifold. They are best candidates for the ground state selected by quantum and
thermal fluctuations. Finally, I give a brief review of the results obtained in previous
works addressing the question of OBD in this system.
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3.1 Geometrical frustration in the fcc Heisenberg

antiferromagnet

We now consider that a spin magnetic moment of length S sits on each site of the fcc
lattice. The Hamiltonian for the isotropic nearest-neighbor Heisenberg model is given
by Eq. (1.3), which we repeat here:

Ĥ = J
∑
⟨i,j⟩

Si · Sj . (3.1)

J is the exchange constant and we consider antiferromagnetic interaction, J > 0. Each
lattice site i in position Ri has 12 nearest neighbors in positions Ri + δ. The 12 δ
vectors are given by the set ±aµ, with µ ∈ {1, . . . , 6}:

a1 =
a

2
(0, 1, 1) , a4 = a3 − a2 =

a

2
(0, 1,−1) ,

a2 =
a

2
(1, 0, 1) , a5 = a1 − a3 =

a

2
(−1, 0, 1) , (3.2)

a3 =
a

2
(1, 1, 0) , a6 = a1 − a2 =

a

2
(−1, 1, 0) ,

where a is the cubic length of the lattice.
When nearest-neighbor sites of the fcc lattice are connected, one obtains a 3D

lattice of edge-sharing tetrahedra, as shown on figure 3.2. As is generally the case for

Figure 3.2: The fcc lattice as
edge-sharing tetrahedra.

lattices made of tetrahedral units, the fcc lattice is ge-
ometrically frustrated. Due to the large coordination
number z = 12, there is no way to simultaneously min-
imize the energy associated to each antiferromagnetic
bond interaction. That is, it is impossible to make
all nearest-neighbor pairs of spins in this lattice anti-
parallel at the same time, as is done for example in
the Néel state for the square or simple cubic lattices.
Consequently, any possible spin arrangement on the
fcc lattice must contain frustrated bonds.

There is no intuitive way to determine the classi-
cal ordered ground states, that is the periodic spin
arrangements which minimizes the Hamiltonian of

Eq. (3.1). In order to answer the question of the classical ground state, let us ap-
ply a Fourier transformation to the spins in real space Si:

Si =
1√
N

∑
q

Sqe
iq·Ri , (3.3)

where N is the total number of lattice sites, and the sum is taken over all the q vectors
in the first Brillouin zone of the reciprocal lattice. We make use of the following
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relation: ∑
i

eiq·Ri = Nδq,0 . (3.4)

The original Hamiltonian of Eq. (3.1) is written is reciprocal space as:

Ĥ =
1

2

∑
q

JqSq · S−q , (3.5)

where Jq is the Fourier transform of the exchange constant. For a given spin arrange-
ment, Sq · S−q can be viewed as the spectral weight of the ordering wave-vector q in
this arrangement. Then it is natural that the Hamiltonian is minimized when the spin
structure is ordered with the wave-vector Q that minimizes Jq (or with combinations
of equivalent wave-vectors, then the weights must satisfy the fixed spin length con-
straint). One therefore needs to minimize Jq in order to determine the ground-state
configuration.

In a Bravais lattice and for the nearest-neighbor model given by Eq. (3.1), Jq is
expressed as follows:

Jq = J
∑
δ

e−iq·δ , (3.6)

where the sum is taken over all the nearest-neighbor vectors δ. In the fcc lattice, the 12
nearest-neighbor bond vectors are given by the set of vectors ±aµ, with µ ∈ {1, . . . , 6},
given in Eq. (3.2). Due to the central symmetry of the lattice, contributions to Jq are
only real. To lighten the expressions, we define for each spacial component α ∈ {x, y, z}:

Cα = cos
(
qαa/2

)
. (3.7)

Eq. (3.6) becomes:

Jq = 2J
6∑

i=1

cos(q · ai) = 4J
(
CxCy + CyCz + CzCx

)
. (3.8)

Minima of Jq are found when the following is verified for the 3 components of Q =
(Qx, Qy, Qz):

Qα = ±2π/a
Qβ = q
Qγ = 0

 with
q ∈ [0, 1/2] ,

{α, β, γ} ∈ {x, y, z} , α ̸= β ̸= γ .
(3.9)

There is a trivial 6−fold degeneracy on the choice of two of the components (say α and
β), which is related to the cubic symmetry of the fcc lattice and isotropic nature of
the Heisenberg interaction. Taking for example α = x and β = y, one obtains ordering
wave vectors of the following form:

Qxy =
2π

a
(1, q, 0) . (3.10)
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On top of the trivial 6-fold symmetry, there is an accidental infinite degeneracy encoded
in the continuous parameter q. Eq. (3.10) defines a full line of classically degenerate
ordering wave vectors in reciprocal space. All such lines are represented in the first
Brillouin zone as pink lines on Fig. (3.3). The fcc lattice is therefore another exam-
ple of a geometrically frustrated lattice. Note that contrary to the pyrochlore and
kagome lattices studied in chapter 2, the degeneracy in the fcc lattice is subextensive.

Figure 3.3: Infinite classical ground-
state degeneracy of the fcc Heisenberg
antiferromagnet. Pink lines show pos-
sible ordering wave vectors associated
to the classical ground state.

This can be understood as follows. In the
fcc lattice, one can also write the Hamilto-
nian in terms of tetrahedral blocks, as for the
pyrochlore lattice:

Ĥ =
J

4

∑
t

(St)
2 − 2NJS2 , (3.11)

where the subscript t refers to the tetrahe-
dral unit, and St is the total spin on a given
tetrahedron. This Hamiltonian is minimized
when the following constraint is verified for all
tetrahedra of the lattice:

St = 0 . (3.12)

This is the same constraint as the classi-
cal ground-state constraint of the nearest-
nieghbour Heisenberg model on the py-

rochlore lattice in zero magnetic field, see Eq. (2.81). The degree of degeneracy associ-
ated to satisfying this constraint at the level of one tetrahedron is obviously the same
for both lattices. The difference resides in the higher connectivity of the fcc lattice
compared to the pyrochlore lattice. As a result, once the spins on one tetrahedron are
set, the possible configurations that satisfy Eq. (3.12) for the rest of tetrahedra are
more constrained and therefore less numerous.

To summarize, at the classical level, any ordering wave vector located on one of the
pink lines in Fig. (3.3) sets up a valid ground-state candidate, with degenerate classical
ground-state energy Ecl:

Ecl = −2NJS2 . (3.13)

The mixing of several such ordered structures in any multi-Q structure is also a valid
classical ground state. Different ordering wave vectors along one of the lines are not
related to one another by symmetry, and therefore this degeneracy is accidental. It is
expected to be lifted, at least partially, when the effects of fluctuations are taken into
account through the order-by-disorder phenomenon.
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3.2 The AF1 and AF3 structures

In general, multi-Q states are non coplanar, and it would be unlikely that they are
selected by quantum or thermal fluctuations. Let us therefore focus on single-Q states
only. Furthermore, there is no anisotropic term in the Hamiltonian, so the problem
remains completely isotropic with respect to cubic symmetry. For that reason, there
will be no way to distinguish between equivalent ordering wave-vectors on different
symmetry related lines. Let us therefore focus on the line Qxy defined by Eq. (3.10)
from now on. Among the corresponding classically degenerate ordered ground states, 2
allow for collinear spin arrangements and are of particular interest to our study. These
two collinear states are called the AF1 and AF3 states, and are briefly introduced in
the present section.

The ordering wave vector Q of an ordered spin configuration contains information
about the phase that spin orientation acquires when one moves through real space in
the lattice. Namely, for a single-Q configuration, the orientation of a magnetic moment
Si in position Ri is given by the following expression:

Si = leiQ·Ri + l∗e−iQ·Ri , (3.14)

where l is a complex vector in spin space:

l = (l1 − il2)/2 . (3.15)

Substituting the above into Eq. (3.14) gives:

Si = l1 cos(Q ·Ri) + l2 sin(Q ·Ri) . (3.16)

It becomes obvious that a single-Q magnetic structure can only be coplanar. Indeed,
all spins given by Eq. (3.16) lie in the plane containing the vectors l1 and l2. The spin
structure must obey the fixed norm constraint, that is:

∥Si∥ = S , (3.17)

for any spin site. This generally imposes the following conditions on the two compo-
nents l1 and l2:

l1 ⊥ l2 , (3.18)

∥l1∥ =∥l2∥ = S . (3.19)

This corresponds in real space to a spiral spin structure, which applies to any ordering
wave vector, commensurate or not. In such spiral arrangements, a spin in position
Ri + δ acquires an angular phase θδ with respect to the spin in position Ri, which
is directly equal to the quantity Q · δ. Thus, to any value of q in Qxy defined by
Eq. (3.10), corresponds a spiral state. One obtains the spin structure by substituting
the nearest-neighbor vectors defined in Eq. (3.2) into Eq. (3.16), with the convention
of Eqs. (3.18, 3.19).
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(a) AF1 state (b) AF3 state

Figure 3.4: The two collinear states of the classical ground-state manifold in the nearest-
neighbor fcc Heisenberg AF.

When q = 0, the spiral structure happens to be collinar. Indeed, the opening angles
between neighboring spins is equal to 0 when the two spins are in the same yz plane,
and to ±π otherwise. This collinear state is called the AF1 state, and is represented
on Fig. (3.4a). It is made of the antiferomagnetic stacking of ferromagnetic yz planes
along the x direction.

Another collinear arrangement is possible when q = 1/2 in Qxy. Indeed, one can
easily verify that for any spin Si in position Ri, either cos(Q · Ri) or sin(Q · Ri)
vanishes in Eq. (3.16). This implies that the orthogonality condition for l1 and l2 given
by Eq. (3.18) is not necessary anymore. Actually, their orientation can be completely
arbitrary, as long as they preserve the norm S. In particular, one can chose to have
l1 = l2 = l0, in which case the structure is collinear. Then it is straightforward to show
from Eq. (3.16), that the spin structure is given by the following equation:

Si =
√
2l0 cos(Q ·Ri − π/4) . (3.20)

This arrangement is called the AF3 state, and is represented on Fig. (3.4b). Note
that on Fig. (3.4), the spins are oriented along the z axis for the sake of a simple
visualization, but in principle the orientation axis is arbitrary.

The AF1 and AF3 states become the unique classical ground state in the presence of
weak next nearest-neighbor exchange of either FM (AF1) or AFM (AF3) sign. They are
therefore natural ground-state candidates for the quantum order-by-disorder selection.
Their two ordering wave vectors are explicitly given below:

Q1 =
2π

a
(1, 0, 0) and Q3 =

2π

a

(
1,

1

2
, 0
)
. (3.21)
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Both those structures are commensurate, Q1 and Q3 being equal to half and a quarter
of a reciprocal lattice vector, respectively. Consequently, the magnetic unit cell in
the AF1 structure contains 2 sites, and is minimally described using 2 sublattices.
Those correspond to the spins of opposite direction, that is the red and blue spins on
Fig. (3.4a). The AF3 structure has a twice larger magnetic unit cell and is minimally
described using 4 sublattices, as represented by the green tetrahedron on Fig. (3.4b).
Note as well that Q1 and Q3 (and symmetry-related equivalent points) correspond to
high-symmetry points in the first Brillouin zone, namely the X (AF1) and W (AF3)
points. The X points are the centers of the square faces of the first Brillouin zone, see
pink lozanges on Fig. (3.3). The W points are the vertices of the first Brillouin zone,
see pink balls on Fig. (3.3).

3.3 ground-state selection: a literature review

Several authors have intended to determine the ground state selected by quantum and
thermal order from disorder processes in the nearest-neighbor fcc AFM [90, 102–106].
From classical Monte-Carlo simulations it is well established that thermal fluctuations
act in favor of the AF1 state [104]. Regarding the ground state at T = 0 stabilized by
quantum fluctuations, the available results diverge. Numerical studies of this system
remain scarce, due to the complexity in efficiently simulating 3D lattices.

On the theoretical side, an early work using spin-wave theory (SWT) predicted the
stabilization of the AF1 state from quantum fluctuations at T = 0 [90]. Unfortunately
this result has to be discarded, as the spin-wave spectrum used to describe the AF3
state was incorrect. It was indeed corresponding to the non-collinear state with same
ordering wave-vector, rather than the proper collinear AF3 state. A correct version
of the spectrum was derived soon after from a Green’s functions formalism [107], and
later on in the context of spin-wave theory again [93], but no comparison of ground-
state energies was made. On the other hand, the conclusions drawn by recent Green’s
functions method predict the selection of the AF1 state at T = 0 by quantum fluctua-
tions, and of the AF3 state from thermal fluctuations [105]. A competition effect and
a low-T phase transition is expected for large spin S ≥ 2.
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Chapter 4

Harmonic spin-wave theory

In this chapter we use LSWT to study the ground-state selection operated by quantum
fluctuations in the nearest-neighbor Heisenberg fcc antiferromagnet. We first obtain
fully analytic expressions for the harmonic spin-wave spectra of competing single-Q
classical ground states. Then for each of these states, we compute numerically the
ground-state energy with first quantum correction, from the zero-point motion of their
corresponding magnons. By comparison of the ground-state energies, we find that at
harmonic order, quantum fluctuations act in favor of the AF3 collinear state. The
obtained energy difference between the two collinear states (AF1 and AF3) is shown
to be particularly small. The energy of all non-collinear spiral states clearly lies above
the energies of AF1 and AF3 states. The spin reduction from quantum fluctuations
is also given for the two competing collinear states. Due to the accidental classical
ground-state degeneracy of the model, the harmonic spectra contain full lines of zero
energy modes, of which the locations in reciprocal space are specified.

We also ask the question about thermal selection in this quantum spin system. The
free energy as a function of temperature ∆F (T ) is computed from thermal population
of the magnons, for AF1 and AF3 states. The AF1 state is found to be selected by
thermal fluctuations, as was previously predicted from classical thermal ObD. Due to
the smallness of the original energy difference between the two states at T = 0, the free
energy overcomes it and there is a crossing of the two curves. This is a rare occurrence
of competition between quantum and thermal ObD, which leads to a first-order phase
transition at low temperatures. The behaviour of the free energy is attributed to the
soft modes lying around the numerous accidental zero-energy modes of the harmonic
spectra. Exceptionally sharp behaviours for the free energy at low-temperatures are
found in both states, with a peculiar fractional exponent in the AF3 state.
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4.1 Quantum fluctuations at zero temperature

In this section, we focus on the zero temperature ground-state selection, that is, with
only the effects of quantum fluctuations. We compute the first order quantum cor-
rection to the ground-state energies of the classically degenerate ground states of the
nearest-neighbor fcc AFM. We therefore restrain to the harmonic approximation in
spin-wave theory (LSWT), which captures only the free magnon picture. Higher-order
processes involving magnon-magnon interactions are neglected.

When only the first quantum correction is considered, the ground-state energy of a
state gets corrections of the form of Eq. (1.26). In the case of the fcc lattice specifically,
the ground-state energy is given by the following:

Egs = −2NJS(S + 1) +
1

2

∑
k

ϵk , (4.1)

where ϵk is the harmonic spin wave spectrum, and is in principle different from one
classically stable state to another.

The degenerate classical ground states of the nearest-neighbor fcc Heisenberg model
have ordering wave vectors given by Eq. (3.10), which we repeat here:

Qxy =
2π

a
(1, q, 0) , (4.2)

where q is a continuous parameter q ∈ [−1/2, 1/2]. Classically, their degenerate ground-
state energy is given by:

Ecl = −2NJS2 . (4.3)

To compute the ground-state energy given by Eq. (4.1), one needs the magnon spectra
ϵk of the degenerate classical ground states. In the next section, I show how to obtain
these spectra completely analytically from LSWT, with particular attention on the
collinear AF1 and AF3 structures discussed in Sec (3.2).

4.1.1 Harmonic spin-wave spectra of competing states

The nearest-neighbor Heisenberg Hamiltonian, see Eq. (3.1), is explicitly written in
terms of spin components as:

Ĥ = J
∑
⟨i,j⟩

(
Sx0
i S

x0
j + Sy0

i S
y0
j + Sz0

i S
z0
j

)
. (4.4)

I use the spin wave formalism explained in appendix A to diagonalize this Hamiltonian
and obtain the spin wave spectra of the competing classical ground states. First we
apply the rotation from the global spin coordinates (Sx0

i , S
y0
i , S

z0
i ) in Eq. (4.4), to the

local spin coordinates (Sx
i , S

y
i , S

z
i ), following Eq. (A.7). Then the Holstein-Primakoff

transformation is applied to these local coordinates, see Eq. (1.20). After these two
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transformations, a scalar product between two spins is written in terms of bosonic
operators as follows:

Si · Sj =S
2 cos θij − S cos θij

(
a†iai + a†jaj

)
(4.5)

+
S

2

[(
cos θij − 1

) (
aiaj + a†ia

†
j

)
+
(
cos θij + 1

) (
aia

†
j + a†iaj

)]
,

where a†i and ai are bosonic creation and annihilation operators. In the above, the
first term in S2 corresponds to the classical scalar product. When any of the classi-
cally degenerate configurations is considered, this term naturally leads to the classical
ground-state energy of Eq. (4.3). Linear terms in bosonic operators have been left out,
as they necessarily vanish when a classically stable configuration is considered. Once
the angles θij between neighboring spins in the lattice are known, one can substitute
Eq. (4.5) in Eq. (4.4) and obtain the harmonic spin-wave Hamiltonian.

In the fcc lattice, the nearest-neighbor Heisenberg Hamiltonian of Eq. (3.1) is writ-
ten in the following symmetric form with explicit real-space spin positions:

Ĥ =
J

2

∑
R

6∑
µ=1

SR ·
{
SR+aµ

+ SR−aµ

}
, (4.6)

where the nearest-neighbor vectors aµ are given by Eq. (3.2). The summation over R
spans all possible site positions in the lattice, and induces cancellations after the Fourier
transformation is applied. The minimal number of bosonic modes which need to be
introduced depends on the specific structure and periodicity of the classical ground
state we expand around.

The classically degenerate ordering wave vectors Qxy given by Eq. (4.2) generally
describe spiral states when the pitch parameter q is arbitrary. In that case, only one
bosonic mode is necessary. In particular, the collinear AF1 state shown on Fig. (3.4a)
falls in this category. In the special case where q = 1/2, the ordering wave vector
can accommodate another collinear ground state, the AF3 state. It is represented on
Fig. (3.4b), and requires at least two bosonic modes.

Spiral states

As seen previously, an ordered magnetic structure of ordering wave vector Q is deter-
mined through Eq. (3.14), where l is a complex vector in spin space. From the classically
degenerate ordering wave vectors given in Eq. (4.2), spiral states are obtained from the
conventions of Eqs. (3.18, 3.19). The resulting opening angle θij sustained between two
neighboring spins Si and Sj sitting in positions Ri and Rj, respectively, is given by:

θij = Q · (Rj −Rj) . (4.7)

Consequently, all spins in the lattice sustain the same opening angles with their sur-
rounding neighbors. Since only scalar products between pairs of spins are considered
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in the Hamiltonian, and since scalar products only involve opening angles and not
absolute angles, see Eq. (4.5), it is possible to work in the single-boson picture.

We are only interested into interactions between pairs of nearest-neighbor spins,
which in the fcc lattice are separated by the 12 ±aµ vectors of Eq. (3.2). The scalar
products appearing in Eq. (4.6) can thus be written in terms of bosonic operators using
Eq. (4.5), where θij is replaced by Q · aµ. We now apply a Fourier transform to the
bosonic operators using Eq. (A.8), which we repeat here:

aR =
1√
N

∑
k

ake
ik·R , (4.8)

where the sum is taken over all the k-vectors of the first Brillouin zone. We substitute
this into the scalar product of Eq. (4.5), and the symmetric Hamiltonian of Eq. (4.6)
takes the standard single-boson form of Eq. (A.9):

Ĥ = Ecl +
∑
k

{
Aka

†
kak −

1

2
Bk

(
a†ka

†
-k + a-kak

)}
. (4.9)

The coefficients Ak and Bk in front of the normal and anomalous terms, respectively,
are given by:

Ak = JS
6∑

µ=1

[
cos(k · aµ)

[
1 + cos(Q · aµ)

]
− 2 cos(Q · aµ)

]
, (4.10)

Bk = JS
6∑

µ=1

[
cos(k · aµ)

[
1− cos(Q · aµ)

]]
.

Explicitly substituting the aµ vectors of Eq. (3.2) as well as the Qxy ordering wave
vector of Eq. (4.2) leads to:

Ak = 2JS
{
Cy
[
Cz + Cx − (Cx − Cz) cos(qπ)

]
+ 2
}
, (4.11)

Bk = 2JS
{
Cy
[
Cx + Cz + (Cx − Cz) cos(qπ)

]
+ 2CxCz

}
,

where we remind the reader that Cα is defined in Eq. (3.7). In a single-boson picture
as here, there is only one magnon mode in the spectrum, given by:

ϵk =
√
A2

k −B2
k . (4.12)

We have therefore, for any spiral state with associated parameter q in Qxy:

ϵsk = 4JS
[
1 + CxCy + CxCz + CyCz

]1/2[
1− CxCz + Cy(Cz − Cx) cos(qπ)

]1/2
. (4.13)

In particular, when q = 0 in Eq. (4.13), one obtains the harmonic spin-wave spectrum
of the AF1 collinear state:

ϵ1k = 4JS
√

S2
x(Cy + Cz)2 + S2

yS2
z , (4.14)
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where we defined Sα as:
Sα = sin(kαa/2) . (4.15)

For q = 1/2, Eq. (4.13) gives the harmonic spectrum of the noncollinear spiral state
with the propagation vector Q3 given in Eq. (3.21):

ϵ3sk = 4JS
√
(1− CxCz)(1 + CxCy + CxCz + CyCz) . (4.16)

In that state, we have 90◦ angles between neighboring spins. This expression was taken
as the spectrum for the type-3 state in the early work by ter Haar and Lines [90, 91].
This spectrum however does not apply to the collinear AF3 state, which was ignored
in this early work.

The collinear AF3 state

The collinear AF3 structure is described by using Q3 (see Eq. (3.21)) as ordering
wave-vector in the modified expression of Eq. (3.20). Contrary to the spiral states, the
opening angle between two neighboring spins does not only depend on the aµ vector
between them. Then the local environment is not the same for all spins in the lattice,
and the spectrum of the collinear AF3 state cannot be described using a single boson
species.

There are 4 sublattices in the spin structure, which are represented by the green
tetrahedron on Fig. (3.4b). Nevertheless, it is possible to reduce the number of magnon
modes to only 2 modes a and b, which simplifies a lot the picture. Indeed, on Fig. (3.4b),
sublattices 1 and 3 are symmetry related in the sense that they have the same sur-
rounding nearest-neighbor environment (opening angles). One can therefore attribute
the same magnon mode (say a) to all spins of sublattice 1 and 3. The same goes
for sublattices 2 and 4, to which we attribute the second magnon mode b. With this
construction, sites belonging to the modes a and b are represented as full and empty
arrows, respectively, on Fig. (3.4b).

The two magnon modes a and b are independent, and in order to keep track of
this information, a spin Si in position Ri is fully specified by its position and family
indices, R and α: Si = SR,α, with α ∈ {a, b}. The symmetric Hamiltonian of Eq. (4.6)
can then be rewritten with the sublattice information as follows:

Ĥ =
J

2

∑
R

[∑
δαα

{
SR,a · SR+δ,a + SR′,b · SR′+δ,b

}
(4.17)

+
∑
±δab

{
SR,a · SR+δ,b + SR′,b · SR′+δ,a

}]
,

where δαα ∈ {±a2,±a5} spans lattice vectors connecting nearest-neighbor spins of
the same mode, and δab ∈ {a1, -a3, a4, -a6} spans lattice vectors connecting nearest-
neighbor spins of opposite modes. We introduced the notation R′ = R+ a3 to denote

79



the exact position of the b site with respect to a given a site in position R. The
summation is thus made over only half of the Bravais lattice positions R, namely
those occupied by a sites. Note that the structure of the AF3 state can be viewed as
alternating layers of a and b sites along the y-axis. Within this viewpoint, the first and
second lines of Eq. (4.17) contain intra-layer interactions and inter-layer interactions,
respectively.

The steps to get the quadratic Hamiltonian in terms of bosonic operators are the
same as for the spiral states, except that one needs to keep track of the two bosonic
modes a and b and define accordingly two different sets of operators ai, bi. There is
another subtelty in the fact that spins of the same mode (a or b) do not necessarily have
the same orientation. Indeed, in each a or b layer, spins are arranged antiferromagnet-
ically. Furthermore, nearest-neighbor spins of a same mode (a or b) do exist, which is
typically not the case in other systems 1. For that reason, one needs to carefully keep
track of the specific situation in each bond. In the 2 bosons picture, the quadratic part
of the Hamiltonian in momentum space is given in the matrix form of Eq. (A.11):

Ĥ(2) =
1

2

∑
k

(
X̂†

kHkX̂k − Tr[Ak]
)
, (4.18)

where X̂†
k is a row vector containing all the Holstein-Primakoff bosonic operators:

X̂†
k =

(
a†k, b

†
k, a-k, b-k

)
. (4.19)

In Eq. (4.18), Hk is a 4× 4 matrix with the following block structure:

Hk =

(
Ak −Bk

−B†
k Ak

)
, (4.20)

where the matrices Ak and Bk are given below:

Ak = 4JS

(
1 γk
γ∗k 1

)
, Bk = 4JS

(
CxCz γ∗k
γk CxCz

)
. (4.21)

The phase factor γk is related to displacements from a given site of a given mode to
its nearest neighbors sitting of the opposite mode:

γk =
1

4

∑
δab

e−ik·δ =
1

2
Cy(Cx + Cz) +

i

2
Sy(Cx − Cz) . (4.22)

Note that here, contrary to the matrices in the kagome and pyrochlore lattices, the
matrix coefficients are complex numbers. The fact that the diagonal terms of the

1For example, this was not true in the kagome and pyrochlore lattices studied in chapter 2. Indeed,
in those two cases, the number of magnon modes coincides with the number of sublattices, and no
two spins of the same sublattice are nearest neighbors to one another.
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anomalous Bk matrix do not vanish, is related to the fact that nearest-neighbor sites
of the same sublattice do not have the same orientation. The fact that we have complex
coefficients is related the lack of inversion symmetry.

The way to perform the Bogolyubov transformation for a matrix Hamiltonian such
as in Eqs. (4.18, 4.20) is explained in appendix A. One needs to find the eigenvalues
ϵk of the system, but under the constraint that bosonic commutation relations have to
be preserved. The obtained expressions for ϵk are precisely the modes of the harmonic
spin-wave spectrum.

It is possible to show that the resulting 4-dimensional eigenvalue problem can be
reduced to the following 2-dimensional eigenvalue problem for the square of the original
eigenvalues: ∣∣∆kΣk − ϵ2I2

∣∣ = 0 . (4.23)

∆k and Σk are 2×2 matrices given by (see Eqs. (A.31, A.32)):

∆k = Ak −Bk , (4.24)

Σk = Ak +Bk . (4.25)

The positive square roots of the obtained 2 eigenvalues give the SW modes ϵ±k . The
final analytical expression is obtained through elementary - though tedious - algebra:( ϵ±3k

4JS

)2
= 1− C2

xC2
z ±

{
C2
y (1− CxCz)2 (Cx + Cz)2 (4.26)

+ S2
y (Cx − Cz)2

[
S2
y (Cx + Cz)2 + S2

xS2
z

]}1/2

.

4.1.2 ground-state selection

With analytical expressions for the spectra at hand, it is now very straightforward to
compute the vacuum energy of the spin waves in the competing states. Corresponding
ground-state energies Egs are obtained from Eq. (4.1). Comparing theses energies
allows us to determine which state is favored by quantum fluctuations at the harmonic
level. We remember that all classical ground states have the same classical energy Ecl

given in Eq. (4.3). It is thus sufficient to compare only the quantum corrections ∆Eq

to Egs:

∆Eq = Egs − Ecl = −2JS +
1

2

1

N

∑
k

ϵk , (4.27)

where the sum is taken over all the k points of the first Brillouin zone of the reciprocal
lattice.

For the spiral states, including the collinear AF1 satte, one substitutes ϵsk from
Eq. (4.13) in the above expression. The black curve on Fig. (4.1) shows ∆Eq as a
function of q. This curve was obtained using NM.C. = 1010 Monte-Carlo points for
computing the integral in Eq. (4.27). The AF1 state at q = 0 is represented by the
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Figure 4.1: Harmonic quantum correction to the ground-state energy as a function of
ordering wave-vector coordinate q.

blue diamond on Fig. (4.1). Using the spectrum ϵ1k of Eq. (4.14), the following value
for its ground-state energy is obtained:

E1 = Ecl

(
1 +

0.4880560(8)

2S

)
, (4.28)

where Ecl = −2JS2. I used NM.C. = 1012 Monte-Carlo points for computing the
integral. The first three digits of the 1/S correction agree with the result previously
obtained by Oguchi [108]. The energy of the spiral states is always above ∆E1. This
is not surprising, as quantum fluctuations favor collinear states. In that regard, the
spiral Q3 state is the ”least collinear” spiral state, and consequently has the highest
ground-state energy (black curve at q = 1/2).

As for the collinear AF3 state, one has to sum up contributions from the two
magnon branches, but on a twice smaller Brillouin zone. Using the expressions for ϵ±3k
of Eq. (4.26), we obtain the following ground-state energy:

E3 = Ecl

(
1 +

0.4911055(4)

2S

)
, (4.29)

with again NM.C. = 1012 Monte Carlo points over the reduced Brillouin zone. The AF3
state has thus lower energy than the AF1 state, as can be seen on Fig. (4.1) by the
red diamond. Therefore, at the harmonic level in spin-wave theory, the collinear AF3
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state is selected by quantum fluctuations over the AF1 state. This is surprising, as it
was not the state selected by thermal fluctuations. The energy difference between the
two states is, however, very tiny:

∆E13 =
E3 − E1

N
≃ −3.044 · 10−3(JS) . (4.30)

For the sake of completeness, we give also below the values obtained for the spin
reduction ∆S in the two states. Detailed explanations about how to compute can be
found in the next chapter, and here we give only the numerical values 2:

∆S1 = 0.338777(3) , ∆S3 = 0.366331(2) . (4.31)

The spin reduction is substantial for both states, which tends to demonstrate that
quantum fluctuations are strong in the ground state. In agreement with the fluctuation
mechanism, the lowest energy state exhibits a larger spin reduction.

4.1.3 Pseudo-Goldstone modes in the dispersion

Although the order-by-disorder phenomenon induces a ground-state selection among
classically degenerate states, it preserves the original true symmetries of the problem.
Indeed, the global rotational symmetry of the Heisenberg Hamiltonian of Eq. (3.1)
remains. When the system orders in a given state (AF1, AF3, or any other), the
absolute orientation of spins is completely arbitrary. For example, on Fig. (3.4), I
represented the AF1 and AF3 structures with spins oriented along the global z axis, but
any other orientation axis would be equivalent by symmetry. This arbitrary selection
of an orientation is called spontaneous symmetry breaking.

According to the the Goldstone theorem, spontaneous symmetry breaking of a
continuous symmetry must induce the presence of gapless modes in the excitation
spectrum, which we call Goldstone modes. In the framework of spin-wave theory,
there are two Goldstone modes in the magnon spectrum of an ordered state with
ordering wave vector Q. They are associated to the spontaneous breaking of the global
rotational symmetry (2 degrees of freedom), and are located at the center Γ of the
Brillouin zone and at k = Q.

The harmonic spin-wave spectra derived for the AF1 and AF3 states contain ac-
cidental gapless modes on top of the true Goldstone modes. These are related to the
”spontaneous” breaking of the accidental classical degeneracy in the choice of one or
the other ordering wave vector among the classically degenerate ones Qxy. They are
sometimes called pseudo-Goldstone modes, and are an artifact of the harmonic approx-
imation. These pseudo-Goldstone modes are particularly numerous in the fcc lattice.
Indeed, in both the AF1 and AF3 configurations, the harmonic spectra contain full
lines of zero energy, rather than localized points. These lines are shown on Fig. (4.2).

2Those values were also obtained using NM.C. = 1012 Monte-Carlo points over the integration
volume.
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Figure 4.2: Lines of zero-energy modes of the magnon spectrum of the AF1 (left panel)
and AF3 (right panel) states in the harmonic approximation. Thick and thin lines
correspond to zero modes along the propagation direction (x for the AF1 state, y for
the AF3 state) or orthogonal to it, respectively.

The blue lines on the left panel of Fig. (4.2) are the lines of gapless modes of the
harmonic spectrum of the AF1 state, represented in the first Brillouin zone. From the
analytical expression of the spectrum ϵ1k given in Eq. (4.14), one can easily identify
two types of such lines. Lines along the special kx direction are displayed as thick blue
lines, and correspond to the condition Cy = −Cz = ±1. Explicitly, their equation in
k-space is 2π(q,±1, 0) and 2π(q, 0,±1), where q is arbitrary. Lines along the other two
directions ky and kz, are displayed as thin blue lines. They correspond to the condition
Sx = Sα = 0 with α = z (resp. y) for lines along the ky (resp. kz) direction. Their
explicit equation is 2π(nx, q, nz) for lines along the ky direction, and 2π(nx, ny, q) for
lines along the kz direction, where nα ∈ Z. Crossing points between several lines of
zero-energy modes are also of two kinds, and are highlighted as well on Fig. (4.2). Blue
diamonds show crossing points between 2 lines, while blue balls show crossing points
between 3 lines.

The right panel of Fig. (4.2) shows the gapless modes of the harmonic spectrum
of the collinear AF3 state as red lines in the reduced Brillouin zone. From a careful
analysis the analytical expression for ϵ±3k, see Eq. (4.26), one can show that the upper
branch of the spectrum ϵ+3k only has lines of zero-energy modes along the special ky
direction. They obey the condition Sx = Sz = 0, which translates into the lines
2π(nx, q, nz) in reciprocal space, where nx, nz ∈ Z. The lower branch of the spectrum
ϵ−3k has much more spurious gapless modes. Similar to the AF1 situation, one can
identify two different types of lines of zero energy. Lines along the special ky direction
are the same lines as for the upper branch. They and are displayed as thick red lines
on the right panel of Fig. (4.2). Lines along the other 2 directions kx and kz are
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displayed as thin red lines on Fig. (4.2). They obey either the condition Sα = Cy = 0
or Sα = Sy = 0, where α = z (resp. x) for lines along the kx (resp. kz) direction. This
corresponds to the equation π(q, ny, 2nz) and π(2nx, ny, q) for lines along the kx and kz
directions, respectively. Once again we have nα ∈ Z. Crossing points between lines are
of two kinds, which are represented as the red balls and red diamonds on Fig. (4.2).

The magnon dispersion in the two collinear states is illustrated in Fig. 4.3 as inten-
sity maps, in the kxkz plane with ky = 2π/a. The lines of zeo-energy modes are clearly
visible as the dark blue regions in the map.

Figure 4.3: Color intensity map for the magnon dispersion in two collinear antiferro-
magnetic states with fixed ky = 2π/a: ϵ1k for the AF1 state (left panel) and ϵ−3k for the
AF3 state (right panel).
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4.2 Thermal selection at low temperature

Previous works [104] tend to converge towards an AF1 ordering driven by thermal
fluctuations at low temperatures. This result is rather surprising, since thermal and
quantum fluctuations are typically believed to lead to the same type of selection process
through the order from disorder phenomenon.

For the sake of completeness, and in order to understand the origin of this dis-
crepancy, we will now look at what happens to our system at low temperature. More
specifically, we wonder which classical ground state is selected by thermal fluctuations,
and whether our result is in agreement with the aforementioned previous studies. The
relevant thermodynamic quantity to work with at finite temperature T is the free en-
ergy F , which takes into account both the internal energy E of a given state, and its
entropy S:

F = E − TS . (4.32)

In first approximation one can neglect the thermal corrections to the internal energy,
which consist in a renormalization of the magnons energies. Thus the internal energy E
will be considered unchanged from the zero-temperature ground-state energy computed
in the previous section. This implies that at a given temperature T , the variation of
free energy ∆F (T ) will only come from the entropy part, selecting the ground state
with maximal entropy over the others. From bosonic statistical mechanics, we have:

∆F (T ) = kBT
∑
k,i

ln
(
1− e−ϵik/kBT

)
, (4.33)

where the sum is taken over all the possible k-vectors of the first Brillouin zone, and
ϵik is the energy of a spin wave of wave vector k (mode i). This additional free
energy obviously gives a negative contribution. At sufficiently low temperatures kBT ≪
JS, only the lowest-lying magnons contribute significantly. Let us first derive the
temperature dependence of ∆F (T ) numerically, in order to determine which classical
ground state is favored by thermal fluctuations.

4.2.1 Competition between quantum and thermal fluctuations

The free energy of a given state at a given temperature T is obtained from Eq. (4.33).
One substitutes the harmonic spin-wave spectra derived in the previous section for
the competing AF1 and AF3 states (see Eq. (4.14) and Eq. (4.26), respectively). The
integral is computed using standard Monte-Carlo integration. The obtained value for
∆F (T ) is added to the ground-state energies at zero temperature E1 and E3 (see
Eq. (4.28) and Eq. (4.29), respectively). Fig. (4.4) shows the free energy ∆F = F −Ecl

for the two competing states AF1 and AF3, as a function of temperature. The T = 0
corrections to the ground-state energies are marked by the two diamonds. Then the
curves were obtained using a Monte-Carlo integration with NM.C. = 1010 random points
to compute ∆F (T ).
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Figure 4.4: Free energy as a function of temperature of the fcc Heisenberg AFM for
AF1 (blue) and AF3 (pink) collinear states. A first-order phase transition occurs at
T ∗ ≈ 0.21JS.

It appears clearly from Fig. (4.4) that the AF1 state is favored by thermal fluctu-
ations. Indeed, its free energy ∆F1(T ) decreases faster with temperature than that of
the AF3 state. Due to the tiny ground-state energy difference in favor of the AF3 state
at T = 0, this behaviour induces a crossing of the two curves at a very low temperature
T ∗ :

T ∗ = 0.212(JS) . (4.34)

As a result, we predict a first-order phase transition from the zero-temperature ground
state AF3 to the low-temperature state AF1. The fact that the AF1 state is favored
by thermal fluctuations is in agreement with previous studies on the fcc Heisenberg
AFM. The fcc Heisenberg AFM thus presents a unique example of what seems to be
a competition effect between quantum and thermal order by disorder at low tempera-
tures.

Of particular interest is also the asymptotic temperature dependence of ∆F (T )
when T → 0. By applying a basic power-law fit to the curves of Fig. (4.4), we find
particularly sharp behaviour for both states, compared to the typical ∆F (T ) ∼ −T 4

behaviour of the unfrustrated AFM:

∆F1(T ) ∼ −T 2 , ∆F3(T ) ∼ −T 7/3 . (4.35)
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The AF3 state has a softer behaviour than the AF1 state, which explains the phase
transition. The temperature exponents found above are peculiar, especially for the
AF3 state.

In principle, states selected by thermal order by disorder are those exhibiting the
softest modes in their magnon spectrum. Indeed, at very low temperatures, it is
evident from Eq. (4.33) that only the most low-lying parts of the spectra can give a
significant contribution to the free energy. The more low-lying modes are accessible at
a given temperature, the larger is the (negative) free energy variation ∆F (T ). This is
the standard order-by-disorder statement. The asymptotic form of the softest modes
should be directly related to the very low-temperature behaviour of the free energy
given in Eq. (4.35). Therefore, in seek for a deeper insight of the low-temperature
properties of our system, it is useful to investigate the soft modes of the spectra of the
competing states.

In the system of interest here, it is far from obvious to determine which state (AF1
or AF3) has the softest modes. Indeed, soft modes are located around the zero energy
modes, which are exceptionally numerous due to the harmonic approximation, as seen
in Sec. (4.1.3). The next section is devoted to a careful analysis of the soft modes of
harmonic spectra of the AF1 and AF3 states.

4.2.2 Soft modes of the harmonic spectra

The analytical expressions for the harmonic spin-wave spectra can be straightforwardly
expanded around different types of zero-energy modes. Below only the main results
are given for the AF1 and AF3 states. To further understand the thermal vs. quantum
competition we derive analytically the low-temperature asymptotes for dF (T ) in the
two states.

The AF1 state

We perform a standard Taylor expansion of the analytical expression for the spectrum
ϵ1k given in Eq. (4.14), around various types of gapless modes. Let us remind the reader
that the harmonic spectrum of the AF1 state exhibits gapless modes along full lines in
reciprocal space, which can be divided into two categories: lines along the special kx
direction, and lines along the transverse directions ky and kz (thick and thin blue lines
on the left panel of Fig. (4.2), respectively).

The soft modes lying around the first type of lines is illustrated by expanding
Eq. (4.14) around (q, 0, 2π/a). One obtains the following, quadratic asymptotic be-
haviour:

ϵ1k
JS

≈ 2κ2⊥
√
1− C2

x cos
2(2φ) , (4.36)
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where κ⊥ and φ refer to polar coordinates in the plane transverse to the line:

aky
2

=κy = κ⊥ cosφ , (4.37)

akz
2

− π =κz = κ⊥ sinφ . (4.38)

All lines along the kx direction (thick blue lines on Fig. (4.2)) have the same type of
quadratic soft modes lying around them.

The soft modes lying around the other type of lines are illustrated by expanding
Eq. (4.14) around the line (0, 0, q). They have a more complex asymptotic form:

ϵ1k
JS

≈ 4κ⊥

{
(1 + Cz)

[
1 + Cz cos(2φ)

]
+ κ4⊥ · cos2(φ) sin4(φ)/4

}1/2

. (4.39)

Once again, κ⊥ refers to the transverse component with respect to the line, and φ is the
polar angle. We see that the soft modes described by Eq. (4.39) generally have a linear
behaviour in κ⊥, which makes them less soft than the quadratic modes of Eq. (4.36).
In the transverse planes defined by (1 + Cz) = 0, the modes of Eq. (4.39) acquire a
softer, cubic behaviour. Although this may seem like particularly soft modes lie in those
planes, this cubic behaviour is actually not surprising. Indeed, the corresponding points
along the line are (0, 0,±2π/a), which correspond to crossing points between 3 lines
(see blue balls on the left panel of Fig. (4.2)). Precisely at these points, in the transverse
kxky plane, two lines of zero energy modes are crossing: one line along the special kx
direction, and one line along the other transverse direction ky. Considering that soft
modes lying around these lines have a quadratic and linear behaviour, respectively, the
cubic behaviour is naturally expected at their intersection. All lines along the ky and
kz directions (thin blue lines on Fig. (4.2)) have equivalent soft modes around them.

For the sake of completeness, let me now give the asymptotic behaviour of ϵ1k
around the crossing points (k0x, k

0
y, k

0
z) between several lines. They are divided into two

types, namely crossing points between 2 lines and between 3 lines. The first type of
crossing points are displayed as blue diamonds on the left panel of Fig. (4.2). They
correspond to the crossing between two lines of zero-energy modes of the transverse
type (one line along ky, one line along kz). The soft modes lying around such points
have the following asymptotic behaviour:

ϵ1k
JS

≈ 8
{
κ2x + κ2yκ

2
z/4
}1/2

. (4.40)

Here κα is defined as follows:

κα =
a

2
(kα − k0α) . (4.41)

Such soft modes generally have a linear behaviour in κx, except in the kykz plane,
where they get a quadratic behaviour. This is naturally explained by the fact that the
crossing between the two lines takes place in that plane. Since the soft modes lying
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around both lines have a linear asymptotic behaviour, the soft mode becomes quadratic
in this plane.

The second type of crossing points are displayed as blue balls on the left panel of
Fig. (4.2). They correspond to the crossing between three lines of zero-energy modes:
one of the special type along kx, and two of the transverse type along ky and kz. The
soft modes around these points have the following asymptotic behaviour:

ϵ1k
JS

≈ 4

{
κ2yκ

2
z + κ2x

(
κ4y + κ4z

)
/4

}1/2

. (4.42)

Such soft modes generally have a quadratic behaviour in κyκz, except in the kxkz and
kxky planes, where they get a softer, cubic behaviour. This is explained by the fact
that in these planes, there is a crossing between a line along the special kx direction,
and a line along a transverse direction (either ky or kz). Because the soft modes lying
around such lines have a quadratic and linear asymptotic behaviour, respectively, their
intersection naturally leads to a cubic behaviour.

To summarize, the softest modes of the harmonic spin-wave spectrum of the AF1
state are located along the lines of pseudo-Goldstone modes along the kx direction
(thick blue lines on the left panel of Fig. (4.2)): 2π(q, 0,±1) and 2π(q,±1, 0). Conse-
quently, in the very low temperature regime, the behaviour of the free energy ∆F (T )
given by Eq. (4.33) should be dominated by these modes. To confirm this, let us
now evaluate the expected temperature dependence of ∆F (T ) associated with such
soft modes from the expression of their asymptotic behaviour, see Eq. (4.36). We
remember that these modes are quadratic in the transverse κ⊥ component:

ϵ1k
JS

≈ A · κ2⊥ , (4.43)

where all the dependency with respect to the longitudinal component κx and the an-
gular component around the line φ, is contained in the variable A:

A(κx, φ) = 2
√
1− C2

x cos
2(2φ) . (4.44)

The sum in Eq. (4.33) is translated into integral form in the thermodynamic limit, and
we have, for the free energy associated to such soft modes at very low temperatures:

∆F1(T )

JS

∣∣∣∣
T→0

≈ T ′ 1

v

∫
v

ln
[
1− e−Aκ2

⊥/T ′
]
dk . (4.45)

v is the volume of the first Brillouin zone of the fcc lattice, and we defined the relative
temperature T ′ as follows:

T ′ = kBT/JS . (4.46)

This can be written in terms of the relevant variables for the line of zero-energy modes,
that is, the longitudinal component κx, and the polar coordinates κ⊥ and φ for the
transverse component:

∆F1(T )

JS

∣∣∣∣
T→0

∼ T ′
∫ π

−π

dκx

∫ 2π

0

dφ

∫ κmax

0

ln
[
1− e−Aκ2

⊥/T ′
]
d
(
κ2⊥
)
. (4.47)
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The upper limit κmax for the transverse κ⊥ component is of the order of π. Its precise
value is of no interest here, as only very low-lying modes, close to the gapless line
(κ⊥ → 0), are contributing significantly. In the above expression, prefactors have
been left out, as we are only interested in the temperature dependence. We apply the
following change of variable:

x =
A · κ2⊥
T ′ , (4.48)

and Eq. (4.47) becomes:

∆F1(T )

JS

∣∣∣∣
T→0

∼ T ′2
∫ ∫

dκxdφ

A(κx, φ)

∫ Λ

0

ln
(
1− e−x

)
dx . (4.49)

We introduced the cutoff parameter Λ, which is of the order of:

Λ ∼ Aπ2

T ′ . (4.50)

As we are interested into very low temperature physics only, we can consider the cutoff
Λ to be large. Large x values only contribute marginally to the integral over x in
Eq. (4.49). Therefore, it is reasonable to approximate Λ ≃ ∞, which leads to an
integral of finite definite value:∫ Λ

0

ln
(
1− e−x

)
dx ≈

∫ ∞

0

ln
(
1− e−x

)
dx = −π

2

6
. (4.51)

It can be straightforwardly shown that that the integral over κx and φ does converge
as well in Eq. (4.49), such that we recover the low-temperature T 2 dependence of the
free energy of the AF1 state, see Eq. (4.35).

The collinear AF3 state

The analytical expression for the harmonic spin-wave spectrum ϵ±3k of the AF3 state
is given in Eq. (4.26). It exhibits many lines of gapless modes, both in its lower and
upper branches. These lines are divided into two categories: lines along the special
ky direction, which are gapless in both branches of the spectrum, and lines along the
transverse directions kx and kz, which are gapless only in the lower branch of the
spectrum ϵ−3k. The two types of lines are shown in reciprocal space as thick and thin
red lines on the right panel of Fig. (4.2), respectively. We perform a standard Taylor
expansion of Eq. (4.26) around different types of gapless modes. Though quite cum-
bersome, the expansion is completely standard and we give here only final expressions
for the asymptotic forms of the soft modes.

Expanding the upper branch of the spectrum ϵ+3k around the line (0, q, 0) gives the
following expression for the soft modes lying around such lines along the ky direction:

ϵ+3k
JS

≈ 4κ⊥

{
1 +

√
C2
y + S4

y cos
2(2φ)

}1/2

. (4.52)
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Here again, κ⊥ and φ are the transverse components to the line, expressed in polar
coordinates:

akz
2

=κz = κ⊥ cosφ , (4.53)

akx
2

=κx = κ⊥ sinφ . (4.54)

These modes have a linear asymptotic behaviour around the line.
For the lower branch of the spectrum ϵ−3k, the soft modes lying around these lines

(thick red lines on Fig. (4.2)) have the following asymptotic behaviour:

ϵ−3k
JS

≈ 4κ⊥

{
1−

√
C2
y + S4

y cos
2(2φ) + κ4⊥ sin2(2φ)/32

}1/2

. (4.55)

Along the major part of the line, this expression is the same as Eq. (4.52) for the upper
branch (up to a sign change) and the soft modes have a linear behaviour in κ⊥. Only
in specific transverse kxkz planes, when Sy = 0, Eq. (4.55) gives a subleading softer
cubic behaviour. The corresponding points along the line are displayed as red balls on
the right panel of Fig. (4.2), and are crossing points between 3 lines. In the transverse
kxkz plane, two transverse lines of gapless modes are crossing.

For the other type of soft modes, lying around the transverse gapless lines along kx
and kz (thin red lines on Fig. (4.2)), I expanded Eq. (4.26) around the line (0, 0, q). I
obtain the following asymptotic behaviour:

ϵ−3k
JS

≈ 2κ⊥

{
2 (1− Cz)

[
1− Cz cos(2φ)

]
+ κ2⊥ sin2(2φ)/2

}1/2

. (4.56)

The transverse components to the line are given in polar coordinates by κ⊥ and φ. From
Eq. (4.56) we conclude that the soft modes lying around the transverse gapless lines
generally have a linear behaviour in κ⊥, similar to those described by Eq. (4.55). In the
transverse planes defined by (Cz − 1) = 0, they acquire a softer, quadratic behaviour.
This is explained by the fact that in those planes, 2 lines of gapless modes are crossing:
one line along the special ky direction, and one line along the other transverse direction
kx. Soft modes lying around these lines both have a linear behaviour, such that the
quadratic behaviour is naturally expected at their intersection. The associated crossing
points are displayed as the red balls on the right panel of Fig. (4.2).

The same line of argument no longer applies for the cubic behaviour of the soft
modes in the kxkz planes at those crossing points, see Eq. (4.55). Indeed, in those
planes, two gapless lines along the transverse components kx and kz are crossing. Be-
cause such lines generally have a linear behaviour (see Eq. (4.56)), one would expect
only a quadratic behaviour at their intersection, rather than a cubic behaviour. There-
fore, the situation here differs from what was observed in the AF1 state. Indeed,
there seems to be an odd behaviour of the soft modes, which acquire a particularly
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soft asymptotic behaviour in the kxkz plane at those crossing points. They are there-
fore expected to play the dominant role in the behaviour of the free energy ∆F (T ) of
Eq. (4.33). The asymptotic behaviour of ϵ−3k around these crossing points is given by:

ϵ−3k
JS

≈ 2
√
2 ·
√
κ2x + κ2z

{
κ2y + κ2xκ

2
z/4
}1/2

, (4.57)

where κα is defined in Eq. (4.41). This expression is generally quadratic in κ, except
in the κy = 0 plane, where it has the soft cubic behaviour. This is in agreement with
the study of the soft modes around different types of gapless lines.

For the sake of completeness, let me also give the asymptotic expression for the soft
modes lying around the other type of crossing points. These points are displayed as
the red diamonds on the right panel of Fig. (4.2), and also correspond to the crossing
between 3 lines:

ϵ−3k
JS

≈ 4

{(
κ2x + κ2z

)
− |κ2x − κ2z|

(
1− κ2y/2

)}1/2

. (4.58)

This expression is rather peculiar. We see that the modes generally have a non-analytic
linear behaviour in either κx or κz. One might interpret this as the fact that the two
gapless lines along the transverse kx and kz directions do not ”see” each other, and
thus do not multiply to lead to a quadratic behaviour. On the contrary, in the kxky
and kykz planes, the dispersion acquires a softer, quadratic behaviour, which can be
explained by the intersection of 2 gapless lines in those planes: one line along the ky
direction, and one line along the other transverse direction. Both have a generally
linear behaviour and therefore the dispersion becomes quadratic at their crossing. Let
us add, that in those kxky and kykz planes, the expression of ϵ−3k given by Eq. (4.58) is
the same as the expression for the other type of points in those planes (see Eq. (4.57)).
Indeed, taking either κx = 0 or κz = 0 in Eq. (4.57) and in Eq. (4.58), we obtain the
same expression:

ϵ−3k
JS

≈ 2
√
2|κyκz/x| . (4.59)

In summary, the softest modes of the harmonic spin-wave spectrum of the AF3
state seem to be located in the lower branch of the spectrum, around the special points
equivalent to the Γ point (red balls on the right panel of Fig. (4.2)). Let us now evaluate
the expected temperature dependence of ∆F (T ) associated to these soft modes. Their
asymptotic expression is given in Eq. (4.57), which I rewrite here in a more convenient
manner:

ϵ−3k
JS

≈
√
κ2⊥κ

2
y + aκ6⊥ . (4.60)

In the above, κ⊥ =
√
κ2x + κ2z and a contains the angular dependence with φ:

a(φ) = cos2 φ sin2 φ/4 . (4.61)
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Note as well that a prefactor 2
√
2 has been absorbed, being of no importance here.

Substituting Eq. (4.60) in Eq. (4.33), and using again the renormalized temperature
T ′ defined by Eq. (4.46), we obtain for the free energy associated to these soft modes
at very low temperatures:

∆F3(T )

JS

∣∣∣∣
T→0

≈ T ′ 1

v

∫
v

ln
[
1− e−

√
κ2
⊥κ2

y+aκ6
⊥/T ′

]
dk . (4.62)

In terms of the relevant variables κx, κ⊥ and φ, this becomes:

∆F3(T )

JS

∣∣∣∣
T→0

∼ T ′
∫ π

−π

dκy

∫ 2π

0

dφ

∫ κmax

0

ln
(
1− e−

√
κ2
⊥κ2

y+aκ6
⊥/T ′

)
κ⊥dκ⊥ . (4.63)

The upper limit κmax for the transverse κ⊥ component is of the order of π. Its precise
value is of no interest here, as only very low-lying modes (κ⊥ → 0) are contribut-
ing significantly. In the above expression, prefactors have been left out, as we are
only interested in the temperature dependence. Let us make the following change of
variables:

x = κ⊥ , y2 = κy . (4.64)

We have then from Eq. (4.63):

∆F3(T )

JS

∣∣∣∣
T→0

∼ T ′
∫
dφ

∫ ∫
xy ln

(
1− e−

√
x2y4+ax6/T ′

)
dxdy . (4.65)

We go to polar coordinates in the xy plane through the following change of variable:

x = ρ cos θ , y = ρ sin θ . (4.66)

Eq. (4.65) becomes:

∆F3(T )

JS

∣∣∣∣
T→0

∼ T ′
∫
dφ

∫ ρmax

0

∫ π
2

0

ρ3 cos θ sin θ ln
(
1− e−fρ3/T ′

)
dρdθ , (4.67)

where ρmax is of the order of
√

4π
a
, and f contains all angular dependence:

f(θ, φ) = | cos θ|
√

sin4 θ + a(φ) cos4 θ . (4.68)

We define finally the following new variable t:

t3 =
fρ3

T ′ , (4.69)

such that Eq. (4.67) becomes:

∆F3(T )

JS

∣∣∣∣
T→0

∼ T ′7/3
∫ ∫

g (θ, φ) dφdθ

∫ Λ

0

t3 ln
(
1− e−t3

)
dt , (4.70)
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where the function g (θ, φ) is defined as follows:

g (θ, φ) =
cos θ sin θ[
f(θ, φ)

]4/3 . (4.71)

The precise value of the cutoff parameter Λ for the integral in t has no importance.
Indeed, as for the AF1 state, one can approximate this integral by the integral up to
∞, provided that the temperature T ′ → 0. It is possible to show that this leads to a
converging, definite value for the intagral:∫ Λ

0

t3 ln
(
1− e−t3

)
dt ≈

∫ ∞

0

t3 ln
(
1− e−t3

)
dt = −1

4
Γ

(
7

3

)
ζ

(
7

3

)
. (4.72)

Then only remains the integral over the angular function in the asymptotic expression
for the free energy of Eq. (4.70):

∆F3(T )

JS

∣∣∣∣
T→0

∼ T ′7/3
∫ ∫

g (θ, φ) dφdθ . (4.73)

It can be shown that the angular integral does converge as well, such that from the
above expression we recover the low-temperature T 7/3 dependence of the free energy
of the AF1 state, see Eq. (4.35).
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4.3 Discussion and conclusion

The low-temperature physics of the fcc Heisenberg AFM gives a valuable insight on the
competition that can take place in highly frustrated magnets, between various kinds
of OBD processes driven by different fluctuations. The main findings of this study can
be summarized in three major points.

First, it appears that quantum and thermal fluctuations do not necessarily induce
the stabilization of the same ordered ground state. Although collinear spin configu-
rations are favored by fluctuations of both origins, as predicted decades ago [8, 109],
there is in principle no guarantee that the same collinear state is selected. This can
be intuitively understood from the different functions that are involved in the two pro-
cesses. For the quantum OBD at T = 0, the energy of a given state gets first quantum
corrections from the zero point motion E0 of spin-waves, see Eq. (4.1):

E0 =
1

2

∑
k

ϵk , (4.74)

where ϵk is the spin-wave spectrum. The state selected by quantum fluctuations is the
one that minimizes E0, which corresponds to the state of smallest average spectrum.
In that respect, magnons of all energies are involved in the quantum OBD. For the
thermal OBD at T > 0, the free energy gain ∆F (T ) of a state is given by Eq. (4.33),
which goes as:

∆F (T ) = kBT
∑
k

ln
(
1− e−ϵk/kBT

)
. (4.75)

At low temperatures, minimization of ∆F (T ) acts in favor of states with the ”most low-
lying” excitations. Therefore, only low-energy magnons are involved in thermal OBD.
In most cases, the state with lowest-lying modes coincides with the state of smallest
average spectrum, and quantum and thermal fluctuations select the same state. This
property is, however, not always verified. Indeed, since the two selection mechanisms
rely on magnons with different energies, their outcome can also vary. A few other
authors have reported a similar competition effect between the two OBD mechanisms
[105, 106, 110].

Lowest-lying modes are obviously located in the vicinity of zero-energy modes.
In any broken-symmetry state of given ordering wave-vector Q, gapless modes must
appear in the the spectrum at positions k ∈ {0,Q} and equivalent points. Those are
the true Goldstone modes. As previously stated however, in frustrated magnets the
classical ground-state manifold is accidentally enlarged, which induces the presence of
additional gapless modes in the harmonic dispersion, the so-called pseudo-Goldstone
modes. In principle, each ordered classical ground state has a specific structure for its
pseudo-Goldstone modes, as is illustrated on Fig. (4.2) for the AF1 and AF3 states.
This takes us to the second point: the structure of zero energy modes of the spectrum
and surrounding soft modes drives the low-T energetics of the quantum spin system.
Indeed, the softness requirement for minimization of the free energy of Eq. (4.75) not
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only depends on the softness of the low-lying modes, but also on the dimensionality
of the zero energy modes around which they lie. This is well illustrated with the AF1
and AF3 states. Because the softest modes of the AF1 state (which have quadratic
dispersion in k) exist around whole lines in reciprocal space, they induce a sharper
free-energy asymptote when T → 0.

In the fcc Heisenberg AFM studied here, thermal fluctuations are able to over-
come the original energy difference between the two states at T = 0. This is made
possible because this energy difference is particularly tiny, see Eq. (4.30). The third
point would be that the competition between quantum and thermal OBD might lead
to a low temperature phase transition when two states are extremely close in energy.
Therefore, in situations where the classical ground-state manifold comprises more than
one collinear state, one might need to be cautious when making assumptions on the
selection operated by one type of OBD (quantum or thermal), from knowledge of the
selection operated by the other.

4.3.1 Summary of the chapter

In this chapter I studied ground-state selection from quantum and thermal fluctua-
tions in the nearest-neighbor fcc Heisenberg antiferromagnet. Using linear spin-wave
theory, I derived analytical expressions for the harmonic spin-wave spectra of compet-
ing classical ground states, see Eq. (4.13), Eq. (4.14) and Eq. (4.26). The first, 1/S
quantum correction to the ground-state energy is computed by standard Monte-Carlo
integration of the spectra for each state. This correction lifts the classical ground-state
degeneracy and the AF3 state is selected at T = 0 via the quantum order-by-disorder
mechanism, see Fig. (4.1) and Eqs. (4.28 - 4.30).

I also studied the ground-state selection operated by thermal fluctuations at low
temperature. Note that we remain in the quantum system, such that the relevant
quantity to look at is the free energy as a function of temperature ∆F (T ), which
corresponds to the thermal population of low-lying magnons. It is computed by Monte-
Carlo integration for the two competing collinear ground states (AF1 and AF3). The
AF1 state is favored by thermal fluctuations rather than the AF3 state. Therefore,
quantum and thermal order by disorder compete in this system at the harmonic level.
The tiny ground-state energy difference at T = 0 is overcome by the thermal selection.
As a result, a first-order phase transition is expected at low temperature from the
competition between the two types of order by disorder, see Fig. (4.4) and Eq. (4.34).

The low-temperature behaviour of the free-energy is particularly sharp both for
AF1 and AF3 states, compared to the typical T 4 behaviour expected for normal anti-
ferromagnets, see Eq. (4.35). This is explained by the different structure of the pseudo-
Goldstone modes and low-lying modes around them, see Fig. (4.2) and Fig. (4.3).
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Chapter 5

Effects of magnon-magnon
interactions

As said previously, available theoretical results diverge regarding the question of the
ground state selected by fluctuations in the fcc Heisenberg antiferromagnet. The lin-
ear spin-wave analysis presented in the previous chapter indicates that the AF3 state
should be favored by quantum fluctuations at T = 0, while the AF1 state is favored
by thermal fluctuations at small finite T . In that case the two order-by-disorder mech-
anisms compete, and one expects a low-T first-order phase transition from one state
to the other. Such a situation, where quantum and thermal fluctuations do not lead
to the same ground-state selection, has been only rarely seen before. Furthermore,
the obtained ground-state energies of the two competing states are remarkably close
within the harmonic approximation. This tiny energy difference suggests that the next
order in spin wave expansion might change the qualitative result. It is also well known
that the degree of frustration is exceptionally high in the vicinity of classical phase
boundaries, which makes the 1/S expansion of SWT somewhat less reliable in those
regions, as fluctuations are believed to be large. All these elements call for a deeper
investigation of the problem.

In that perspective, in this chapter I improve the spin-wave theory approach by
incorporating the effects of magnon-magnon interactions. First, the spin-wave Hamil-
tonian with interactions is derived. Quartic terms in bosonic operators are decoupled
with the Hartree-Fock method so as to obtain a new effective quadratic Hamiltonian.
This effective Hamiltonian now includes mean-field variables that account for inter-
actions. Then, analytical expressions for the spectra and mean-field averages of the
competing states are derived, separately for the AF1 and AF3 state.

From these expressions, the ground-state energy with quantum corrections is com-
puted for the two states. This is done both in a perturbative approach, and with a
self-consistent renormalization of the spin-waves. Note that the latter corresponds to
the T = 0 version of Takahashi’s modified SWT. By comparison of these energies, it
appears that the ground state selected at T = 0 by quantum fluctuations is the AF1
state, for most values of spin length. This is at variance with the harmonic result,
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which is recovered qualitatively only at a very large spin S ≳ 10. The self-consistently
renormalized spectra acquire quantum gaps along pseudo-Goldstone modes, of which
the expression is given, as well as spin-wave velocities.

Then, the thermal OBD is addressed at low-temperature, from thermal population
of low-lying magnons. The AF1 state remains the state selected by thermal fluctua-
tions. Conventional T 4 asymptotic behaviour for the free energy ∆F (T ) is recovered at
very low temperatures, which is directly related to the self-consistent renormalization
of the spectra.

The values of the ground-state energies of the AF1 and AF3 states, obtained via the
self-consistent approach, compare well to numerical data. This confirms the efficiency
of the method, despite an apparent failure of the perturbative spin-wave expansion in
that system.

5.1 Spin-wave theory with interactions: energy

corrections and spectra

In harmonic spin-wave theory, the effects of interactions between magnons are ne-
glected. Indeed, expanding the Holstein-Primakoff transformation of spin operators
(see Eq. (1.20)) to lowest order only, leads to terms which are at most quadratic in
bosonic operators ai, a

†
i . The resulting quadratic Hamiltonian, after Bogolyubov diag-

onalization, describes a standard single-particle problem (see Eq. (A.41)):

ĤLSW = Eg.s. +
∑
k,m

ϵmk · β†
k,mβk,m , (5.1)

where ϵmk is the energy of a particle (spin-wave) of momentum k in mode m. To take
into account the effects of interactions, we need to expand the Hostein-Primakoff trans-
formation further (see Eqs. (A.4 - A.5)). In this section, we include in the Hamiltonian
the terms describing 2 bosons interactions. The Holstein-Primakoff transformation is
given below to relevant order:

S+
i ≈

√
2S

(
ai −

1

4S
a†iaiai

)
,

S−
i ≈

√
2S

(
a†i −

1

4S
a†ia

†
iai

)
, (5.2)

Sz
i = S − a†iai .

Following the standard spin-wave method described in appendix (A), this transforma-
tion is done in the locally rotated frame of classical spins, see Eq. (A.7). The spin
operators in the original spin Hamiltonian of Eq. (4.4) are substituted by Eq. (5.2),
leading to the bosonic spin-wave Hamiltonian. For the sake of simplicity, we keep all
information about the bosonic mode and the position in the lattice encapsulated in the
i and j indices for now.
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5.1.1 General spin-wave Hamiltonian in real space

Since the two classcial ground states we aim at comparing are collinear spin structures
(AF1 and AF3), the scalar products in Eq. (4.4) can be of two kinds: either between
parallel spins (↑↑) or antiparallel spins (↑↓). This allows us to obtain a general expres-
sion for the spin-wave Hamiltonian with interactions in real space, and for the resulting
quantum corrections to the ground-state energy up to second order in 1/S. In the local
rotated frame (see Eq. (A.7)), the two kinds of scalar products are expressed as:

(Si · Sj)
↑↑ =Sz

i S
z
j +

1

2

(
S+
i S

−
j + S−

i S
+
j

)
, (5.3)

(Si · Sj)
↑↓ =− Sz

i S
z
j −

1

2

(
S+
i S

+
j + S−

i S
−
j

)
. (5.4)

We substitute Eq. (5.2) into Eqs. (5.3-5.4), and we truncate the obtained expressions,
keeping only up to quartic terms in bosonic operators. Let us express the associated
bond Hamiltonians Ĥij in the expanded form:

Ĥij = JSi · Sj ≈ εclij +H(2)
ij +H(4)

ij . (5.5)

In the above expression, H(n)
ij corresponds to the nth order in the spin-wave expansion,

meaning that it contains only terms involving products of n bosonic operators. The
classical energy εclij of a given bond is trivially given by:

εclij = H(0)
ij = ±JS2 , (5.6)

the positive (resp. negative) sign corresponding to a pair of parallel spins ↑↑ (resp.

antiparallel spins ↑↓). The quadratic contribution H(2)
ij represents the first quantum

correction to the ground-state energy, and is given below for the two types of bonds:[
H(2)

ij

]↑↑
=JS

(
a†iaj + a†jai − a†iai − a†jaj

)
, (5.7)[

H(2)
ij

]↑↓
=JS

(
a†iai + a†jaj − aiaj − a†ia

†
j

)
. (5.8)

This harmonic contribution captures the free bosons physics, and goes as S1. It thus
generates a 1/S correction to the classical ground-state energy (which goes as S2 as

is seen from Eq. (5.6)). The quartic terms in H(4)
ij go as S0 and account for magnon-

magnon interactions. They generate a 1/S2 correction to the classical ground-state
energy. We explicitly give them below:[

H(4)
ij

]↑↑
= J

[
a†iaia

†
jaj −

1

4

(
a†iaja

†
iai + a†jaia

†
jaj + a†iaia

†
jai + a†jaja

†
iaj

)]
, (5.9)[

H(4)
ij

]↑↓
= −J

[
a†iaia

†
jaj −

1

4

(
a†iaiaiaj + a†jajaiaj + a†ia

†
ja

†
jaj + a†ia

†
ja

†
iai

)]
. (5.10)
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From Eqs. (5.5-5.10), one can rewrite the original spin Hamiltonian of Eq. (4.4) in its
expanded form:

Ĥ =
∑
⟨i,j⟩

Ĥij ≈ Ecl +H(2) +H(4) , (5.11)

where the total classical energy Ecl is given by Eq. (4.3).

Mean-field decoupling of quartic terms

Evaluating quartic terms as is requires solving tedious 3-dimensional integrals in re-
ciprocal space. It is however possible to simplify this problem by applying a standard
Hartree-Fock decoupling to those terms. The assumption behind this approximation is
that correlations between fluctuations around the mean fields are small. The following
mean-field averages are defined:

n = ⟨a†iai⟩ ,
mij = ⟨a†iaj⟩ , (5.12)

∆ij = ⟨a†ia
†
j⟩ .

The notation ⟨·⟩ stands for the expectation value of a given operator in the ground state
considered. Note that the particle number mean field n does not depend on the site
position, as we are in a Bravais lattice. Let me show how one decouples a given quartic
term, say a†iaia

†
jaj. One can show that it must involve all possible pair decouplings,

which leads to the following:

a†iaia
†
jaj ≈n

(
a†iai + a†jaj

)
+mij

(
a†iaj + a†jai

)
+∆ij

(
aiaj + a†ia

†
j

)
− n2 −m2

ij −∆2
ij . (5.13)

Similar expressions are obtained for all the quartic terms in Eqs. (5.9 - 5.10). The hop-
ping averagemij vanishes for pairs of antiparallel spins (↑↓ bonds), while the anomalous
average ∆ij vanishes for parallel spins (↑↑ bonds).

Effective quadratic Hamiltonian

After the decoupling, H(4)
ij takes an effective quadratic form, such that the bond Hamil-

tonian is given by:
Ĥij ≈ H̃(0)

ij + H̃(2)
ij , (5.14)

where H̃(n)
ij contains both the original nth order terms of Eq. (5.5), and the additional

effective part coming from the decoupling of quartic terms. Below we give the explicit
final quadratic form for the two kinds of bond Hamiltonians:

Ĥ↑↑
ij ≈ J

{
S2 −

(
n−mij

)2 − S↑↑
ij

[
a†iai + a†jaj − a†iaj − a†jai

]}
, (5.15)

Ĥ↑↓
ij ≈ −J

{
S2 −

(
n−∆ij

)2 − S↑↓
ij

[
a†iai + a†jaj − aiaj − a†ia

†
j

]}
, (5.16)
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where we defined renormalized spin values:

S↑↑
ij = S − n+mij , (5.17)

S↑↓
ij = S − n+∆ij .

Substituting Eqs. (5.15-5.16) into Eq. (5.11), one obtains the final quadratic Hamilto-
nian in the Hartree-Fock approximation:

ĤHF = H̃(0) + H̃(2) , (5.18)

where H̃(n) is the nth order Hamiltonian including the effective mean-field contribution
from interactions:

H̃(n) = H(n) +H(n)
eff . (5.19)

We have for the constant part:

H̃(0) = Ecl +∆E(0) . (5.20)

The classical ground-state energy Ecl = H(0) is degenerate for the two competing states
AF1 and AF3. We recover the expression of Eq. (4.3):

Ecl

N
=
JS2

N


↑↑∑
⟨i,j⟩

−
↑↓∑
⟨i,j⟩

 = −2JS2 ∼ S2 . (5.21)

Indeed, in both configurations, each spin has 4 of its nearest neighbors parallel to it
(↑↑ bonds), and the 8 remaining are antiparallel (↑↓ bonds). The second term ∆E(0)

in Eq. (5.20) is a correction coming from the interactions:

∆E(0) = J

[ ↑↓∑
⟨i,j⟩

(n−∆ij)
2 −

↑↑∑
⟨i,j⟩

(n−mij)
2

]
∼ S0 . (5.22)

The quadratic part of Eq. (5.18) is given by:

H̃(2) = J

↑↓∑
⟨i,j⟩

S↑↓
ij

[
a†iai + a†jaj − aiaj − a†ia

†
j

]
(5.23)

− J

↑↑∑
⟨i,j⟩

S↑↑
ij

[
a†iai + a†jaj − a†iaj − a†jai

]
.

General expression for the ground-state energy

Finally, one obtains the ground-state energy with quantum corrections by averaging
the Hamiltonian over the ground state. From Eqs. (5.18 - 5.23), we find:

Egs ≈ ⟨ĤHF⟩ = J

 ↑↑∑
⟨i,j⟩

(
S↑↑
ij

)2
−

↑↓∑
⟨i,j⟩

(
S↑↓
ij

)2 . (5.24)
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The quantum corrections to the ground-state energy of a given state are thus expressed
as a function of the local mean-field averages n, mij and ∆ij in that state, see Eq. (5.24)
and Eq. (5.17). Fortunately, one does not need to compute independently the values
of the mean-field averages mij and ∆ij for all pairs of nearest-neighbor spins. Indeed,
many of those pairs are equivalent, such that we can define a few different categories of
pairs. Therefore only a number of mean-field averages equal to the number of categories
needs to be computed. This is done differently for the two competing states, as is shown
in the next two sections.

5.1.2 The AF1 state

The AF1 state is shown on Fig. (3.4a). I remind the reader that in this state, all spins
are equivalent to each other up to a rotation, meaning that a single-boson picture is
sufficient to fully describe it within SWT. In that context, all pairs of parallel nearest-
neighbor spins are also equivalent, and they should have the same mean-field behaviour.
The hopping average mij, see Eq. (5.12), is thus uniquely defined for all ↑↑ spin pairs:

m↑↑
ij = m =

1

4N

∑
R

∑
δ↑↑

⟨a†RaR+δ⟩ . (5.25)

We defined δ↑↑ ∈ {±a1,±a4}, which spans the 4 nearest-neighbor vectors between
parallel spins in the AF1 structure. Similarly, the anomalous average ∆ij is uniquely
defined for all ↑↓ bonds:

∆↑↓
ij = ∆ =

1

8N

∑
R

∑
δ↑↓

⟨aRaR+δ⟩ , (5.26)

where δ↑↓ ∈ {±a2,±a3,±a5,±a6} spans the 8 nearest-neighbor vectors between an-
tiparallel spins. The hopping averagem↑↓

ij for pairs of antiparallel spins, and the anoma-

lous average ∆↑↑
ij for pairs of parallel spins, both vanish. The ground-state energy with

quantum corrections is then easily obtained from Eq. (5.24):

E1

N
≈ 2J(S − n+m)2 − 4J(S − n+∆)2 = 2J

[
S↑↑
]2 − 4J

[
S↑↓
]2

. (5.27)

The two renormalized spins S↑↑ and S↑↓ follow from Eq. (5.17):

S↑↑ =S − n+m , (5.28)

S↑↓ =S − n+∆ . (5.29)
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We apply a Fourier transformation to the bosonic operators in Eqs. (5.25 - 5.26), in
order to get expressions for the mean filed averages in reciprocal space:

n =
1

N

∑
k

⟨a†kak⟩ ,

m =
1

4N

∑
k

⟨a†kak⟩
∑
δ↑↑

eik·δ =
1

N

∑
k

⟨a†kak⟩ CyCz , (5.30)

∆ =
1

8N

∑
k

⟨aka-k⟩
∑
δ↑↓

e−ik·δ =
1

2N

∑
k

⟨aka-k⟩ Cx
(
Cy + Cz

)
.

We remind the reader that the definition of Cα, with α ∈ {x, y, z}, given by Eq. (3.7).
One needs to compute the expectation values of the normal and anomalous terms

(⟨a†kak⟩ and ⟨aka-k⟩, respectively) in the ground state, in order to obtain values for n,
m and ∆. The ground state is, however, not defined straightforwardly in terms of the
ak particles. Indeed, as in the harmonic case, the Hamiltonian is not diagonal in this
basis, and needs to be diagonalized through the Bogolyubov transformation.

Hamiltonian in reciprocal space

The mean-field averages defined in Eqs. (5.25 - 5.26) are substituted into the quadratic
part of the Hamiltonian given by Eq. (5.23). After the Fourier transformation, we ob-
tain the quadratic Hamiltonian in reciprocal space, which has the exact same structure
as in the harmonic approximation (see Eq. (4.9)):

H̃(2) =
∑
k

{
Aka

†
kak −

1

2
Bk

(
a†ka

†
-k + a-kak

)}
. (5.31)

The coefficients Ak and Bk now include both the harmonic contribution and a contri-
bution coming from interactions with mean fields:

Ak =4J (S − n+m) (1 + CyCz) + 8J (∆−m) = 4JS↑↑(CyCz − 1) + 8JS↑↓ , (5.32)

Bk =4J (S − n+∆) Cx(Cy + Cz) = 4JS↑↓ · Cx(Cy + Cz) . (5.33)

The quadratic Hamiltonian of Eq. (5.31) has the standard structure for the single-
boson picture, see Eq. (A.9). One recovers the harmonic Hamiltonian by ignoring all
contributions from mean-field averages in H̃(0) (see Eqs. (5.20 - 5.22)) and in H̃(2) (see
Eqs. (5.31 - 5.33)). Indeed, the expressions ofAk andBk in the harmonic approximation
are recovered when taking S↑↑ = S↑↓ = S in Eqs. (5.32 - 5.33), or q = 0 in Eq. (4.11).

Bogolyubov transformation and spectrum

The quadratic Hamiltonian given in Eqs. (5.31 - 5.33) is diagonalized using the standard
Bogolyubov transformation in a single-boson picture. Because it will be useful later,

104



let me write the transformation explicitly. We define new particles with corresponding
bosonic operators βk, β

†
k:

ak = ukβk + vkβ
†
-k . (5.34)

The coefficients uk and vk are real. Eq. (5.34) is substituted in Eq. (5.31) in order to
get the Hamiltonian in terms of the new operators βk. We impose that in this new
basis, the anomalous terms must vanish identically, which constrains the coefficients
uk and vk. From bosonic commutation relations (which must be verified both in the
old basis and in the new one), we obtain the following:

v2k =
1

2

(
Ak

ϵ1k
− 1

)
,

u2k =
1

2

(
Ak

ϵ1k
+ 1

)
, (5.35)

2ukvk =
Bk

ϵ1k
.

In the above, ϵ1k is the spin-wave spectrum:

ϵ1k =
√
A2

k −B2
k . (5.36)

Although this expression for ϵ1k is exactly the same as in the harmonic approximation
(see Eq. (4.12)), the coefficients Ak and Bk now involve the different mean fields, see
Eqs. (5.32 - 5.33). The spectrum is therefore renormalized by interactions.

Diagonal Hamiltonian and zero point motion

After the Bogolyubov transformation, the quadratic part of the Hamiltonian (Eq. (5.31))
has a fully diagonal structure:

H̃(2) =
∑
k

[
ϵ1k

(
β†
kβk +

1

2

)
− 1

2
Ak

]
. (5.37)

The ground state is now naturally defined as the vacuum of βk particles (magnons).
The correction to the ground-state energy associated to the quadratic Hamiltonian of
Eq. (5.37) is given by:

∆E(2) =
1

2

∑
k

(ϵ1k − Ak) . (5.38)

It contains both the harmonic correction in S1 and a correction in S0 coming from
the interaction with mean fields. The total ground-state energy per site with quantum
corrections is given by:

Egs

N
≈
(
Ecl +∆E(0) +∆E(2)

)
/N , (5.39)

where Ecl and ∆E(0) are given by Eq. (5.21) and Eq. (5.22), respectively, and ∆E(2) is
given by Eq. (5.38). As is shown below, the correction obtained through Eq. (5.39) is
exactly equivalent to the previously obtained expression, see Eq. (5.27).
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mean-field averages

We wish to have expressions for the expectation values appearing in the definitions
of mean-field averages, see Eq. (5.30). From the explicit Bogolyubov transformation
given by Eqs. (5.34), we obtain:

⟨a†kak⟩ =u
2
k ⟨β

†
kβk⟩+ ukvk

(
⟨β†

kβ
†
-k⟩+ ⟨β-kβk⟩

)
+ v2k ⟨β-kβ

†
-k⟩ = v2k , (5.40)

⟨aka-k⟩ =u2k ⟨β-kβk⟩+ ukvk

(
⟨βkβ†

k⟩+ ⟨β†
-kβ-k⟩

)
+ v2k ⟨β

†
kβ

†
-k⟩ = ukvk . (5.41)

In the above, the last equality for both lines comes from the fact that all expectation
values for quadratic terms of βk operators vanish in the Bogolyubov vacuum, except
one:

⟨0|β†
kβk|0⟩ = ⟨0|β†

-kβ-k|0⟩ = 0 ,

⟨0|β†
kβ

†
-k|0⟩ = ⟨0|β-kβk|0⟩ = 0 ,

⟨0|βkβ†
k|0⟩ = ⟨0|β-kβ†

-k|0⟩ = 1 .

We substitute Eqs. (5.40 - 5.41) into the expressions for the mean-field averages, see
Eq. (5.30). From the explicit coefficients of the Bogolyubov transformation given in
Eq. (5.35), we get:

n =
1

N

∑
k

Ak

2ϵ1k
− 1

2
,

m =
1

N

∑
k

Ak

2ϵ1k
· CyCz , (5.42)

∆ =
1

N

∑
k

Bk

4ϵ1k
· Cx(Cy + Cz) .

Equivalence of two expressions for the ground-state energy

Using Eq. (5.36), we have for the zero-point motion appearing in Eq. (5.38):

1

2N

∑
k

ϵ1k =
1

2N

∑
k

A2
k −B2

k

ϵ1k
, (5.43)

where Ak and Bk are given in Eqs. (5.32 - 5.33). This gives

1

2N

∑
k

ϵ1k =
4J

N

∑
k

{
Ak

[
S↑↑(CyCz − 1) + 2S↑↓

]
2ϵ1k

− Bk · S↑↓Cx(Cy + Cz)
2ϵ1k

}
.
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Rearranging terms in the above leads to:

1

2N

∑
k

ϵ1k =4JS↑↑

 1

N

∑
k

Ak

2ϵ1k
· CyCz −

1

N

∑
k

Ak

2ϵ1k

 (5.44)

+8JS↑↓

 1

N

∑
k

Ak

2ϵ1k
− 1

N

Bk

4ϵ1k
· Cx(Cy + Cz)

 .

We see that the definitions of the mean-field averages given in Eq. (5.42) appear in the
curl brackets. Substituting them in Eq. (5.44), we obtain:

1

2N

∑
k

ϵ1k = 8JS↑↓
(
n−∆+ 1/2

)
− 4JS↑↑

(
n−m+ 1/2

)
. (5.45)

We also have:

1

2N

∑
k

Ak = 2JS↑↑
1

N

∑
k

(
CyCz − 1

)
+ 4JS↑↓

1

N

∑
k

= 4J · S↑↓ − 2J · S↑↑ . (5.46)

Combining Eq. (5.45) and Eq. (5.46), we obtain the following expression for the cor-
rection ∆E(2) of Eq. (5.38):

∆E(2)

N
= 8JS↑↓(n−∆)− 4JS↑↑(n−m) . (5.47)

The correction ∆E(0) added to the constant part of the Hamiltonian from interactions
is given by Eq. (5.22):

∆E(0)

N
= 4J(n−∆)2 − 2J(n−m)2 . (5.48)

Finally, we combine Eq. (5.47) and Eq. (5.48) to the classical ground-state energy
Ecl = −2NJS2, and we obtain the ground-state energy with quantum corrections from
Eq. (5.39):

Egs

N
≈− 2JS2 + 4J(n−∆)2 − 2J(n−m)2 + 8JS↑↓(n−∆)− 4JS↑↑(n−m)

=2J
[
S↑↑
]2 − 4J

[
S↑↓
]2

. (5.49)

We recover the expression of Eq. (5.27).
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5.1.3 The AF3 state

The AF3 state is shown on Fig. (3.4b). As was said in subsection 4.1.1, it is more
complex than the AF1 state and requires to define at least two different magnon modes,
which we refer to as mode a and b. The sites which belong to the mode a (resp. mode
b) are illustrated as full arrows (resp. empty arrows) on Fig. (3.4b). The magnetic unit
cell is then enlarged and contains two sites of the original Bravais lattice, one site at
position R belonging to mode a, and the other at position R+ a3 belonging to mode
b, where a3 is given by Eq. (3.2). Such an enlarged unit cell is given by sites 1 and 2
on Fig. (3.4b). The translation vectors used to locate any unit cell become a/2(1, 0, 1),
a/2(−1, 0, 1) and a(0, 1, 0).

Within this description, the nearest neighbors of a spin of a given mode do not only
belong to the opposite mode, as is the case for simple bipartite structures. Indeed,
nearest-neighbor vectors δ ∈ {±a2,±a5} always connect sites located in the same xz
plane, and therefore belonging to the same bosonic mode. Consequently, one needs
to distinguish between pairs of nearest-neighbor spins belonging to a same mode, or
to different modes. Take note that two spins belonging to the same mode do not
necessarily have the same orientation. Equivalently, two spins belonging to opposite
modes do not necessarily have a different orientation. We need to introduce different
mean-field averages for each different type of nearest-neighbor spin pairs. There are 3
such categories of pairs:

- (↑↓ab) pairs: antiparallel pairs of spins of opposite magnon modes:
we define the anomalous mean-field average ∆ij = ∆ for such pairs.

- (↑↑ab) pairs: parallel pairs of spins of opposite magnon modes:
we define the hopping mean-field average mij = m for such pairs.

- (↑↓aa) and (↑↓bb) pairs: antiparallel pairs of spins of same magnon mode:
we define the anomalous mean-field average ∆ij = ∆αα for such pairs.

There are no parallel pairs of nearest-neighbor spins of the same magnon mode, as
planes of spins of a given mode have antiferromagnetic arrangement1. Each spin SR,α is
paired with four nearest neighbors of each category. The 4 nearest neighbors belonging
to the same magnon mode are in positions R + δαα, with δαα ∈ {±a2,±a5}. Their
orientation is opposite to that of SR,α, forming 4 (↑↓αα) pairs. The 8 other nearest
neighbors belong to the opposite sublattice and are located in positions R± δab, with
δab ∈ {a1, -a3, a4, -a6}. 4 of them are antiparallel to SR,α, forming 4 (↑↓ab) pairs. They
are located in positions R+δab or R-δab for α = a or α = b, respectively. The last 4
nearest neighbor have parallel orientation with SR,α, leading to 4 (↑↑ab) pairs. They are
located in positions R-δab or R+δab for α = a or α = b, respectively. The mean-field

1As for the AF1 state, one can show that the hopping average mij vanishes for (↑↓) pairs, while
the anomalous average ∆ij vanishes for (↑↑) pairs.
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averages follow then from Eq. (5.12):

n =
1

N

∑
Rc

{
⟨a†RaR⟩+ ⟨b†RbR⟩

}
, (5.50)

m =
1

4N

∑
Rc

∑
δab

{
⟨a†RbR-δ⟩+ ⟨b†RaR+δ⟩

}
, (5.51)

∆ =
1

4N

∑
Rc

∑
δab

{
⟨a†Rb

†
R+δ⟩+ ⟨aRbR+δ⟩

}
, (5.52)

∆αα =
1

8N

∑
Rc

∑
δαα

{
⟨a†Ra

†
R+δ⟩+ ⟨aRaR+δ⟩+ ⟨b†Rb

†
R+δ⟩+ ⟨bRbR+δ⟩

}
, (5.53)

where the sum over Rc spans the position R of the extended magnetic unit cell con-
taining two sites of the original Bravais lattice, one of each bosonic mode (a and b).

We obtain from Eq. (5.24) an expression in terms of those mean-field averages for
the ground-state energy with quantum corrections:

E3

N
≈ 2J(S − n+m)2 − 2J(S−n+∆)2 − 2J(S − n+∆αα)

2

= 2J
[
S↑↑
]2 − 2J

[
S↑↓
]2 − 2J

[
Sαα
↑↓

]2
. (5.54)

It is not straightforward to obtain analytical expressions for the mean fields n,m, ∆ and
∆αα with the same method as for the AF1 state. Indeed, evaluating the expectation
values of quadratic operators in k-space, as was done in Eqs. (5.40 - 5.41), requires
knowledge of the explicit Bogolyubov transformation. The diagonalization technique
for a multiple-bosons representation which is introduced in appendix (A) only allows
us to find the spin-wave spectrum, but does not give any information on the coefficients
of the change-of-basis matrix. It is nevertheless possible to obtain expressions for the
mean-field averages of the AF3 state from another method, as will be explained in a
future paragraph. For the time being, let me proceed with the standard spin-wave
derivation to determine the renormalized spectrum.

Hamiltonian in reciprocal space

The mean-field averages defined in Eqs. (5.50 - 5.53) are substituted into the quadratic
part of the Hamiltonian given by Eq. (5.23). After the Fourier transformation, we
obtain the quadratic Hamiltonian in reciprocal space, which has the exact same matrix
structure as in the harmonic approximation (see Eq. (4.18)):

Ĥ(2) =
1

2

∑
k

(
X̂†

kHkX̂k − Tr[Ak]
)
, (5.55)

where Hk is a 4× 4 matrix with the same block structure as in Eq. (4.20):

Hk =

(
Ak −Bk

−B†
k Ak

)
. (5.56)
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Note that the sum in Eq. (5.55) is performed over all the k-vectors of the reduced
Brillouin, which is depicted on the right panel of Fig. (4.2). The matrices Ak and Bk

now include both the harmonic contribution and contributions coming from interactions
with mean fields. For the sake of compacity, we define the renormalized spin values
following Eq. (5.17):

S↑↑ =S − n+m ,

S↑↓ =S − n+∆ , (5.57)

Sαα
↑↓ =S − n+∆αα .

It is also useful to define the variable S0 as follows:

S0 = S↑↓ + Sαα
↑↓ − S↑↑ = S − n+∆+∆αα −m . (5.58)

Then the matrices Ak and Bk, of which the diagonal (off-diagonal) elements connect
bosonic operators of the same (opposite) mode, are given by:

Ak = 4J

(
S0 S↑↑ · γk

S↑↑ · γ∗k S0

)
, Bk = 4J

(
Sαα
↑↓ · CxCz S↑↓ · γ∗k
S↑↓ · γk Sαα

↑↓ · CxCz

)
. (5.59)

We remind the reader that γk is given by Eq. (4.22). The quadratic Hamiltonian of
Eq. (5.55) has the standard structure for the multiple-bosons picture, see Eq. (A.11).
One recovers the harmonic Hamiltonian of Eqs. (4.18 - 4.22) by ignoring all contribu-
tions from mean-field averages in H̃(2) (see Eqs. (5.55 - 5.59)).

Bogolyubov transformation and spectrum

The diagonalization process of the quadratic Hamiltonian of Eq. (5.55) is done exactly
in the same way as in the harmonic approximation, see section (4.1.1) and see appendix
(A) for more details. Although tedious, the calculation is a standard diagonalization
of a 2 × 2 matrix, and I give here only the final result. For the sake of compacity, let
me introduce the following functions of k:

µk = C2
y(Cx + Cz)2 ,

πk = S2
y (Cx − Cz)2 ,

mk = S0S↑↑ − S↑↓S
αα
↑↓ · CxCz , (5.60)

pk = S0S↑↑ + S↑↓S
αα
↑↓ · CxCz .

One obtains two branches for the spin-wave spectrum ϵ±3k:

ϵ±3k = 4J
{
Ak ±

√
Dk

}1/2

, (5.61)
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with

Ak =S2
0 −

[
Sαα
↑↓ · CxCz

]2
+

1

4

[(
S↑↑
)2 − (S↑↓

)2]
(µk + πk) , (5.62)

Dk =µkm
2
k + πkp

2
k −

(
S↑↓
)2 (

S↑↑
)2
µkπk . (5.63)

One recovers the harmonic spectrum of Eq. (4.26) by neglecting all mean-field averages,
which amounts to take S0 = S↑↑ = S↑↓ = Sαα

↑↓ = S.

Diagonal Hamiltonian and zero point motion

After diagonalization, we have for Ĥ(2) of Eq. (5.55):

H̃(2) =
∑
k

[
ϵ+3k

(
β†
k,1βk,1 +

1

2

)
+ ϵ−3k

(
β†
k,2βk,2 +

1

2

)
− 1

2
Tr [Ak]

]
. (5.64)

The ground state is the Bogolyubov vacuum, such that the corresponding quantum
correction to the ground-state energy is given by:

∆E(2) =
1

2

∑
k

(ϵ+3k + ϵ−3k − Λ) , (5.65)

whee we have for Λ:
Λ = Tr [Ak] = 8JS0 . (5.66)

Finally, the total ground-state energy per site is obtained from either Eq. (5.39), or
Eq. (5.54). Those two forms are equivalent, and both require to evaluate the mean-field
averages n, m, ∆ and ∆αα.

mean-field averages

Getting analytical expressions for the mean-field averages defined in Eqs. (5.50 - 5.53)
is not as straightforward as for the AF1 case (see Eq. (5.42)). Indeed, we did not
obtain explicitly the Bogolyubov transformation to get the spectrum in Eq. (5.61).
An alternative consists in including an additional term to the original Hamiltonian of
Eq. (4.4), in the form of an artificial field Hx that conjugates to a given field x. Then,
the mean-field average ⟨x⟩ is obtained as follows:

⟨x⟩ = ∂E(Hx)

∂Hx

∣∣∣∣
Hx→0

, (5.67)

where E (Hx) is the ground-state energy in the artificial field Hx. As an example, let
me illustrate this method with the particle number mean field n.

Remembering the definition of n given by Eq. (5.50), we add to the original Hamil-
tonian an interaction term with a corresponding conjugate field Hn:

Ĥ(hn) = ĤHF +Hn

∑
R

(
a†RaR + b†R′bR′

)
. (5.68)
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Once again, R′ = R + a3 is the position of the b site in the magnetic unit cell of
position R. After applying a Fourier transform to the bosonic operators in the above,
on obtains the following, including all relevant terms:

Ĥ(Hn) = ĤHF +
Hn

2

∑
k

(
a†kak + b†kbk + a-ka

†
-k + b-kb

†
-k − 1

)
. (5.69)

It is easily seen that the field term above only couples to the diagonal elements of the
quadratic Hamiltonian. We have therefore:

H̃(2)(Hn) =
1

2

∑
k

[
X̂†

kHk(Hn)X̂k − Λ(Hn)
]
, (5.70)

where Hk(Hn) is straightforwardly given by:

Hk(Hn) = Hk +HnI4 . (5.71)

In the above, Hk is the spin wave matrix without the conjugate field and is given by
Eqs. (5.56 - 5.59). We have naturally for the constant Λ:

Λ(Hn) = Tr[Ak(Hn)] = 8JS0 + 2Hn . (5.72)

Note that the constant part of the spin-wave Hamiltonian in real space remains un-
changed:

H̃(0)(Hn) = H̃(0) . (5.73)

We have therefore, for the ground-state energy:

E3(Hn)

N
=
Ecl +∆E(0)

N
− 2JS0 −

Hn

2
+

1

2N

∑
k,±

ϵ±3k(Hn) . (5.74)

This leads to the following expression for the mean-field average n:

n =
1

N

∂E3(Hn)

∂Hn

∣∣∣∣
Hn→0

= −1

2
+

1

2N

∑
k,±

∂ϵ±3k(Hn)

∂Hn

∣∣∣∣∣
Hn→0

. (5.75)

We need an expression for the spin-wave spectrum in the artificial field ϵ±3k(Hn). To
this end we have to do the Bogolyubov diagonalization of the quadratic Hamiltonian
in field given in Eq. (5.70). Fortunately however, it is not necessary to go through the
whole diagonalization procedure again. Indeed, from Eq. (5.71) it is clear that in order
to include the effects of Hn in the Hamiltonian, one only needs to do the following
transformation in the spin-wave matrix Hk given in Eqs. (5.56 - 5.59):

S0 ⇒ S0(hn) = S0 + hn , with hn =
Hn

4J
. (5.76)
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Therefore, the diagonalization procedure is exactly the same, and the final expression
for the spectrum retains the same form as in no field, given by Eqs. (5.60 - 5.63). The
only modification is the one given by the above transformation on S0(hn). Explicitly,
we have for the spectrum in field:

ϵ±3k(hn) = 4J
{
Ak(hn)±

√
Dk(hn)

}
, (5.77)

with following expressions for Ak(hn) and Dk(hn):

Ak(hn) =Ak + 2hnS0 + h2n , (5.78)

Dk(hn) =Dk + 2hnS↑↑ (µkmk + πkpk) + h2n
(
S↑↑
)2

(µk + πk) .

The functions in no field Ak and Dk in no field are given in Eqs. (5.62 - 5.63), and µk

and πk in Eq. (5.60). From Eqs. (5.76 - 5.78), we have:

∂ϵ±3k(Hn)

∂Hn

=
1

4J

∂ϵ±3k(hn)

∂hn

=
2J

ϵ±3k(hn)

{
2 (S0 + hn)±

S↑↑
[
µkmk + πkpk + hnS↑↑ (µk + πk)

]√
Dk(hn)

}
.

The final expression for n is then derived from Eq. (5.75):

n =
1

N

∑
k,±

{
J

ϵ±3k

[
2S0 ±

S↑↑√
Dk

(µkmk + πkpk)

]}
− 1

2
. (5.79)

In the above, ϵ±3k is the spectrum in no artificial field, and one should refer to Eqs. (5.60
- 5.63) for all the functions of k. This expression is to be integrated over the reduced
Brillouin zone in order to obtain a value for n.

The same method is applied for the 3 remaining mean-field averages m, ∆ and
∆αα. Those mean fields couple to S↑↑, S↑↓ and Sαα

↑↓ , respectively. The spectra in the
corresponding conjugate fields Hm, H∆1 and H∆2 are then given by substituting the
following transformations to Eqs. (5.60 - 5.63):

For m: S↑↑ ⇒ S↑↑(hm) = S↑↑ + hm ,

For ∆: S↑↓ ⇒ S↑↓(h∆1) = S↑↓ − h∆1 , with hx =
Hx

4J
(5.80)

For ∆αα: Sαα
↑↓ ⇒ Sαα

↑↓ (h∆2) = Sαα
↑↓ − h∆2 .

For the sake of lightness, I give here only the final expressions for those three remaining
mean fields. Let me first define the following function:

χ±
k = µkmk ± πkpk . (5.81)
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The mean-field averages in the AF3 state are then given by the following integral
expressions:

n =
J

N

∑
k,±

{
2S0 ±

[
S↑↑ · χ+

k

]
/
√
Dk

ϵ±3k

}
− 1

2
,

m =
J

N

∑
k,±


S↑↑(µk + πk)/2±

[
S0 · χ+

k − S↑↑
(
S↑↓
)2
µkπk

]
/
√
Dk

ϵ±3k

 , (5.82)

∆ =
J

N

∑
k,±


S↑↓(µk + πk)/2±

[
Saa
↑↓ · CxCzχ−

k +
(
S↑↑
)2
S↑↓ · µkπk

]
/
√
Dk

ϵ±3k

 ,

∆aa =
J

N

∑
k,±

{
2Saa

↑↓ · CxCz ±
[
S↑↓ · χ−

k

]
/
√
Dk

ϵ±3k

}
· CxCz .
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5.2 ground-state selection at zero temperature

We now have everything at hand to compute the ground-state energies of the AF1
and AF3 states, including quantum corrections up to second order in the 1/S spin-
wave expansion. The two ground-state energies E1 and E3 are expressed in a most
compact manner from the various mean-field averages of each state, see Eq. (5.27) and
Eq. (5.54). Expressions for these mean-field averages are given by Eq. (5.42) for the
AF1 state, and by Eq. (5.82) for the AF3 state.

It is key to notice, that the determination of these various mean-field averages is
a self-consistent problem. Indeed, for the AF1 case, getting n, m and ∆ involves the
evaluation of integrals of functions of Ak, Bk and ϵ1k, see Eq. (5.42) . Yet those 3
functions do depend on n, m and ∆ themselves, see Eqs. (5.32 - 5.33) and Eq. (5.36).
One shall then compute n, m and ∆ self-consistently. The same goes for the AF3
state, where expressions to obtain the mean-field averages n, m, ∆ and ∆αα involve
functions containing these mean fields, see Eq. (5.82). As a first step, one can compute
the mean-field averages in the harmonic approximation.

5.2.1 Perturbative approach

In the harmonic spin wave approximation, interactions between magnons are neglected
and therefore the mean fields do not appear in the spin-wave Hamiltonian. This implies
that we have S↑↑ = S↑↓ = S for the AF1 state, and S↑↑ = S↑↓ = Sαα

↑↓ = S for the AF3
state.

The AF1 state

We use the harmonic functions A
(0)
k , B

(0)
k , and corresponding harmonic spectrum ϵ

(0)
1k ,

to compute the values of the mean fields in the harmonic approximation. We have:

A
(0)
k =4JS(1 + CyCz) ,

B
(0)
k =4JS · Cx(Cy + Cz) , (5.83)

ϵ
(0)
1k =4JS

√
S2
x(Cy + Cz)2 + S2

yS2
z .

Those are substituted into the integrals on the right hand-side of Eq. (5.42). It is
obvious to notice that within this first approximation, the mean-field averages do not
depend on the spin value. The integrals are evaluated numerically using standard
Monte-Carlo integration on the cubic Brillouin zone (first and second Brillouin zone),
and we obtain:

n(0) =0.338777(3) ,

m(0) =0.109938(2) , (5.84)

∆(0) =0.285365(2) .
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We used NM.C. = 1012 random points in the integration volume. Note that the particle
number average n(0) is indeed the same as was found in the previous chapter for the
spin reduction ∆S1, see Eq. (4.31). From the above values, one easily obtains the
ground-state energy of the AF1 state with quantum corrections for any spin value, see
Eq. (5.27). Let me rewrite this expression in a form that explicitly shows the quantum
corrections to the classical energy in powers of 1/(2S):

E1 = Ecl

[
1 +

4 (2∆−m− n)

(2S)
−

4
[
(n−m)2 − 2(n−∆)2

]
(2S)2

]
. (5.85)

Substituting the mean-field values of Eq. (5.84) into Eq. (5.85) leads to the following:

E1 = Ecl

[
1 +

0.488060

(2S)
− 0.186646

(2S)2

]
. (5.86)

As a first quantum correction, we recover the value obtained from LSWT in the previous
chapter, see Eq. (4.28).

The AF3 state

To obtain first values of n, m, ∆ and ∆αα in the harmonic approximation - that is,
within the harmonic Bogolyubov vacuum - we impose S↑↑ = S↑↓ = Sαα

↑↓ = S in all
the functions appearing in the right hand-side of Eq. (5.82). Note that this means in
particular, that we are using the harmonic spin-wave spectrum given by Eq. (4.26).
The integrals are computed numerically using standard Monte-Carlo integration with
NM.C. = 1012 random Monte-Carlo points in the integration volume. We obtain:

n(0) =0.366331(2) ,

m(0) =0.0283547(6) , (5.87)

∆(0) =0.2232140(6) ,

∆(0)
αα =0.294248(2) .

The particle number average n(0) corresponds to the harmonic spin reduction ∆S3

given in the previous chapter, see Eq. (4.31). The ground-state energy is found from
Eq. (5.88), which I rewrite below with explicit quantum corrections in powers of 1/(2S):

E3 = Ecl

[
1 +

4 (∆ +∆αα −m− n)

(2S)
−

4
[
(n−m)2 − (n−∆)2 − (n−∆αα)

2
]

(2S)2

]
.

(5.88)
We substitute the values of the mean field of Eq. (5.87) into Eq. (5.88), and get the
following:

E3 = Ecl

[
1 +

0.491104

(2S)
− 0.354197

(2S)2

]
. (5.89)

The first quantum correction in 1/(2S) found within LSWT, see Eq. (4.29), is recovered
here.

116



ground-state selection

In Eqs. (5.86, 5.89), the first quantum correction in 1/(2S) comes from the non-
interacting magnons: we recover Eqs. (4.28, 4.29) of the previous chapter. This har-
monic correction has a positive sign, meaning that it lowers the ground-state energy.
Indeed, the classical ground-state energy Ecl is negative, see Eq. (5.21). Within this
harmonic approximation, the AF3 state has lower ground-state energy than the AF1
state for all spin values, see dashed lines on Fig. (5.1). The second correction in 1/(2S)2

comes from the two-bosons interactions. Contrary to the harmonic correction, it is of
negative sign, and it thus increases the ground-state energy. In that sense, one could
say that the effect of interactions somehow compensates partly the large energy low-
ering operated by the harmonic correction. It is striking that this energy correction
remains of the same order of magnitude as the harmonic correction, especially in the
AF3 state. This indicates a strong effect of interactions between magnons, and a possi-
ble instability of the SWT perturbative treatment, especially for small spin values [20].
Fig. (5.1) shows the correction to the ground-state energy of the two states as a function
of inverse spin. It appears that with the effects of magnon-magnon interactions, the

0 0,5 1

-0,5

-0,4

-0,3

-0,2

-0,1

Figure 5.1: Quantum correction to the ground-state energy of the AF1 and AF3 states
as a function of inverse spin 1/(2S). Dashed lines correspond to the harmonic spin-
wave result, which is spin-independent. Full lines show the energy correction including
the effect of interactions, up to second order in 1/S.

ground-state selection operated by quantum fluctuations is completely altered. Indeed,
the AF1 state has lower energy than the AF3 state for all physically relevant values of
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spin. The harmonic result, within which the AF3 state is favored, is recovered only for
a very large spin value. From Eq. (5.86) and Eq. (5.89), the energy difference between
the two states, with quantum correction up to second order in 1/S, is given by:

∆E13 =
E3 − E1

N
=

{
−3.044 · 10−3 +

0.167551

(2S)

}
· (JS) . (5.90)

One can easily verify, that ∆E13 remains positive for values of spin up to:

S∗ ≃ 27.5 . (5.91)

From Eq. (5.90), it is clear that for all reasonable values of spin, the second order
contribution to ∆E13 is orders of magnitude larger than that of the first order2. This is
well seen on Fig. (5.1). It thus largely overcomes the tiny energy difference between the
two states in the harmonic approximation, reversing the ground-state selection process.

This is particularly true for small spin values. As an example, from Eq. (5.90) we
have for the extreme quantum case S = 1/2:

∆E13(1/2) = 0.164508(JS) ∼ 10−1(JS) . (5.92)

This is 2 orders of magnitude larger than the energy difference in the harmonic ap-
proximation, which is of the order of 10−3(JS) for all spins, see Eq. (4.30). In any per-
turbative treatment, higher order contributions are expected to be vanishingly small
compared to low order terms. The fact that it is not the case here indicates a possible
instability of the spin-wave expansion. This could lead to think that it is not suited
to describe this problem. The determination of the mean-field averages is, however, a
self-consistent problem, and shall therefore be treated as such.

5.2.2 Self-consistent renormalization

We now expose the results obtained from the self-consistent evaluation of the mean-
field averages. The values obtained in the harmonic approximation (see Eq. (5.84)
and Eq. (5.87) for the Af1 and AF3 states, respectively) serve as a first step to the
self consistent loop. They are substituted into the right hand-side of Eq. (5.42) and
Eq. (5.82) to compute a new value for the mean-field averages, which can be substituted
again, and so on, until convergence of the values. Note that through this self-consistent
process, the spin-wave spectrum gets renormalized as well by the interactions with the
mean fields. This method is formally equivalent to Takahashi’s modified spin-wave
theory with T = 0 [111]. The ground-state energy of the two states is finally given
again by Eq. (5.27) and Eq. (5.54).

Treating this problem self-consistently ensures that the particles defined via the
Bogolyubov transformation are ”well-behaved”, that is, that they do not interact with

2This is probably an effect of chance though, as the two contributions have the same order of
magnitude of 10−1(JS) for the to states, see Eqs. (5.86, 5.89)
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their own vacuum [20]. Contrary to the mean-field averages obtained in the previous
section within the harmonic approximation, the values obtained with the self-consistent
treatment are now spin-dependant. The numerically obtained values can be found in
appendix B for all spin lengths considered in this work. The ground-state energy
correction ∆Eq = Eg.s. − Ecl of the AF1 and AF3 states is shown as a function of
inverse spin on Fig. (5.2). These corrections have been computed using Eq. (5.27) and
Eq. (5.54). For all physically relevant values of spin, the AF1 state has lower energy
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Figure 5.2: Quantum correction to the ground-state energy of the AF1 and AF3 states
as a function of inverse spin 1/(2S). Dashed lines show the harmonic spin-wave result.
Full lines with circles show the energy correction with self-consistent inclusion of the
effect of interactions. For comparison, the dotted lines show the perturbative result
without self-consistency.

than the AF3 state, and is thus selected by quantum fluctuations. The self-consistent
calculation induces a strong renormalization of the energies, compared to the simple
perturbative calculation obtained from harmonic mean-field averages in the previous
subsection (see dotted lines on Fig. (5.2) for comparison). As a consequence, the spin
value S∗ at which the harmonic result is qualitatively recovered is smaller than that of
Eq. (5.91). We have indeed, within the self-consistent inclusion of interactions:

S∗ ≃ 10 . (5.93)

The energy difference between the two competing states is also much reduced, compared
to the results obtained without self-consistency. For the extreme case S = 1/2, we have:

∆Es.c.
13 (1/2) = 5.561 · 10−3(JS) , (5.94)

119



which is 2 orders of magnitude smaller than in Eq. (5.92). We recover the same order
of magnitude as what was found in the non-interacting harmonic spin wave theory, see
Eq. (4.30), which is still particularly small.

We are facing a rare situation, where the harmonic spin wave approximation fails
to predict the correct ordered ground-state selection from quantum order-by-disorder
process, up to any physically relevant spin value. The harmonic spin wave results are
recovered qualitatively only at very large spin. We attribute this failure of the harmonic
approximation to the numerous accidental zero energy modes of the harmonic spin-
wave spectra, see Fig. (4.2). For that reason, the integrals involved in the calculation
of the mean-field averages are overestimated when computed in the harmonic approxi-
mation. Indeed, they all contain the spectrum in the denominator (see Eq. (5.42) and
Eq. (5.82) for the AF1 and AF3 states, respectively). After inclusion of the interactions
and self-consistent renormalization, and only the true Goldstone modes remain. The
spectra for S = 1/2 and S = 5/2 are displayed on Fig. (5.3) along high symmetry
directions of the Brillouin zone3. The harmonic spectra (dashed lines) are completely
flat along the pseudo-Goldstone modes, while the renormalized spectra (full lines) ac-
quire a dispersion and/or quantum gaps. We used the values of the mean-field averages
obtained after convergence of the self-consistent loop to obtain the renormalized spec-
tra, see Eqs. (5.32 - 5.33) and Eq. (5.36) for the AF1 state, and Eqs. (5.60 - 5.63) for
the AF3 state. We now give explicit analytical expressions for these gaps and for the
spin-wave velocities near the Goldstone modes. As will be seen in the next chapter,
determination of the quantum gaps, as well as the spin-wave velocities in the vicinity
of Goldstone modes, is key to the understanding of the low-temperature problem.

AF1 state

The line nodes of the harmonic spin-wave spectrum of AF1 state can be separated
into two kinds: lines along the propagation direction kx and lines along the orthogonal
directions ky and kz. They are shown with thick and thin blue lines, respectively, on the
left panel of Fig. (4.2). Lines along kx are explicitly 2π(q, 0,±1) and 2π(q,±1, 0). The
section XW in Fig. (5.3) belongs to this category. It is straightforward to show from
Eqs. (5.32-5.33) and Eq. (5.36), that the interacting spectrum ϵ1k acquires a constant
gap ∆1 along those lines:

∆1 = 8J(∆−m) , (5.95)

making the corresponding pseudo-Goldstone modes dispersionless. These lines being
fully gapped is coherent with the absence of true Goldstone modes along them. Fur-
thermore, we have ∆1 ∼ S0, which is coherent with the expectation from Rau et al. for
”type II” pseudo-Goldstone modes, that is, pseudo- Golstone modes with a quadratic
dispersion in the transverse component [112]. We remind the reader that the dispersion
of the harmonic spectrum around such lines is indeed quadratic in κ⊥, see Eq. (4.36).

3The high symmetry points are shown on the left panel of Fig. (4.2)
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Figure 5.3: Spin-wave dispersions along high symmetry directions for the AF1 (left
panels) and AF3 (right panels) states, with S = 1/2 (top panels) and S = 5/2 (bottom
panels). Continuous lines correspond to the renormalized spectrum with interactions,
while dashed lines show the harmonic spectrum. Dotted grey lines show the quantum
gaps.

The quantum gaps can be readily obtained for various spin lengths, from Eq. (5.95)
and from the mean-field averages values given in appendix B.

Lines along transverse ky and kz directions on the other hand, do contain true
Goldstone modes. On Fig. (5.3), the section ΓX belongs to one of such lines. The
spectrum acquires dispersion all along the lines once magnon-magnon interactions are
included. It vanishes exclusively at k = Γ and k = Q1 (or equivalent points), see
blue diamonds on the left panel of Fig. (4.2). At intersection with a line along kx
(see blue balls on Fig. (4.2)), it is gapped with ∆1 given by Eq. (5.95). Note that the
maximal gap opening along such lines is such that ∆ ∼

√
S. This is also in agreement

with the estimation from ref. [112] for ”type I” pseudo-Goldstone modes, that is,
pseudo-Goldstone modes with a linear dispersion around them, see Eq. (4.39).

The renormalized spectrum acquires a linear dispersion in the vicinity of the zero-
energy modes. Lowest-order analytical expansion of of ϵ1k around k = Γ (or equiva-
lently around k = Q1), gives the following asymptotic behavior:

ϵ1k ≈
{
k2xc

2
1∥ +

(
k2y + k2z

)
c21⊥

}1/2

, (5.96)
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where the longitudinal and transverse spin-wave velocities c1∥ and c1⊥ are given by:

c21∥ = (4J)2 · (S↑↓)
2 (5.97)

c21⊥ = (4J)2 · 1
2
S↑↓(∆−m) .

We remind the reader that S↑↓ is given by Eq. (5.29).

AF3 state

In a similar manner as for the AF1 state, the line nodes of the harmonic spin-wave
spectrum of AF3 state are separated into two kinds: lines along the propagation di-
rection ky and lines along the orthogonal directions kx and kz (thick and thin red lines
on the right panel of Fig. (4.2), respectively).

The first type of lined along ky are explicitly given by (0, q, 0), 2π(0, q,±1) and
2π(±1, q, 0). The section ΓX on Fig. (5.3) belongs to this category. Both branches of
the harmonic spectrum vanish along these lines. The renormalized spectrum ϵ±3k given
by Eqs. (5.60 - 5.63)) acquires dispersion along these lines, for both branches. The only
remaining zero-energy modes are the true Goldstone modes corresponding to k = Γ
and k = Q3 on the lower branch ϵ−3k. The quantum gap resides also at true Goldstone
modes, but on the upper branch ϵ+3k. It is given by:

∆3 = 8J
√

(∆αα −m)(∆−m) , (5.98)

and is of similar magnitude as the quantum gap ∆1 of the AF1 state (see Eq. (5.95)).
The relation to the type of soft modes, as is done in ref. [112], is less clear here than
in the AF1 state. Indeed, the harmonic spectrum remains asymptotically linear all
along those lines for the upper branch, see Eq. (4.52): it is a type I pseudo-Goldstone
mode. In that situation, one expects the quantum gap to be of the order of ∆ ∼

√
S.

Possibly, the ∆ ∼ S0 gap here is rather related to the particularly soft cubic behaviour
of the lower branch at Goldstone modes, see Eq. (4.55). Note that away from the
true Goldstone modes, the maximal gaps for ϵ±3k, above the pseudo-Goldstone lines,
is of order ∆ ∼

√
S. This is in accordance with the expectation for a type-I pseudo-

Goldstone mode. The quantum gaps can be readily obtained for various spin lengths,
from Eq. (5.98) and from the mean-field averages values given in appendix B.

Only the lower branch of the harmonic spectrum ϵ−3k vanishes along the other type
of lines along kx and kz. One of such lines is appears as section XW on Fig. (5.3). The
spectrum also acquires dispersion all along these lines, and vanishes exclusively at true
Goldstone modes, where ϵ+3k acquires the gap ∆3 given by Eq. (5.98). Away from these
points, the spectrum is gapped with ∆ ∼ S1, which is expected for pseudo-Goldstone
modes of this kind, having a linear asymptotic behaviour, see Eq. (4.56).

As is the case for the AF1 state, the spectrum of the AF3 state gets a linear
asymptotic dispersion in the vicinity of the true Goldstone modes after renormalization:

ϵ−3k ≈
{
k2yc

2
3∥ +

(
k2x + k2z

)
c23⊥

}1/2

. (5.99)
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Note that this is the exact same expression as for the AF1 state, see Eq. (5.96). The
longitudinal and transverse spin-wave velocities c3∥ and c3⊥ are given by:

c23∥ = (4J)2 · 1
2

(
S↑↓ + Sαα

↑↓

2

)
(∆−m) , (5.100)

c23⊥ = (4J)2 · 1
4

(
S↑↓ + Sαα

↑↓

2

)[
2Sαα

↑↓ + (∆−m)
]
,

where S↑↓ and S
αα
↑↓ are given by Eq. (5.57). The longitudinal velocity c2∥ compares very

well with the transverse velocity c2⊥ in the AF1 case (see 5.97).
The quantum gaps ∆1 and ∆3 given by Eq. (5.95) and Eq. (5.98), respectively,

represent a 1/S correction to the spectrum from the interactions. Indeed, we have:

ϵ1k, ϵ
±
3k ∼ S1 ,

∆1,∆3 ∼ S0 .

Therefore, as the spin increases, effects of magnon-magnon interactions on the spectrum
become lighter. Ultimately the harmonic spectrum is recovered in the extreme classical

Figure 5.4: Spin-wave dispersions in the xz plane ky = 2π, for the AF1 (left panels)
and AF3(right panels) states, with S = 1/2. Top panels display the harmonic spin-wave
result, where the spectra exhibits accidental lines of zero-energy modes. Bottom panels
show the spectra with quantum corrections coming from magnon-magnon interactions,
computed in a self-consistent manner.
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case, when S → ∞. This is illustrated on Fig. (5.3), where the top and bottom panels
show the spectra for S = 1/2 and S = 5/2, respectively. The quantum gaps are
identified by dotted black lines and clearly decrease with increasing spin. Nevertheless,
even if corrections to the harmonic spectra become almost negligible near high-energy
modes for the S = 5/2 case, they remain important along pseudo-Goldstone modes. To
illustrate better the importance of quantum corrections coming from interactions on the
spin-wave spectra, Fig. (5.4) displays intensity maps of the harmonic (top panels) and
corrected (bottom panels) spectra for S = 1/2. The accidental line nodes are clearly
visible on the harmonic spectra, and are completely lifted after renormalization.

Please be aware that the energy colorbar does not have the same values for the
two different states, and is adapted to the maximum value of the spectrum after self-
consistent renormalization.
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5.3 Low-temperature behaviour

We have seen in the previous chapter, that within the harmonic spin-wave approxima-
tion, a competition effect between quantum and thermal order by disorder occurs in
the nearest-neighbor fcc AFM. Indeed, the ground-state selection from quantum fluc-
tuations at T = 0 acts in favor of the AF3 state, whereas the thermal selection acts in
favor of the AF1 state, see Fig. (4.4). This originates from the different nature of the
two selection processes: the quantum selection at T = 0 is governed by the zero-point
motion of the spin-waves, see Eq. (4.27), while at low temperature, only the softest
modes of the spectrum contribute to the free energy, see Eq. (4.33).

The many accidental pseudo-Goldstone modes which are present in the harmonic
spectra affect both these processes in a different manner. On the one hand, the zero
point motion of spin waves is underestimated in the harmonic approximation. This
induces an overestimation of the negative quantum energy correction to the ground-
state energies. In particular, this results in the AF3 state being favored, although
the energy difference with the AF1 state is very small, see Eq. (4.30). One might
speculate, that this is related to the particularly large number of accidental gapless
modes in the spectrum of the AF3 state. On the other hand, the presence of the line
nodes causes an overestimation of the decrease speed of the free-energy. Indeed, main
contributions to ∆F come from quadratic soft modes lying along whole lines in the
harmonic spectrum for the AF1 state, which induces an abnormally sharp ∆F ∼ −T 2

behaviour. In the AF3 state, major contributions come from quadratic soft modes
with cubic subleading behaviour around special points in the spectrum. This leads
to a peculiar fractional exponent ∆F ∼ −T 7/3. From this analysis, the AF1 state is
favored by thermal fluctuations at low temperatures in the quantum spin system, and
can be considered as having ”the softest spectrum”. A first-order phase transition at
T ∗ ≃ 0.2(JS) is predicted.

After inclusion of magnon-magnon interactions, the T = 0 ground-state selection is
reversed for most values of spin, and the AF1 state is favored. The harmonic result with
selection of the AF3 state is recovered only at very large spin S∗ ≈ 10, see Fig. (5.2).
Despite this different selection, the energy difference between the two competing states
remains of the same order of magnitude as in the harmonic approximation, that is,
of the order of 10−3(JS). Furthermore, there is in principle no reason to believe
that thermal fluctuations operate the same ground-state selection as in the harmonic
approximation. Indeed, the asymptotic behaviour of soft modes in the spectra dictate
the temperature power law of the free energy. After renormalization of the spectrum
by the interactions, accidental line nodes acquire a gap, and only remain the true
Goldstone modes. The behaviour of the free energy is then modified, and at very low
temperatures only the soft modes lying around Goldstone modes play a role. The
asymptotic behaviour of these soft modes is linear in both states, see Eq. (5.96) and
Eq. (5.99) for the AF1 and AF3 states, respectively. Explicitly, it is given by the
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following common expression:

ϵk ≈
{
k2∥c

2
∥ + k2⊥c

2
⊥

}1/2

. (5.101)

In the above, k∥ is the special direction in k-space (that is, kx for the AF1 state
and ky for the AF3 state), and k⊥ contains the two remaining transverse coordinates:
k2⊥ = k2y + k2z for the AF1 state, and k2⊥ = k2z + k2x for the AF3 state. One can show
(see appendix (?) for details), that such low-energy modes as in Eq. (5.101) induce the
following contribution to the free energy of Eq. (4.33) at low temperatures:

∆F (T ) ≈ −(T ′)4 · a
3π2

180

(JS)3

c∥c
2
⊥

, (5.102)

where T ′ is the normalized temperature defined in Eq. (4.46). This result is valid
for both the AF1 and AF3 states. The typical T 4 behaviour of the free energy of
unfrustrated 3D spin systems is recovered, due to the renormalization of the spin wave
spectrum operated by interactions.

From Eq. (5.102), the decrease speed of the free energy is completely determined by
the spin wave velocities of the renormalized spin-wave spectra. The transverse velocity
c⊥ contributes twice more than the longitudinal velocity c∥, as it is associated to two
directions instead of one. The state with smallest product c∥c

2
⊥ decreases therefore

faster in energy, and is favored by thermal fluctuations. Expressions for the velocities
were computed in the previous section and are given by Eq. (5.97) and Eq. (5.100) for
the AF1 and AF3 state, respectively. For the AF1 state, we have:

c1⊥ ∼
√
S(∆−m) ≪ c1∥ ∼ S . (5.103)

The tendency is opposite for the AF3 state, for which we have:

c3∥ ∼
√
S(∆−m) ≪ c3⊥ ∼ S . (5.104)

The AF1 state is therefore favored by thermal fluctuations at very low temperatures,
which does not challenge the result found in the harmonic approximation. This anal-
ysis applies in principle to any spin value. Note that when temperatures are increased
above the quantum gaps, the harmonic behaviour should be more or less recovered.
There is therefore no reason to expect a situation where the AF3 state would be fa-
vored by thermal fluctuations. As a consequence, a competition effect between thermal
and quantum order by disorder, as was found in the harmonic approximation, is only
realisable when the AF3 state is favored by quantum fluctuations at T = 0, that is, for
unphysically large values of spin S ≥ 10.

For the sake of completeness, we compute the low-temperature free energy of the
two competing states after self-consistent renormalization of the spectrum. We use
Eq. (4.33), in which we substitute for the spectra Eqs. (5.32, 5.33, 5.36) for the AF1
state, and Eqs. (5.60 - 5.63) for the AF3 state. As the self consistent mean fields are
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Figure 5.5: Free energy as a function of temperature in the AF1 and AF3 states, for
S = 1/2 (left panel) and S = 5/2 (right panel).

obtained independently for different spin values, ∆F (T ) has to be computed as well
independently. On Fig. (5.5) we show the ground-state energy versus temperature for
both states, in the S = 1/2 and S = 5/2 cases. There is no phase transition in both
cases, as the AF1 state appears to remain the state selected by thermal fluctuations.

Note that the behaviours of the various spin-wave velocities can be directly related
to the presence of a pseudo-Goldstone mode - and if so, to its type - along the transverse
and longitudinal directions. Indeed, in the AF1 state, there is no pseudo-Goldstone
mode in the longitudinal direction kx. As a result, the spectrum is expected to behave
as S1, and so does the spin-wave velocity, see Eq. (5.103) and section ΓK on the left
panel of Fig. (5.3). Along the transverse directions ky and kz, however, there is a
pseudo-Goldstone mode of type I. After inclusion of the interactions, it is gapped as
∆ ∼

√
S, and the transverse spin-wave velocity has similar behaviour, see Eq. (5.103)

and section ΓX on the left panel of Fig. (5.3).
Regarding the AF3 state, there is a pseudo-Goldstone mode of type I along the

longitudinal direction ky. It becomes therefore gapped with ∆ ∼
√
S, and the longi-

tudinal spin-wave velocity has similar behaviour, see Eq. (5.104) and section ΓX on
the right panel of Fig. (5.3). The situation along transverse directions kx and kz is
slightly more complex. Although there is a type I pseudo- Goldstone mode as well in
the lower-branch of the spectrum, there is none in the upper branch, which therefore
retains a S1 behaviour before and after inclusion of the interactions. There appears to
be a crossing of the two modes, see section XW on the right panel of Fig. (5.3). This
results in the transverse spin-wave velocity having both a linear component in S1, and
a subleading

√
S component, see Eq. (5.100).
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5.4 Discussion and conclusion

In order to check the validity of the obtained results, we compare them to available
numerical data. ground-state energies for the AF1 and AF3 states were computed
by Johannes Richter and collaborators, using the coupled-cluster method (CCM), a
variational real-space numerical technique [113]. Fig. (5.6) shows the ground-state
energy of the two competing states as a function of inverse spin, with both the results
from self-consistent SWT and the extrapolation of the CCM data. The results obtained
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Figure 5.6: Quantum correction to the ground-state energy of the AF1 and AF3 states
as a function of inverse spin. Full circles show the data obtained with spin-wave the-
ory, including interactions self-consistently. Open diamonds show the numerical data
obtained from the CCM method. Dashed lines and dotted lines show the perturbative
spin-wave results at harmonic order and second order in 1/S, respectively.

in the present work appear to fit relatively well to the numerical values, even for spin-
1/2. At the qualitative level at least, the results are equivalent regarding quantum
OBD: the AF1 state is selected by quantum fluctuations, up to a large spin value
S∗ ≈ 10. Note as well that the energies obtained from the perturbative SWT up to
second order in 1/S are completely off the numerical values.

From Fig. (5.6), it seems fair to state that LSWT is not efficient in determining the
ground state selected by quantum fluctuations in the fcc Heisenberg antiferromagnet 4.
Furthermore, including the effects of magnon-magnon interactions in a perturbative,

4at least for reasonable spin lengths
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1/S manner does not appear to give satisfying values for the quantum ground-state
energies. The self-consistent inclusion of interactions however, apparently provides
good results. Anyhow, at the qualitative level, whether included perturbatively or self-
consistently, interactions have a determining role in the ground-state selection, and
select a ground state different from the one selected in the harmonic approximation,
for any physically relevant value of spin.

5.4.1 Subtleties of spin-wave theory in the fcc Heisenberg an-
tiferromagnet

Several aspects contribute to the complexity of the quantum OBD mechanism in this
system. Let me expose the most essential points, which I believe are applicable to a
more general discussion on SWT.

i) The difference between the ground-state energies of the two competing states is
extremely small at the harmonic level. It is indeed of the order of 10−3(JS), see
Eq. (4.30). This is a very important point. For another example of such nearby
harmonic energies, see [84]. In such cases, one needs a very precise estimate of
the energy to be sure about the ultimate ground-state selection. Indeed, the
possibility has to be considered, that higher orders terms in SWT can be of
comparable magnitude as this tiny harmonic energy difference. And if so, they
could alter the qualitative result - which state has lowest energy. This is precisely
what is shown to happen in the present chapter. Therefore, in such situations
where two states remain very close in energy at the harmonic level, one should
take the results obtained by LSWT with a grain of salt. This gives an interesting
illustration of the following statement: LSWT might fail to give good qualitative
results for the ground-state selection, even for large spin values.

ii) The perturbative expansion about the harmonic Bogolyubov vacuum is not par-
ticularly well-behaved. Indeed, in the perturbative expansion, the second order
correction to the ground-state energy is of same order of magnitude as the first
order correction, namely 10−1(JS), see Eq. (5.86) and Eq. (5.89). Although
these second order corrections come with a 1/S coefficient, they remain substan-
tial compared to the first corrections up to large spin values, see Fig. (5.1). A
similar situation takes place for example in the frustrated J1-J2 square lattice
AFM discussed in the introduction, where the perturbative SWT expansion fails
to give reliable results [15, 20, 114]. Note that the perturbative approach here
might however not be badly-behaved per se. If we consider the expansion param-
eter to be ⟨n⟩ /(2S), then the expansion is expected to be efficient only if this
parameter is small. When ⟨n⟩ is taken over the harmonic Bogolyubov vacuum,
it is quite substantial for both states, see Eq. (4.31). Therefore, the perturbative
expansion has no reason in principle to be efficient for small spin values, which
is the common statement about SWT. The ”smallness criterion” is somehow not
met. Nevertheless, in non-frustrated, or weakly frustrated magnets, the pertur-
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bative approach to SWT gives very good results, even for rather small values of
spins like S = 1 or even sometimes S = 1/2. This may be attributed to the fact
that ⟨n⟩ has a smaller value in the harmonic Bogolyubov vacuum in such sys-
tems. There seems however to be an additional smallness coming into play. The
expansion indeed often has vanishingly small coefficients in front of increasing
orders of the expansion parameter, even if it is taken to be ⟨n⟩ /(2S) [115]. This
is most probably related to the harmonic Bogolyubov vacuum being already a
good approximation to the real quantum ground state. This takes us to the third
point.

iii) Interactions are large in the harmonic Bogolyubov vacuum. Actually, this state-
ment is equivalent to the previous one, they are two sides of the same coin. An-
other way to see this, is that the effective contributions to the harmonic part of
the Hamiltonian, coming from interactions, are not negligible in the Bogolyubov
vacuum, although they come with a 1/S factor, see Eqs. (5.15 - 5.16). Therefore,
treating these interactions perturbatively is not so efficient, because the pertur-
bation is of same order of magnitude as the unperturbed Hamiltonian. What
makes interactions be so large in this system? This takes us to the next point.

iv) The effects of interactions become stronger in highly frustrated systems. Indeed,
the accidental classical ground-state degeneracy leads to corresponding accidental
gapless modes in the harmonic spectrum: the pseudo Goldstone modes. As we
saw earlier, in the AF1 and AF3 states, these pseudo Goldstone modes are quite
numerous, see Fig. (4.2). This directly relates to the large classical ground-state
degeneracy in this system, see Fig. (3.3). As a result, the mean-field averages
calculated in the harmonic Bogolyubov vacuum are overestimated. This is par-
ticularly true for the spin reduction, see again Eq. (4.31). This is not surprising,
as they involve integrals of functions where the harmonic spectrum is in the de-
nominator, see Eq. (5.42) for the AF1 state and Eq. (5.82) for the AF3 state.
Interactions then become strong in the harmonic Bogolyubov vacuum.

5.4.2 The self-consistent method

On the bright side, the strength of SWT appears to be well restored by treating in-
teractions self-consistently. Within this method, the Bogolyubov particles are being
renormalized, as well as the corresponding Bogolyubov vacuum. Interactions are in-
cluded self-consistently, which means that contributions from all orders in 1/S are taken
into account. One can therefore not speak about a perturbative expansion anymore,
and cannot attribute a specific 1/S order to a given contribution. The consequences
of this technique are the following:

i) The so defined Bogolyubov vacuum is necessarily closer to the real quantum
ground state, as higher orders in the expansion of the Holstein-Primakoff square
root are included. So we are closer to the exact transformation.

ii) Within the self-consistently renormalized Bogolyubov transformation, excited
states do not interact with their own vacuum: the particles are better-behaved.
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iii) The pseudo-Goldstone modes are lifted and only the true Goldstone modes re-
main in the spectrum. Pseudo-Goldstone modes acquire quantum gaps, of which
the height is related to the type of pseudo-Goldstone mode.

iv) As a consequence of the latter point, mean-field averages are believed to be better
determined, avoiding the many zeroes in the denominator. Note that new values
for the spin reduction, obtained after convergence of the self-consistent loop, are
much reduced compared to the harmonic approximation, see Fig. (5.7). This is
particularly true at small spin. This means that the true quantum ground state
is somewhat closer to the classical ordered state than could be thought from the
harmonic results. In other words, fluctuations are not that huge. It also means,
that the expansion of the square root in the Holstein-Primakoff transformation
is more relevant.

Note as well that the self-consistent loops converge quite fast in this system, within
only a few steps, which is enjoyable. Let me however insist that this technique only
applies to collinear states, which restricts quite a lot the possibilities for applications.

AF1
AF3

0 0,5 1 1,5 2
0,1

0,15

0,2

0,25

0,3

0,35

0,4

Figure 5.7: Spin reduction versus inverse spin for the AF1 and AF3 states, after self-
consistent renormalization of the vacuum. Similar figures are shown in appendix B for
other mean-field averages.
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5.4.3 Summary of the chapter

In this chapter, I considered the effects of magnon-magnon interactions in the ground
state selected from quantum and thermal fluctuations in the nearest-neighbor fcc
Heisenberg antiferromagnet. In that aim, I went to higher order in spin-wave the-
ory and included quartic terms in bosonic Holstein-Primakoff operators. Note that
I focused only on the two collinear classical ground states, the AF1 and AF3 states.
For that reason, cubic terms in the expanded spin-wave Hamiltonian do not need to
be considered. The quartic terms were decoupled in the Hartree-Fock fashion, and
we obtained an effective quadratic Hamiltonian which depends on pairwise magnon
averages (mean fields), see Eq. (5.12) and Eq. (5.23). Consequently, the ground-state
energy with quantum corrections depends on the mean-field averages as well for the
two states, see Eq. (5.27) and Eq. (5.54) for the AF1 and AF3 states, respectively.

The spectrum, including the effects of magnon-magnon interactions, was derived
analytically, see Eqs. (5.32 - 5.33) and Eq. (5.36) for the AF1 state, and Eqs. (5.60 -
5.63) for the AF3 state. Expressions for the mean-field averages were obtained as well,
see Eq. (5.42) and Eq. (5.82) for the AF1 and AF3 states, respectively. Evaluation
of these expressions is a self-consistent problem, equivalent to Takahashi’s modified
spin-wave theory at T = 0.

I computed the ground-state energies with quantum corrections for the two states.
Note that the energy now depends on spin value, contrary to the harmonic case. The
mean-field averages were computed self-consistently using standard Monte-Carlo inte-
gration, with a rather fast convergence of the self-consistent loop involving at most
15 steps. The ground-state energy was obtained using the values for the mean-field
averages after convergence.

It appears that the AF1 state has lower energy than the AF3 state, for all physically
relevant spin values (S ≲ 10), see Fig. (5.2). The quantum order by disorder therefore
gives a different qualitative selection from the linear spin-wave approximation, even at
large spins, which indicates a failure of the perturbative approach in this system.

This failure is attributed to the large number of pseudo-Goldstone modes in the
harmonic spectrum, which induce an overestimation of the strength of quantum fluctu-
ations. After self-consistent renormalization, the spectra acquire gaps and only remain
the true Goldstone modes predicted by the Goldstone theorem, see Fig. (5.3) and
Eq. (5.95) and Eq. (5.98).

As a result, the normal T 4 behaviour of the free-energy at very low temperatures is
recovered in the two states, see Eq. (5.102). The AF1 state remains favored by thermal
fluctuations, due to a different magnitude of the transverse and longitudinal spin-wave
velocities in the two states, see Eqs. (5.103 - 5.104). There is thus no competition
between quantum and thermal order by disorder once the effects of magnon-magnon
interactions are included, see Fig. (5.5).
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Chapter 6

Conclusions

In conclusion, during my PhD I have studied the order-by-disorder mechanism in vari-
ous geometrically frustrated quantum spin lattices with nearest-neighbor antiferromag-
netic Heisenberg interaction.

6.1 Magnetization plateaus

I first studied fractional magnetization plateaus in the kagome and pyrochlore antifer-
romagnets, two emblematic examples of highly frustrated spin systems. Both systems
are known to exhibit fractional magnetization plateaus at m = 1/3 and m = 1/2 of
full saturation, respectively. The spin arrangement within the plateaus correspond to
collinear ordered states, in which a fractional part of the spins are pointing opposite to
the field direction, while the rest is pointing along it. The plateaus appear due to the
stabilization of such collinear phases over a finite field range that extends beyond their
classical stability point. In the present work we study such stabilization by the quan-
tum order-by-disorder mechanism at T = 0. Full magnetization curves are obtained
within the framework of linear spin-wave theory (LSWT).

The collinear plateau phase is surrounded by compressible phases, which correspond
to canted states. Using LSWT, I derived full analytical expressions for the harmonic
magnon spectra of these canted states in field. This is made possible by the presence of
full flat, gapless energy bands in the spectra at the harmonic level, reminiscent of the
extensive classical ground-state degeneracy 1. The ground-state energies of these states
are then computed with first quantum correction in 1/S, from the zero-point motion of
the spin-waves. Finally, I get corresponding magnetization, by differentiation of these
ground-state energies with respect to the magnetic field.

Applying spin-wave theory directly to the study of the plateau phase itself would
require going beyond the linear approximation. Indeed, the collinear state is classically
stable only at one field value. Therefore, LSWT would break down if applied to this
state anywhere outside that field point. Fortunately, knowledge of the magnetization

1One band for the kagome lattice, two bands for the pyrochlore lattice.
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curves in the canted phases surrounding the plateau phase, already gives useful infor-
mation. The extent of the plateau is obtained by intersecting these curves with the
fractional magnetization value expected in the plateau phase, namely m = 1/3 and
m = 1/2 of full saturation for the kagome and pyrochlore lattices, respectively. The
argument behind this method, is that the U(1) symmetry of the Hamiltonian is restored
in the collinear plateau state, rendering it gapped to spin excitations. As a result, Sz

tot

is conserved within that phase and the classical, fractional value of the magnetization
is retained. With this technique, the magnetization curves of both the kagome and the
pyrochlore antiferromagnets exhibit the fractional magnetization plateau. Its width
decreases with increasing spin.

In the case of the kagome lattice, the values obtained for the plateau field boundaries
as a function of inverse spin, match pretty well with available numerical data from exact
diagonalization and tensor networks calculations for S ≥ 1. This gives the encouraging
hope that the method used in the present work is efficient in determining the extent
of a plateau phase associated to quantum OBD mechanism. The fact that the values
do not match numerical results for S = 1/2 is not surprising, as the plateau state is
known to be of a different, fully quantum nature in that case.

The magnetization of the canted states is shown to exhibit a logarithmic divergence
towards the critical field hm at which they cease to be classically stable. Note that it
is also the unique field value at which the collinear plateau state becomes classically
stable. This divergence is explained by the extra softening of one of the non-flat
magnon branches upon arrival to that state. Indeed, additional lines of zero energy
modes appear in the spectrum due to semi local gapless excitations arising in the
collinear states, and that do not exist in the canted states. The width of the plateau
is also shown to vanish as (1/S) lnS at the classical limit S → ∞.

6.2 Fcc antiferromagnet: ground-state selection

In the second part of the thesis, I studied ground-state selection by quantum and
thermal fluctuations in the quantum nearest-neighbor fcc Heisenberg antiferromagnet.
This frustrated spin system has been known for decades, yet no systematic spin-wave
analysis was done so far. The classical ground-state degeneracy, despite being sub-
extensive, remains substantial. Indeed, the degeneracy of ordering wave vectors consists
of full lines in reciprocal space, connecting high-symmetry points of the Brillouin zone.
Two collinear spin states are allowed within this classical ground-state manifold: the
AF1 and the AF3 state. Note that they become the true ground states of the system
when next-nearest-neighbor exchange J2 of negative or positive sign, respectively, is
included. Consequently, those two states are the best ground-state candidates for
quantum or thermal OBD. I used spin-wave theory to study the effects of fluctuations.
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6.2.1 Linear spin wave theory

Firstly, I applied LSWT to this problem. I derived full analytical expressions for the
harmonic spectra of all competing, single-Q states. Then, the first quantum correction
to the ground-state energy is computed from the zero-point motion of the spin-waves,
for all competing states. The classical ground-state degeneracy is lifted by these quan-
tum corrections. All non-collinear states are found to have higher energy than the
aforementioned collinear AF1 and AF3 states, as expected from quantum fluctuations.
The AF3 state is found to be the state of lowest energy. The energy difference to
the next state, namely the AF1 state, is extremely tiny, which challenges the robust-
ness of that finding. The spin reduction is quite large in both states, with a value of
approximately ∆S ≃ 0.3.

I then computed the free energy as a function of temperature ∆F (T ) for the AF1
and and AF3 states. In a quantum spin system, this corresponds to the thermal
population of low-lying magnons, which is straightforward to compute once we have
full knowledge of the spectra. It is found that the AF1 state is favored by thermal
fluctuations, meaning that its free energy decreases faster with temperature compared
to that of the AF3 state. The different ground-state selection operated by quantum
fluctuations on one side, and thermal fluctuations of the other side, is seen as a rare
competition effect between the two. Due to its smallness, the original ground-state
energy difference between the two states at T = 0 is ultimately overcome by ther-
mal fluctuations and one expects a phase transition between the two states at low
temperature T ≃ 0.21(JS).

In both states, the free energy has a particularly sharp behaviour in temperature,
namely ∆F (T ) ∼ −T 2 for the AF1 state, and ∆F (T ) ∼ −T 7/3 in the AF3 state.
This is directly attributed to the extremely soft modes lying around some of the many
pseudo-Goldstone modes in the harmonic spectra. In that regard, not only the softness
of the modes has to be considered, but also their dimensionality. For example, the T 2

behaviour of the free energy in the AF1 state is related to the presence of quadratic
soft modes along whole lines of zero energy modes in reciprocal space.

6.2.2 Interacting spin wave theory

The smallness of the ground-state energy difference between the AF1 and AF3 states
at the harmonic level, calls for an investigation of the effects of magnon-magnon inter-
actions. Indeed, although such effects are typically thought to be small compared to
the harmonic corrections, they might be sufficiently large to overcome that tiny energy
difference, and therefore change qualitatively the ground-state selection. Moreover,
the spin reduction being substantial also adds further motivation to that study. The
efficiency of LSWT is not expected to be at its best when quantum fluctuations are
large, and should be questioned when applied to classical phase boundaries in general.

Therefore, I went to higher orders in the spin-wave theory so as to include effects
of magnon-magnon interactions in the picture. I stopped at the quartic order in the
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bosonic Hamiltonian. The quartic terms are decoupled in a Hartree-Fock sense, which
leads to an effective quadratic Hamiltonian to be added to the harmonic one. Higher-
order scattering processes are neglected. The new quadratic Hamiltonian now includes
contributions from the interactions, in the form of pair-wise mean-field averages. De-
termination of the corresponding quantum corrections to the ground-state energy be-
comes a self-consistent problem. Indeed, the Bogolyubov transformation is redefined so
as to recover a diagonal form of the quadratic Hamiltonian. Simultaneously, this new
definition changes our approximate quantum ground state - the Bogolyubov vacuum.
Within this new quantum ground state, pair-wise mean-field averages are different,
and so is the strength of interactions between Bogolyubov magnons. Therefore, the
Bogolyubov transformation has to be corrected again. This process is repeated until
convergence of the values of the mean-field averages. The final Bogolyubov vacuum is
considered to be our best approximation to the true quantum ground state. Note that
this self-consistent renormalization corresponds to the inclusion of a certain family of
diagrams, up to virtually infinite order. Note as well, that this method is equivalent
to the modified spin-wave theory of Takahashi, at T = 0.

I performed the self-consistent calculation for the AF1 and AF3 states. After con-
vergence of the values for mean-field averages, the quantum correction to the ground-
state energy is easily obtained. Note that this has to be done independently for each
spin value, contrary to the harmonic calculation. I found that the AF1 state has lower
energy than the AF3 states, for spin values up to S ≲ 10. Beyond this value, the
AF3 state becomes the ground state selected by quantum fluctuations, as was found
in the harmonic approximation. This result is further confirmed by comparison with
numerical data obtained by collaborators from the coupled-cluster method.

The spin-wave spectrum is renormalized as well by the interactions. It acquires
quantum gaps along the pseudo-Goldstone modes that were present at the harmonic
level, and only the true Goldstone modes remain. Expressions for the quantum gaps
are derived, as well as for the spin-wave velocities in the two states. The typical
linear dispersion for soft modes of antiferromagnets is recovered. Note that the whole
renormalization process goes differently for different spin values. More specifically, the
effects of interactions become smaller and smaller relatively to the harmonic result,
as S → ∞. This is not surprising, as LSWT should be most efficient in the classical
limit. Conversely, the effects of magnon-magnon interactions are quite large for small
spin values, and the resulting corrections to the ground-state energy, spin reduction
and spin-wave spectra are substantial.

Finally, the free energy ∆F (T ) is computed at low-temperatures for the two states.
Normal behaviour ∆F (T ) ∼ −T 4 is recovered for the two states. It appears however,
that the AF1 state remains the state selected by thermal fluctuations, as was found
in the harmonic approximation. This is directly connected to the different spin-wave
velocities found in the spin-wave spectra of the two states. As a result, there is no com-
petition between quantum and thermal fluctuations anymore, at least for reasonable
spin length.

The quantum order-by-disorder mechanism in the nearest-neighbor fcc Heisenberg
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antiferromagnet is very subtle, as it is greatly affected by the effects of magnon-magnon
interactions. Indeed, the ground state selected by quantum fluctuations is different
when considering the problem with or without interactions. This qualitative discrep-
ancy between the two results remains true for all physically relevant values of spin.
This is the result of a combination of several factors. First, the tiny energy difference
between the competing states at the harmonic level, which I believe is accidental. This
tiny difference is easily overcome by higher-order corrections to the energy. Second,
the presence of many pseudo-Goldstone modes in the harmonic spectra, reminiscent of
the classical ground-state degeneracy. This causes the harmonic Bogolyubov vacuum
somewhat badly-behaved. Indeed, the expected mean value of on-site spin-lowerings
in that state is substantial due to these numerous gapless modes. Consequently, the
perturbative approach of conventional spin-wave theory is not efficient, as the small-
ness criterion for the expansion parameter is not met. Effects of interactions in the
harmonic Bogolyubov vacuum are non-negligible, which means that it is not a very
good approximation to the true quantum ground state that we are looking for.

Nevertheless, it appears that spin-wave theory still provides very convincing results,
when including the effects of interactions self-consistently. After self-consistent renor-
malization of the spectrum, the ∆S is reduced compared to its value in the harmonic
approximation. This means both that in the true quantum ground state (to which we
necessarily get closer by including higher-order terms), quantum fluctuations are not
so strong, and also that the expansion of the square root in the Holstein-Primakoff
transformation is necessarily much better justified. Note that the self-consistent loop
converges extremely fast, which is very encouraging. This could be explained by the
fact that pseudo-Goldstone modes acquire gaps already at the first step of the redefi-
nition of the Bogolyubov transformation due to interactions. These pseudo-Goldstone
modes being the main source of trouble in the computation of the mean-field averages,
the theory becomes rapidly well-behaved.

6.3 General conclusion

I hope that the present work gives a convincing appreciation of the power of the spin-
wave theory for studying quantum order-by-disorder phenomena, even in highly frus-
trated magnets.

When the classical ground-state degeneracy is very large, results of the perturba-
tive approach have to be taken with a grain of salt. Indeed, the expansion has chances
to be badly-behaved, and especially the strength of quantum fluctuations is overesti-
mated. Interactions then might play a determining role in the ground-state selection.
This is especially true if two competing ground states are extremely close in energy
at the harmonic level, as was illustrated in the fcc antiferromagnet. Nevertheless, ef-
fects of higher-order terms can be included self-consistently, and this is not necessarily
very complicated. The efficiency of this technique is confirmed by comparison with
numerical data. Note however, that this technique only works for collinear states. In-
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deed, in non-collinear states, cubic terms are present in the spin-wave Hamiltonian.
They induce a renormalization of the spins orientations, which should also be treated
self-consistently in a complete theory.

The classical degeneracy is even higher in the kagome and pyrochlore antiferomag-
nets studied in the first chapter in the context of fractional magnetization plateaus.
There should be, however, no concern about this. Indeed, the spin states in the canted
phases of their magnetization curves have been already well-defined to be the canted
Y and V states. The energy difference to other types of states, coplanar or not, is too
large for us to question this result, and there is virtually no chance that interactions
alter it. The robustness of this statement is further enhanced by the fact that these are
the most symmetric coplanar canted states that can accommodate a collinear configu-
ration at an intermediate field value. Indeed, quantum fluctuations are known to act in
favor of coplanar - if not collinear - states. Therefore, the question of the ground state
is not really addressed here. What matters is rather the value of the ground-state en-
ergy as a function of magnetic field, in order to obtain the magnetization. This might
not be very well evaluated in the harmonic approximation, especially for small spin
values. At least for large enough spins, however, higher order corrections should not
be huge. Therefore, LSWT should remain efficient to study fractional magnetization
plateaus in frustrated spin systems with large spins. This is confirmed by comparison
of my results with available numerical data on the kagome antiferromagnet.
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Appendix A

Spin wave theory

In this appendix, I give the main conceptual and analytical steps of a SWT derivation.
Let us say we have a given spin Hamiltonian H that we wish to diagonalize:

Ĥ = Ĥ (S1,S2, . . . ,SN) , (A.1)

where N is the total number of spins in the lattice and Si is a spin in position Ri. The
goal is to find the eigenvalues of this quantum Hamiltonian, in order to determine the
ground state of a given system described by it. SWT is a semiclassical analytical ap-
proach to approximate the quantum Hamiltonian by a Hamiltonian that can be solved
analytically (or numerically but with reasonable computer power) in the thermody-
namic limit. In SWT, the assumption is made that the true quantum ground-state
spin configuration is not far from a given classical ordered ground state of the origi-
nal Hamiltonian if Eq. (A.1). Quantumness is accounted for as quantum fluctuations
(which are presumably small) around this classical ground state: the spin waves.

A.1 Expanded bosonic Hamiltonian

The analytical starting point of the SWT is the Holstein-Primakoff transformation [28].
It is a mapping of the spin operators to bosonic creation and annihilation operators,
which allows us to work in second quantization with bosons, of which the behaviour is
well understood:

S+
i =Sx

i + iSy
i =

√
2S − ni · ai

S−
i =Sx

i − iSy
i = a†i ·

√
2S − ni , ni = a†iai . (A.2)

Sz
i =S − ni

In the above, ai and a
†
i are bosonic annihilation and creation operators, respectively,

and ni is the particle number operator. Using this representation, the number ni of
bosonic particles present on at a given lattice site i is directly equal to the number
of times the spin Si in this position is lowered from fully polarized position along the
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z−axis. For that reason, let me refer to these a particles as ”local spin-lowerings”. The
Holstein-Primakoff transformation reproduces exactly the behaviour of original spin
operators, meaning that the spin commutation relations are preserved. The Hilbert
space of bosons is, however, infinite, whereas the number of times a given spin can be
lowered is not. The correct, finite size of the spin Hilbert space would be ensured by a
constraint on the boson occupation number:

ni ≤ 2S .

This constraint leads to the so-called kinematic interactions, which are neglected in
the vast majority of spin-wave studies of the literature. Following this tendency, in my
work I also didn’t take this constraint into account, assuming the effects of kinematic
interactions to be small.

Exactly evaluating the square roots in S+
i and S−

i cannot be done analytically. For
that reason, they are expanded in powers of ni/2S:

√
2S − ni =

√
2S

{
1− 1

2

(
ni

2S

)
− 1

8

(
ni

2S

)2

− · · ·

}
. (A.3)

Substituting the above expression into the Holstein-Primakoff transformation of Eq. (A.2),
one obtains an expanded expression for the spin lowering and raising operators:

S+
i ≃

√
2S

[
ai −

1

4S
a†iaiai −

1

32S2
a†iaia

†
iaiai − . . .

]
, (A.4)

S−
i ≃

√
2S

[
a†i −

1

4S
a†ia

†
iai −

1

32S2
a†ia

†
iaia

†
iai − . . .

]
. (A.5)

The above expressions for S+
i and S−

i (as well as the exact expression for Sz
i of

Eq. (A.2)) are substituted into the original spin Hamiltonian Ĥ of Eq. (A.1). This
leads to a new Hamiltonian in expanded form that we call the spin wave (SW) Hamil-
tonian ĤSW :

ĤSW =
∞∑
n=0

Ĥ(n) ,

where Ĥ(n) contains only products of n bosonic creation or annihilation operators.

A.1.1 A word on the validity of SW expansion

The point of having such an expansion, is to be able to truncate it at a given desired
order, in order to obtain a bosonic Hamiltonian of which we know how to find the
eigenvalues. For this truncation to be valid, one needs the higher-order terms beyond
the truncation order to be vanishingly small. In other words, the expansion given in
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Eq. (A.3) should be well-behaved. This is guaranteed if the expansion parameter is
small, that is, if the following condition is satisfied:

ni

2S
≪ 1 . (A.6)

This condition is satisfied for very large S, which is why SWT is usually efficient in
describing the behaviour of systems of large spins. From Eq. (A.6) however, it is clear
that the validity of a spin-wave derivation not only depends on the spin size S, but
also on the ni parameter, that is, the number of bosonic excitations on a given site.
For that reason, if ni is very large, the SW expansion might not be efficient, even for
large spins. Oppositely, if ni is very small, the SW expansion could be very efficient,
even for small spins.

A.2 Local spin coordinates

Following the validity condition of the SW perturbative treatment given by Eq. (A.6),
one needs to construct the Holstein-Primakoff transformation of Eq. (A.2) in such a
way, that the number ni of elementary spin excitations (that is, spin-lowerings from
the z-axis) is small. This has to be true for each lattice site. In SWT, the assumption
is made that the true quantum ground state is not too far from a classical ground-
state configuration. Quantum effects will only appear as small corrections to the spin
orientation, spin length, and ground-state energy of the classcial ground state. The
classical ground state is, in a way, ”dressed” by quantum fluctuations. Thus, in this
quantum ground state, it is assumed that ni is small if the z axis coincides with the
classical orientation of the spin Si. For this reason, the SW derivation has best chances
to give reliable results when the Holstein-Primakoff transformation is applied to local
spin coordinates for each spins. Those local spin coordinates are defined such that the
local z axis of a given spin Si coincides with the orientation and direction of this spin
in the classical ground state.

Let us call (x0, y0, z0) the global spin coordinates. In the thesis, I only applied SWT
to coplanar spin configurations as classical starting points. In a coplanar configuration,
all spins belong to the same plane, which for the sake of simplicity, we define as the
global x0z0 plane. Then the orientation of a given spin Si is given by only one angle θi
with respect to the global z0-axis. The transformation to local basis is given explicitly
below:

Sx0
i =cos θiS

x
i + sin θiS

z
i ,

Sy0
i =Sy

i , (A.7)

Sz0
i =cos θiS

z
i − sin θiS

x
i .

This corresponds to a local rotation of the coordinates system about the y0-axis. In-
formation about the classical ground-state configuration that we started from is thus
kept in the angular variables of the rotation in Eq. (A.7).
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A.3 Harmonic Hamiltonian in reciprocal space

Linear spin-wave theory (LSWT) consists in truncating the expanded SW Hamiltonian
of Eq. (A.6) to the harmonic order, that is, throwing out all terms involving products
of more than 2 bosonic operators. This gives:

ĤLSW = Ĥ(0)
SW + Ĥ(1)

SW + Ĥ(2)
SW .

The Holstein-Primakoff transformation is applied to a classical ground-state configu-
ration, such that Ĥ(0)

SW is the classical ground-state energy Ecl. In the Harmonic ap-
proximation, as this classical ground state is a local minimum of the energy, the term
linear in bosonic operators Ĥ(1)

SW vanishes. Then only remains the quadratic terms of

Ĥ(2)
SW as a 1/S quantum correction to the ground-state energy.
The Hamiltonian of Eq. (A.1) being a function of all the N spin variables of the

lattice, when considering the thermodynamic limitN → ∞, we end up having a bosonic
SW Hamiltonian involving sums over an infinite set of position in space. It is more
convenient then to work in the reciprocal space (or k-space), such that all relevant
information is encoded in the first Brillouin zone, which has finite boundaries. For
this reason, one applies a discrete Fourier transformation to the bosonic operators ai,
a†i , and the SW Hamiltonian will be expressed as a function of ak, a

†
k. The way this

Fourier transformation is made depends on the nature of the lattice and of the classical
spin configuration. Indeed, when the lattice is not a Bravais lattice, it is convenient
to define a magnetic unit cell containing more than one spin, such that a superlattice
of such cells gives back the original lattice. The superlattice is a Bravais lattice. The
magnetic unit cell can also be enlarged in relation to the periodicity of the classical
spin configuration. For the moment, let us simply distinguish the two situations where
we introduce only one bosonic field, or several.

A.3.1 One boson representation

When studying a Bravais lattice with SWT, it is sometimes possible to introduce only
one bosonic field, even with non ferromagnetic arrangements. Let us say that we
attribute a sublattice for each different spin orientations (not necessarily only two, see
spiral states). Generally, one would introduce one bosonic field for each sublattice.
Then the first Brillouin zone is reduced and we have as many magnon modes as we
have sublattices.

If the sublattices are symmetry-related (meaning that they have the same surround-
ing spin orientations in the rotated local basis), then one can introduce only one single
flavor for magnons. Then in a sense, the magnetic unit cell is reduced to only one lat-
tice site, and the periodicity of the magnetic structure becomes simply the periodicity
of the original Bravais lattice. In such simple situations, the Fourier Transformation is
defined as follows:

ai =
1√
N

∑
k

ake
ik·Ri . (A.8)
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Substituting this into the LSW Hamitlonian of Eq. (A.8), one obtains only quadratic
contributions of the two following kinds:

• Normal terms (particle number is conserved): a†kak,

• Anomalous terms (particle number is changed): a†ka
†
−k or a−kak.

The final LSW Hamiltonian is written in momentum space as follows:

Ĥ(2) =
∑
k

{
Aka

†
kak −

1

2
Bk

(
a†ka

†
−k + a−kak

)}
. (A.9)

Ecl is of the order of S2. The coefficients Ak and Bk in front of the normal and
anomalous terms are of the order of S, thus they represent a 1/S correction to the
ground-state energy.

The single magnon representation applies to the fcc Heisenberg AFM with a spiral
structure, including the commensurate collinear AF1 structure (see section 4.1.1).

A.3.2 multiple-bosons representation

When all sublattices do not have the same surrounding spin structure in the rotated
basis, one has to introduce several bosonic fields, at least one for each different sur-
rounding structure. This is the case for example when the lattice is not a Bravais lattice,
like in the kagome and pyrochlore AFMs studied in chapter 2. Indeed, in that case, all
the sites of the crystallographic unit cell have different geometrical surrounding. Even
in Bravais lattice, it can happen that different sublattices are not symmetry-related
and thus one still has to introduce several bosonic fields. It is the case of AF3 state in
the fcc lattice, see chapters 3-5 .

The magnetic unit cell contains several lattice sites, one of each sublattice. Sub-
lattices are generally defined such that all spins of a same sublattice have the same
orientation in the classical ground-state configuration. Although, as we will see later
in the fcc chapter, this is not always the case. The magnetic unit cell is defined as the
smallest group of spins of which the classical ground-state configuration is only a rep-
etition of. We denote the different bosonic modes by index α ∈ {a, b, c, . . . }. If there
are n sublattices, then the lattice is composed of Nc = N/n magnetic unit cells. It is
necessary to define as well n sets of Nc bosonic operators. To keep information about
the sublattices, a given spin Si is identified by both its position Ri and its sublattice
α:

Si → Si,α .

Then to each bosonic mode α ∈ {a, b, c} is associated a different set of corresponding
Nc bosonic operators ai, bi, ci, and so on:

S+
i,a =

√
2S − a†iaiai

S−
i,a = a†i

√
2S − a†iai ,

Sz
i,a = S − a†iai

S+
i,b =

√
2S − b†ibibi

S−
i,b = b†i

√
2S − b†ibi ,

Sz
i,b = S − b†iab

S+
i,c =

√
2S − c†icici

S−
i,c = c†i

√
2S − c†ici ,

Sz
i,c = S − c†iac

· · ·
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The Fourier transformed is defined similarly as in Eq. (A.8) for each mode:

ai =
1√
Nc

∑
k

ake
ik·Ri , bi =

1√
Nc

∑
k

bke
ik·Ri , · · · (A.10)

Substituting this into the LSW Hamitlonian of Eq. (A.8), one obtains only quadratic
contributions of the four following kinds:

• Normal terms between spins of a same mode: a†kak, b
†
kbk, ...

• Normal terms between spins of different modes: a†kbk, b
†
kck, ...

• Anomalous terms between spins of the same mode: a†ka
†
-k or a-kak, ...

• Anomalous terms between spins of different modes: a†kb
†
-k or a-kbk, ...

Then it is convenient to write the harmonic SW Hamiltonian in a matrix form:

Ĥ(2) =
1

2

∑
k

(
X̂†

kHkX̂k − Tr[Ak]
)
, (A.11)

where X̂†
k =

(
a†k, b

†
k, ..., a-k, b-k, ...

)
is a row vector containing all the Holstein-Primakoff

bosonic operators and Hk is a (2n)× (2n) matrix with the following block structure:

Hk =

(
Ak −Bk

−Ck Dk

)
.

Ak, Bk, Ck and Dk are n× n matrices. Ak and Dk contain the coefficients in front of
the diagonal terms of the Hamiltonian, while Bk and Ck contain the anomalous terms.
In general we have Dk = At

−k = Ak and Ck = B†
k, such that Hk is written as:

Hk =

(
Ak −Bk

−B†
k Ak

)
. (A.12)

The constant term −Tr[Ak] in Eq. (A.11) arises from the bosonic commutation rela-
tions when rearranging the terms in the Hamiltonian, and consequently has a contribu-
tion from half of all the diagonal terms of Hk. When there is no sublattice description,
Ak and Bk in the matrix representation of Eq. (A.11) are simply scalars, and we recover
naturally the form of Eq. (A.9).

A.4 Diagonalization: Bogoliubov transformation

If the anomalous terms Bk are non vanishing in Eq. (A.12), the quadratic bosonic
Hamiltonian obtained from the LSW expansion in Eq. (A.11) is not diagonal. This
means that the basis of on-site spin-lowering excitations (a†i , b

†
i , c

†
i , · · · ) defined in the

Holstein-Primakoff transformation is not a good basis to this Hamiltonian. In other
words, these excitations are not well-behaved and do not have a definite energy. They
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interact with their own vacuum, leading to spontaneous creation or annihilation of
pairs of spin-flips of opposite momenta. Due to this, one cannot simply establish the
ground state as the vacuum of these spin-lowerings. That also means that the original
classical ground state is not a true ground state of the Hamiltonian.

In order to determine the true ground state (up to harmonic approximation), we
need to define a proper basis for the quadratic Hamiltonian, in which it is diagonal.
Then the ground state becomes indeed the vacuum of such well-behaved particles: the
magnons. Those new particles are defined so as to not interact with their own vacuum
(cancellation of anomalous term). New bosonic excitations βk,m, β

†
k,m are thus defined

through the Bogolyubov transformation, wherem ∈ {1, 2, · · · , n} refers to the different
magnon modes. In the following, we focus on the matrix form of the Hamiltonian, as
it is more general 1. The steps essentially follow [116].

The Bogolyubov transformation is given by:

X̂k = PkŶk , (A.13)

where Pk is the (real) change-of-basis matrix. The vector Ŷk contains the new bosonic
particles:

Ŷ †
k =

(
β†
k,1, β

†
k,2, ..., β-k,1, β-k,2, ...

)
. (A.14)

The goal is that this transformation leads to a diagonal harmonic Hamiltonian, that is
(see Eq. (A.11)):

X̂†
kHkX̂k = Ŷ †

kΩkŶk , (A.15)

with Ωk being a diagonal matrix containing the spin-wave energies. Substituting
Eq. (A.13) into the above leads to the following relation:

P †
kHkPk = Ωk . (A.16)

If Pk would be unitary, then this would lead to the eignevalue equation corresponding
to direct diagonalization of Hk. This is, however, not the case here. Indeed, the re-
quirement that the bosonic commutation relations are verified - both for the original
particles (ak, bk, · · · ) and the eigen-excitations (βk,1, βk,1, · · · ) - constrains the diago-
nalization process. The commutation relations are written as follows:[

X̂k, X̂
†
k

]
=X̂k · X̂†

k −
(
X̂k · X̂†

k

)t
= G , (A.17)[

Ŷk, Ŷ
†
k

]
=Ŷk · Ŷ †

k −
(
Ŷk · Ŷ †

k

)t
= G , (A.18)

where G is defined as:

G =

(
In 0
0 −In

)
. (A.19)

1Note that the Bogolyubov transformation for the single-mode picture is done in chapters 4 and 5.

146



We substitute Eq. (A.13) into Eq. (A.17). Keeping in mind that Pk is real, from
Eq. (A.18) the following relation holds for the change-of-basis matrix:

PkGP
†
k = G . (A.20)

From the property G2 = In, Eq. (A.20) naturally leads to:(
P †
k

)−1

= GPkG .

Multiplying Eq. (A.16) by the above expression, we get:

HkPk = GPkGΩk . (A.21)

We now multiply Eq. (A.21) by G on the left and finally obtain the following eigenvalue
problem:

(GHk)Pk = Pk (GΩk) . (A.22)

Indeed, GΩk is still a diagonal matrix. In conclusion, although the original SW matrix
Hk cannot be straightforwardly diagonalized as is, one can obtain the diagonal elements
of (GΩk) by diagonalization of the modified matrix (GHk).

A.4.1 A symmetry-induced simplification

In the situation where Bk is a hermitian matrix, then the block structure of the LSW
matrix Hk allows us to reduce the dimension of the eigenvalue problem from 2n to n.
We have from Eq. (A.12):

GHk =

(
Ak −Bk

Bk −Ak

)
. (A.23)

Take a given eigenvector Wk of GHk with eigenvalue ϵk. Let us define the two smaller
vectors Uk and Vk of dimension n such that:

W †
k =

(
U †
k, V

†
k

)
.

Then the eigenvalue equation gives two relations for Uk and Vk:

GHkWk = ϵkWk ⇒

{
AkUk −BkVk = ϵkUk ,
BkUk − AkVk = ϵkVk .

(A.24)

Subtracting and adding the two above equations leads to the following:

(Ak +Bk) (Uk − Vk) =ϵk (Uk + Vk) , (A.25)

(Ak −Bk) (Uk + Vk) =ϵk (Uk − Vk) . (A.26)
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We multiply both equations by ϵk, which leads to:

(Ak +Bk) ϵk (Uk − Vk) =ϵ
2
k (Uk + Vk) , (A.27)

(Ak −Bk) ϵk (Uk + Vk) =ϵ
2
k (Uk − Vk) . (A.28)

Substituting Eq. (A.25) and Eq. (A.26) back into the left hand-side of Eq. (A.27) and
Eq. (A.28), respectively, gives:

Σk∆k (Uk + Vk) =ϵ
2
k (Uk + Vk) , (A.29)

∆kΣk (Uk − Vk) =ϵ
2
k (Uk − Vk) , (A.30)

where we introduced the two n× n matrices Σk and ∆k:

Σk =(Ak +Bk) , (A.31)

∆k =(Ak −Bk) . (A.32)

The two equations given in Eqs. (A.29, A.30) define two new eigenvalue problems of
dimension n. Since they must be verified for any of the 2n eigenvalues ϵk of GHk, the
diagonal matrix GΩk must be given by:

GΩk =

(
Ek 0
0 ±Ek

)
, (A.33)

where Ek is a n× n diagonal matrix which contains the n positive square roots of the
eigenvalues of Σk∆k:

Ek =

 ϵ1k

0
. . . 0

ϵnk

 . (A.34)

One can show that the requirement for linearly independent eigenvectors of GHk fixes
the negative sign in Eq. (A.33). Then we have:

Ωk =

(
Ek 0
0 Ek

)
. (A.35)

To summarise, the energy modes of the quadratic Hamiltonian given by Eq. (A.11) are
found by solving the following n-dimensional eigenvalue problem:∣∣∆kΣk − ϵ2In

∣∣ = 0 . (A.36)

where ∆k and Σk are given by Eqs. (A.31, A.32). The positive square roots of the
obtained n eigenvalues give the SW modes ϵk,i.

In the case where a single-boson representation is allowed, Ak and Bk become simple
scalars and the solution of Eq. (A.36) gives the following magnon spectrum (with single
mode):

ϵk =
√
A2

k −B2
k . (A.37)
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A.5 Correction to the ground-state energy

The LSW Hamiltonian is given by:

ĤLSW = Ĥ(0) + Ĥ(2) . (A.38)

We recall that Ĥ(0) is th classical ground-state energy Ecl, and from Eq. (A.11) and
Eq. (A.15) we have:

Ĥ(2) =
1

2

∑
k

Ŷ †
kΩkŶk + C , (A.39)

where C is a constant given generally by:

C = −1

2

∑
k

Tr[Ak] =
Ecl

S
. (A.40)

From Eq. (A.35), we have then:

ĤLSW = Ecl

(
1 +

1

S

)
+
∑
k,m

ϵmk

(
β†
k,mβk,m +

1

2

)
. (A.41)

The ground state is obviously defined as the vacuum of Bogolyubov particles, such that
β†
k,mβk,m = 0, for all modes m and all wave-vectors k. We obtain the final ground-state

energy, with harmonic quantum corrections:

Egs = Ecl

(
1 +

1

S

)
+

1

2

∑
k,m

ϵmk . (A.42)

We have thus, for the quantum correction ∆Eq:

∆Eq = ELSW
gs − Ecl =

1

2

∑
k,m

ϵmk + C . (A.43)

It corresponds (modulo a constant term) to the zero-point motion of the spin-waves.

A.6 Heisenberg interaction

In this work, we studied the Heisenberg interaction, which involves only scalar products
between pairs of spins. Such scalar products are written in terms of the global spin
coordinates (x0, y0, z0) as:

Si · Sj = Sx0
i S

x0
j + Sy0

i S
y0
j + Sz0

i S
z0
j . (A.44)

I want to give the contribution of such spin-spin scalar products to the harmonic SW
matrix in reciprocal space Hk given by Eqs. (A.11, A.12), in the most general possible
terms.
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After rotation to the local spin coordinates given by Eq. (A.7) and Holstein-
Primakoff transformation, and keeping only terms up to second order (quadratic in
bosonic operators), the scalar product of Eq. (A.44) is given by:

Si · Sj =S
2 cos θij

+
S
√
2S

2
sin θij(aj + a†j − ai − a†i ) (A.45)

+
S

2
(1 + cos θij)(a

†
iaj + a†jai)−

S

2
(1− cos θij)(aiaj + a†ia

†
j)

− S cos θij(a
†
iai + a†jaj) .

The first line of Eq. (A.45) will contribute to the constant, 0-th order term of the
expanded SW Hamiltonian Ĥ(0). As one can see, it is porportional to S2. It corresponds
to the standard expression of a classical scalar product, such that such terms are easily
understood to lead to the classical ground-state energy.

The second line in Eq. (A.45) contains terms involving only one magnon operator,
and will contribute to Ĥ(1). In collinear configurations, we have θij = 0, for any spin

pair, such that Ĥ(1) identically vanishes. This property is actually true for all the
odd orders of the Hamiltonian. For that reason, in collinear arrangements, only even
orders of the expansion remain finite, and give rise to energy corrections of increasing
power in 1/S. There is then no renormalization of the spin orientations (angles).
This is what allows us to perform the self-consistent treatment of interaction terms in
chapter 5, where only collinear states (AF1 and AF3) are compared. More generally,
in the harmonic approximation, Ĥ(1) always vanishes. This is due to the fact that the
classical ground-state configuration is a local minimum of the energy. Consequently,
in the following, we will ignore the associated linear terms.

The last two lines are quadratic in bosonic operators and will continute to Ĥ(2).
Those terms are proportional to S and thus give a 1/S correction to the classical energy
Ecl ∼ S2. From Eq. (A.45), it is obvious that when θij = 0, no anomalous terms are
generated from the scalar product Si ·Sj. Only interactions between non-parallel spins
contribute to the anomalous term Bk in the SW matrix in reciprocal space Hk (see
Eq. (A.12)). This is why ferromagnetic states (such as the fully saturated phase in
magnetic field) are exact ground states of the Hamiltonian. Indeed, the absence of
anomalous terms means that the SW Hamiltonian is already diagonal in the basis of
local spin-lowerings. Therefore the true ground state does correspond to the original
classical FM ground state with no quantum fluctuations.

A.6.1 Detailed contributions to the spin wave matrix

So far, no information about the sublattices to which the two spins belong (if any) is
explicitly written in Eq. (A.45). All information about both position and sublattice
is encoded in the i and j subscripts. To see what is the contribution of a given
scalar product to the harmonic Hamiltonian in reciprocal space, one needs to apply

150



a summation in real space. Specifically, the Heisenberg Hamiltonian will give rise to
such terms: ∑

i∈{iα}

Si,α · Si+δ,α′ . (A.46)

The index ensemble {iα} corresponds to the set of all lattice cites belonging to the
sublattice α. There are Nc such lattice sites for each sublattice. The bond vector
δ ̸= 0 connects the spin Si in position Ri to another spin in position Ri + δ, and α′

is the corresponding sublattice to which this second spin belongs. No assumption is
made about α′, in the sense that it can be different or not from α. The above scalar
products are expressed in terms of bosonic operators using Eq. (A.45), to which we
apply the following changes:

ai → (ai, bi, ci · · · ) for α = (a, b, c, · · · ) ,
aj → (ai+δ, bi+δ, ci+δ, · · · ) for α′ = (a, b, c, · · · ) , (A.47)

cos θij → θα(δ) .

As previously mentioned, the sublattices are often defined as sets of spins which all have
the same classical orientation. In that situation the classical opening angle between
two spins (namely θij in Eq. (A.45)) only depends on the two sublattices α and α′

ad could thus be written as θαα′ . This is, however, not absolutely general. Indeed,
the more general way to define sublattices is as sets of spins which all have the same
opening angles configurations with their neighbors. Thus, to keep generality as much
as possible, I write the opening angle between the two spins of the scalar product of
Eq. (A.46) as θα(δ). After applying the changes of Eq. (A.47), we get the following
expression for (α, α′) = (a, b):

Si,a · Si+δ,b =S
2 cos θa(δ)

+
S

2

[
1 + cos θa(δ)

] (
a†ibi+δ + b†i+δai

)
(A.48)

− S

2

[
1− cos θa(δ)

] (
aibi+δ + a†ib

†
i+δ

)
− S cos θa(δ)

(
a†iai + b†i+δbi+δ

)
.

Similar expressions are obtained for any pair (α, α′) with α ̸= α′. When we have
α = α′ = a, we obtain:

Si,a · Si+δ,a =S
2 cos θa(δ)

+
S

2

[
1 + cos θa(δ)

] (
a†iai+δ + a†i+δai

)
(A.49)

− S

2

[
1− cos θa(δ)

] (
aiai+δ + a†ia

†
i+δ

)
− S cos θa(δ)

(
a†iai + a†i+δai+δ

)
.
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Let us Fourier Transform Eq. (A.48) and Eq. (A.49) using Eq. (A.10), in order to
obtain the expression of the scalar product in terms of bosonic operators in reciprocal
space a

(†)
k . We recall the following relation:∑

i∈{iα}

eik·Ri = Nc · δk,0 , (A.50)

which allows us to get rid completely of the real-space summation. The constant term
(first lines of Eq. (A.48) and Eq. (A.49)) trivially acquires a factor Nc when performing
the summation in Eq. (A.46). We focus thus only on the quadratic terms, and we obtain
for (α, α′) = (a, b):∑

i∈{ia}

(
Si,a · Si+δ,b

)(2)
=
S

2

∑
k

{[
1 + cos θa(δ)

] (
a†kbke

ik·δ + b†kake
−ik·δ

)
−
[
1− cos θa(δ)

] (
a-kbk + a†kb

†
-k

)
eik·δ

−2 cos θa(δ)(a
†
kak + b†kbk

}
. (A.51)

In the case where α′ = α = a, this becomes:∑
i∈{ia}

(
Si,a · Si+δ,a

)(2)
=
∑
k

{
Aaa

k (δ)a†kak −
1

2
Baa

k (δ)
(
a-kak + a†ka

†
-k

)}
. (A.52)

where Aaa
k (δ) and Baa

k (δ) are given by:

Aaa
k (δ) =S

{
cos(k · δ)

[
1 + cos θa(δ)

]
− 2 cos θa(δ)

}
,

Baa
k (δ) =S cos(k · δ)

[
1− cos θa(δ)

]
. (A.53)

When α′ ̸= α, we have for example with (α, α′) = (a, b):

∑
i∈{ia}

(
Si,a · Si+δ,b

)(2)
=

1

2

∑
k

{
Aab

k (δ)
(
a†kbk + a-kb

†
-k

)
−Bab

k (δ)
(
a†kb

†
-k + a-kbk

)
+ h.c.

+Aaa
k (δ)′

(
a†kak + a-ka

†
-k − 1

)
+ Abb

k (δ)
′
(
b†kbk + b-kb

†
-k − 1

)}
,

(A.54)

where Aab
k (δ), Bab

k (δ) are given by:

Aab
k (δ) =S

1 + cos θa(δ)

2
eik·δ ,

Bab
k (δ) =S

1− cos θa(δ)

2
eik·δ . (A.55)
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These coefficients are in principle complex, but the sum of such coefficients over the
possible δ vectors linking sublattices α and β might be real. The coefficients Aaa

k (δ)′

and Abb
k (δ)

′ are equal and contribute to the diagonal of the normal matrix Ak. They
are given by:

Aaa
k (δ)′ = Abb

k (δ)
′ = −S cos θa(δ) . (A.56)

The matrix elements of Ak and Bk will thus be given by all these contributions of
Eqs. (A.53, A.55, A.56). This will be useful to fill the spin-wave matrix Hk.
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Appendix B

Mean-field averages values

The present appendix gives the values obtained numerically after self-consistent evalu-
ation of the mean-field averages n, mij and ∆ij defined in Eq. (5.12), for the AF1 and
AF3 states in the nearest-neighbor Haeisenberg model on an fcc lattice.

B.1 Tables

For the AF1 state, expressions for the three mean-field averages n, m and ∆ are given
by Eq. (5.42). Those expressions are obviously self-consistent in combination with
Eqs. (5.32 - 5.33) and Eq. (5.36). We give the numerical values of nm m and ∆ for
all the spin lengths that were considered in the present work, as well as the quantum
correction to the ground state energy ∆Eq, in table B.1:

S n m ∆ ∆Eq/(JS)

1/2 0.140940(1) 0.070658(2) 0.163809(1) −0.448499(1)
1 0.169642(1) 0.079798(2) 0.184067(2) −0.459469(1)
3/2 0.186589(2) 0.084692(2) 0.195514(2) −0.465359(1)
2 0.198397(2) 0.087885(2) 0.203296(2) −0.469073(1)
5/2 0.207342(6) 0.090186(6) 0.209093(6) −0.471655(5)
3 0.214474(6) 0.091946(6) 0.213657(6) −0.473568(5)
7/2 0.220362(6) 0.093349(7) 0.217388(6) −0.475049(5)
4 0.225347(6) 0.094502(7) 0.220521(6) −0.476233(5)
5 0.233419(7) 0.096298(7) 0.225545(7) −0.478018(5)
10 0.256224(8) 0.100885(8) 0.239417(8) −0.482190(5)
20 0.275359(9) 0.104142(9) 0.250696(9) −0.484751(5)
100 0.30644(4) 0.10812(4) 0.26828(4) −0.48727(5)

∞ 0.338777(3) 0.109938(2) 0.285365(2) −0.4880560(8)

Table B.1: Self-consistent mean-field values for the AF1 state.
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For the AF3 state, expressions for the four mean-field averages n, m, ∆ and ∆αα are
given by Eq. (5.82). Those expressions are to be taken in combination with Eq. (5.57)
and Eqs. (5.60 - 5.63). We give the numerical values of n, m, ∆ and ∆αα for all the spin
lengths that were considered in the present work, as well as the quantum correction to
the ground state energy ∆Eq, in table B.2:

S n m ∆αα ∆ ∆Eq/(JS)

1/2 0.1297309(7) 0.0578292(7) 0.1612939(9) 0.1411098(7) −0.4431978(5)
1 0.544883(8) 0.0597221(7) 0.177545(1) 0.1546256(8) −0.4549419(5)
3/2 0.1696834(9) 0.0598444(7) 0.186873(1) 0.1619486(8) −0.4615606(5)
2 0.1806216(9) 0.0595168(8) 0.193330(1) 0.1668548(8) −0.4658707(5)
5/2 0.189135(3) 0.059048(2) 0.198227(4) 0.170489(3) −0.468941(2)
3 0.196080(3) 0.058539(2) 0.202149(4) 0.173345(3) −0.471260(2)
7/2 0.201928(3) 0.058028(2) 0.205405(4) 0.175680(3) −0.473085(2)
4 0.206966(3) 0.057532(2) 0.208179(4) 0.177644(3) −0.474565(2)
5 0.215307(3) 0.056605(3) 0.212717(4) 0.180803(3) −0.476832(2)
10 0.240266(4) 0.053144(3) 0.225969(4) 0.189641(3) −0.482353(2)
20 0.263153(4) 0.049245(3) 0.237853(5) 0.197052(3) −0.485954(2)
100 0.30569(1) 0.04079(1) 0.25988(2) 0.20934(1) −0.48978(2)

∞ 0.366331(2) 0.0283547(6) 0.294248(2) 0.2232140(6) −0.4911055(4)

Table B.2: Self-consistent mean-field values for the AF3 state.

The integrals in Eq. (5.42) (AF1 state) and Eq. (5.82) (AF3 state) were evaluated
using standard Monte-Carlo integration with NMC = 9 · 1010 random points in the
integration volume for 1/2 ≤ S ≤ 2, NMC = 1 ·1010 for 5/2 ≤ S ≤ 20 and NMC = 9 ·108
for S = 100. The final values for the mean-field averages are taken after convergence
of the self-consistent loop. The values for S = ∞ were taken from the harmonic
approximation, with NMC = 1 · 1012 random points in the integration volume, see
Eqs. (4.28 - 4.29) and Eq. (4.31).

The corresponding values for the quantum gaps ∆1 and ∆3 can be readily obtained
from the above tables, using Eq. (5.95) and Eq. (5.98) for the AF1 and AF3 states,
respectively, which we repeat below:

∆1 = 8J(∆−m) , ∆3 = 8J
√

(∆αα −m)(∆−m) . (B.1)

B.2 Curves

In this section, we compare the evolution of various mean-field averages with respect
to spin length, for the AF1 and AF3 states. Those are shown on Fig. (B.1), Fig. (B.2)
and Fig. (B.3) for n, m and ∆ averages, respectively.
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Figure B.1: Spin reduction n versus inverse spin for the AF1 and AF3 states, after
self-consistent renormalization of the vacuum.
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Figure B.2: Hopping average m versus inverse spin for the AF1 and AF3 states, after
self-consistent renormalization of the vacuum.
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Figure B.3: Anomalous averages ∆ versus inverse spin for the AF1 and AF3 states,
after self-consistent renormalization of the vacuum.
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