/4
NEUTRONS
FOR SCIENCE

Institut Laue-Langevin Universita degli Studi di Perugia

Dottorato di Ricerca in Fisica e Tecnologie Fisiche

XXVI Cliclo

BORON-10 LAYERS, NEUTRON REFLECTOMETRY
AND

THERMAL NEUTRON (GASEOUS DETECTORS

Supervisor:
Prof. Francesco SACCHETTI

ILL Supervisors:
A :
uthor Dr. Patrick VAN EScH

Francesco PISCITELLI ,
Dr. Bruno GUERARD

Coordinator:
Prof. Maurizio Busso

AA. 2012/2013






To my family.

[...] fatti non foste a viver come bruti,
ma per sequir virtute e canoscenza.

[] you were not made to live as brutes,

but to follow virtue and knowledge.

Dante Alighieri - Divina Commedia,
Inferno Canto XXVI vv. 119-120






I would like to thank many people. Each Chapter starts with a special thank to who was
decisive to finalize the work explained in such Chapter or I had important discussions
with or, more simply, who taught me a lot on a specific subject. I thank my colleague An-
ton Khaplanov for what he taught me about the ~v-ray physics. Philipp Gutfreund, Anton
Devishuili, and Boris Toperverg for what concerns neutron reflectometry: experiments,
theory and data analysis. Federica Sebastiant and Yuri Gerelli for the discussions we had
on neutron reflectometry. Carina Hoglund for the excellent work done on the boron layers.
I want to thank also Jean-Claude Buffet and Sylvain Cuccaro for the amount of technical
1ssues they solved for me and for what they taught me about the mechanics. I want also to
thank my colleagues Anton Khaplanov and Jonathan Correa for the pleasant time spent
together in our office and in the labs.

I wish to every PhD student to have a supervisor as Patrick Van FEsch. A special thank
goes to him for the huge amount of things he explained to me on the neutron scattering.
For the help he gave me to develop the theory of neutron converters and for the time he
spent with me to make this manuscript as it is presented now.

I thank my group leader, Bruno Guérard who believed in the success of the prototype con-
cept, for having pushed me to construct the detector. I want to thank Bruno Guérard
and Richard Hall-Wilton for the support they gave in the research of new technologies in
thermal neutron detection.

I thank the SISN (Italian Society of Neutron Spectroscopy) and all its members, in par-
ticular Alessio De Francesco, for what I learned about neutrons and for all the occasions
1t gave me.

I would like to thank all the people that, even if they have not been directly involved in this
thesis, I think they have contributed somehow.

The entire "Italian lunch community” for the time spent together eating, drinking and
playing sports, in particular skitng and playing football. I want to thank the ”Tresette”
players for the pleasant time spent after lunch to get back the concentration to work.

I thank Giuliana Manzin and John Archer because they had care of me when I came in
Grenoble for the first time and because of our well-established ”eating-friendship”.

I would like to thank ”Los Latinos” football group for the matches we played together that
really helped me to discharge the stress of writing a thesis.

I thank my friends, that I left in Italy, to be always interested in how my life is going.

I thank my family for its strong support. For the moral and concrete means I received
from them over the years.

I would also to thank my family as I conceive it now including Federica’s family for the
convivial time spent together.

I thank Federica Sebastiani to be always present.

October 29, 2013






BORON-10 LAYERS, NEUTRON REFLECTOMETRY

AND

THERMAL NEUTRON GASEOUS DETECTORS

Francesco Piscitelli






Contents

Introduction

Institut Laue-Langevin . . . . . . . . . . .. . Lo
Outline . . . . . e

Interaction of radiations with matter

1.1 Definition of cross-section . . . . . . . . .. ...
1.2 Charged particles interaction . . . . . . . . . .. ... o
1.2.1 Heavy charged particles . . . . . . . . ... . ... ... .. .. ... ...
1.2.2  Electrons and Positrons . . . . . . .. .. ... oL
1.3 Photon interaction . . . . . . . .. L L L
1.3.1 Photoelectriceffect . . . . . . . ... ... L
1.3.2  Compton scattering . . . . . . . . ...
1.3.3 Pair production . . . . . . . . ... e
1.3.4 Total absorption coefficient and photon attenuation . . ... .. ... ..
1.4 Sources, activity and decay . . . . . . ...
1.4.1  Activity . . . . . . e
1.4.2 Portable neutron sources . . . . . . . . ... oo
1.5 Neutron interaction . . . . . . . . . . ...
1.5.1 Neutron interactions with matter . . . . . . .. .. ... ... ... ....
1.5.2 Elastic scattering . . . . . . . . . ...
1.5.3 Absorption . . . . . . . . ...
1.5.4 Reflection of neutrons by interfaces . . . . . . . . . ... ... ... ....
Neutron gaseous detector working principles
2.1 Principles of particle detectors . . . . . .. ... oL
2.1.1 Introduction . . . . . . . . . . . ..
2.1.2 Gasdetectors . . . . . . . ... e
2.2 Thermal neutron gas detectors . . . . . . . .. ... o
2.2.1 The capture reaction . . . . . . . . . .. ..o
2.2.2  Pulse Height Spectrum (PHS) and counting curve (Plateau) . . . . . . . .
2.2.3 Gas spatial resolution . . . . .. ..o
2.24 Timing of signals . . . . . . . . . ..
2.2.5 Efficiency . . . . . ..
2.3 Read-out and dead time . . . . . .. ... o
2.3.1 Read-out techniques . . . . . . . . . . ...

ot

10
12
12
14
14
15
16
17
18
18
18
19
20
20
23
28
32



2.3.2 Dead time . . . . . . . .. 54

2.4 The3He crisis . . . . . o o v i 54
2.4.1 The3He shortage . . . . . .. .. i o4
2.4.2 Alternatives to >He in neutron detection . . . . . ... ... ... .... 56

Theory of solid neutron converters 57

3.1 Introduction . . . . . . . . . . . e e e e 58

3.2 Theoretical efficiency calculation . . . . .. ... ... ... . 0. 60
3.2.1 One-particlemodel . . . . . . . .. ... 60
3.2.2 Two-particlemodel . . . . . . . . . ... ..o 62

3.3 Doublelayer. . . . . . . . L 65
3.3.1 Monochromatic double layer optimization . . . . .. ... ... ... ... 66
3.3.2 Effect of the substrate . . . . . . . .. .. ... o 68
3.3.3 Double layer for a distribution of neutron wavelengths . . . . . . ... .. 69

3.4 The multi-layer detector design . . . . . .. .. .. ... L. 73
3.4.1 Monochromatic multi-layer detector optimization . . . . . . . ... .. .. 75
3.4.2 Effect of the substrate in a multi-layer detector . . . . . .. .. .. .. .. 80
3.4.3 Multi-layer detector optimization for a distribution of neutron wavelengths 82

3.5 Why Boron Carbide? . . . . . . . .. . 88

3.6 Theoretical Pulse Height Spectrum calculation . . . . ... ... ... .. .... 91
3.6.1 Back-scatteringmode . . .. ... ... L oo 91
3.6.2 Transmission mode . . . . . . . . . ... e 98

Converters at grazing angles 99

4.1 Introduction . . . . . . . . . . e 100

4.2 Reflection of neutrons by absorbing materials . . . . . ... ... ... ... ... 101

4.3 Corrected efficiency for reflection . . . . . . .. ... o 0oL 104

Gamma-ray sensitivity of neutron detectors based on solid converters 115

5.1 Introduction . . . . . . . . . . . e 116

5.2 The Multi-Grid detector . . . . . . . . . . . ... 117

5.3 GEANT4 simulations of interactions . . . . . . . ... .. .. ... ........ 119

5.4 ~-ray sensitivity measurements . . . . ... ..o oL Lo 122
5.4.1 0B,C-based detector PHS . . . . . . . o 0 122
5.4.2 10B,C-based detector Plateau . . . . . . o v v v i 125
5.4.3 19B,C and 3He-based detectors y-ray sensitivity . . . . .. ... ..... 127
5.4.4 Pulse shape analysis for neutron to y-ray discrimination . . . . . . . . .. 129

The Multi-Blade prototype 135

6.1 Detectors for reflectometry and Rainbow . . . . . . . .. ... ... 136

6.2 The Multi-Blade concept . . . . . . . . . . . . . .. e 139

6.3 Multi-Blade version V1 . . . . . . . . . . e 143
6.3.1 Mechanical study . . . . . . . . ... 143
6.3.2 Mechanics . . . . . . ... 145
6.3.3 Results . . . . . . e 151

6.4 Multi-Blade version V2 . . . . . . . .. 158



6.4.1 Mechanical study . . . . . . . . ... 158

6.4.2 Mechanics . . . . . .. 159

6.4.3 Results . . . . . . e 162
Conclusions 169
A The stopping power law 173
A.1 Classical derivation . . . . . . . . . . . ... 173
A.2 The Bethe-Bloch formula . . . . ... ... ... ... ... ... . 175

B Connection with Formulae in [4] 176
C Connection with Formulae in [26] 177
D Highly absorbing layer neutron reflection model 178
E Neutron flux measurement 180






Introduction

Institut Laue-Langevin

The Institut Laue-Langevin (ILL) is an international research center at the leading edge of neu-
tron science and technology. It is situated in Grenoble, France, among some other important
research centers like C.E.A. ! or E.S.R.F. 2

ILL was funded and it is managed by the governments of France, Germany and the United King-
dom, in partnership with 9 other European countries 3. Every year, more than 1200 researchers
from 30 countries visit the ILL. Over 700 experiments selected by a scientific review commit-
tee are performed annually and research focuses mainly on fundamental science in a variety of
fields; this includes condensed matter physics, chemistry, biology, nuclear physics and materials
science.

The institute operates the most intense neutron source in the World 4, feeding beams of neutrons
to a suite of 40 high-performance instruments that are constantly upgraded. From a technical
point of view, neutrons are created by the fission of 233U in a nuclear reactor of about 58 MW of
power. Thanks to different procedures, neutrons with different energies can be produced. They
are guided to the different apparatus in the Guide Halls where the experiments take place.

Figure 1: Panoramic view of ILL

!Commissariat & I’Energie Atomique

2European Synchrotron Radiation Facility

3Ttaly, Spain, Switzerland, Austria, the Czech Republic, Sweden, Hungary, Belgium and Poland
41.5 - 10° neutrons per second per em?



Outline

By using neutrons we can determine the relative positions and motions of atoms in a bulk
sample of solid or liquid. Neutrons make us able to look inside the sample with a suitable
magnifying glass. They have no charge, and their electric dipole moment is either zero or too
small to be measured. For these reasons, neutrons can penetrate matter far better than charged
particles and it is also why they are relatively hard to be detected. Available neutron beams have
inherently low intensities. The combination of weak interactions and low fluxes make neutron
scattering a signal-limited technique, which is practiced only because it provides information
about the structure of materials that cannot be obtained in simpler, less expensive ways.

Nowadays neutron facilities are going toward higher fluxes, e.g. the European Spallation Source
(ESS) in Lund (Sweden), and this translates into a higher demand in the instrument perfor-
mances: higher count rate capability, better timing and smaller spatial resolution are requested
amongst others. Moreover, existing facilities, such as ILL, need also a continuous updating of
their suite of instruments.

Because of its favorable properties, >He (a rare isotope of He) has been the main actor in ther-
mal neutron detection for years. 3He is produced through nuclear decay of tritium, a radioactive
isotope of hydrogen. By far the most common source of *He in the United States is the US nu-
clear weapons program, of which it is a byproduct. The federal government produces tritium for
use in nuclear warheads. Over time, tritium decays into > He and must be replaced to maintain
warhead effectiveness. Until 2001, 3He production by the nuclear weapons program exceeded
the demand, and the program accumulated a stockpile. In the past decade >He consumption
has risen rapidly. After the terrorist attacks of September 11, 2001, the federal government
began deploying neutron detectors at the US border to help secure the nation against smuggled
nuclear and radiological material. Thus, starting in about 2001, and more rapidly since about
2005, the stockpile has been declining.

The World is now experiencing the shortage of 3He. This makes the construction of large area
detectors (several squared meters) not realistic anymore. A way to reduce the >He demand
for those applications is to move users to alternative technologies. Some technologies appear
promising, though implementation would likely present technical challenges.

Although scintillators are also widely employed in neutron detection, they show a higher y-ray
sensitivity compared to gaseous detectors that makes their use in strong backgrounds difficult.
Many research groups in Europe and in the World are exploring different alternative ways to
detect neutrons to assure the future of the neutron scattering science. They focus mainly on
the 3He replacement because this expensive gas, in large quantities, is not available anymore.
Although it is absolutely necessary to replace *He for large area applications, this is not the
main issue for what concerns small area detectors (~ 1m?) for which the research is focused on
improving their performances.

There are several aspects that must be investigated in order to validate those new technologies.
E.g. their detection efficiency is one of the main concerns because it is in principle relatively
limited compared to He detectors. The detection of a v-ray instead of a neutron can give rise
to misaddressed events. The level of discrimination between neutrons and background events
(e.g. y-rays) a neutron detector can attain is then another key feature to be studied.

This PhD work was carried out at Institut Laue-Langevin (ILL) in Grenoble (France) in the
Neutron Detector Service group (SDN) which is mainly in charge of the maintenance of the



neutron detectors of the instruments. This group is also involved in the development of new
technologies for thermal neutron detection.

At ILL we tackled both the problem of 3He replacement for large area applications and the
performance problem for small area detectors. Both solutions are based on 9B layers. °B is
about 20% of the natural abundance of Boron, and thanks to its large neutron absorbtion cross-
section, it is a suitable material to be employed in neutron detection as a neutron converter.
In particular we used thin layers of magnetron sputtered '°B4C produced by the Linkoping
University (Sweden).

Although the physical process involved in neutron detection via layers of solid converter (such
as °B) is well known, there a great interest in expanding the theory toward new models and
equations that can help to develop such a technology.

The Multi-Grid gaseous neutron detector was developed at ILL to face the problem arising for
large area applications. We also implemented the Multi-Blade detector, already introduced at
ILL in 2005, but never implemented until 2012, to go beyond the intrinsic limit in performances
of the actual small area detectors. The Multi-Blade is a small area detector for neutron reflec-
tometry applications that exploits '°B4C-films employed in a proportional gas chamber. In a
3 He-based detector the counting rate and spatial resolution are both limited. The instruments
dedicated to neutron reflectometry studies need detectors of high spatial resolution (< 1mm)
and high counting rate capability.

There is a great interest in expanding the performances of neutron reflectometry instruments,
but due to practical limits in actual detector resolution and collimation, the technique is prob-
ably not practical. The principal investment is an area detector with 0.2 mm spatial resolution
required in one dimension only.

The Multi-Grid exploits up to 30 °B4C-layers in a cascade configuration. For large area appli-
cations the main concern about the '°B-based technology is the detection efficiency. While in
3He tubes a 2 cm detection volume assures an efficiency beyond 70% (at 2.5A); a 30-layer '°B
detector is needed to reach about 50% efficiency for the same neutron wavelength. Since those
layers are arranged in cascade, there is a strong interest in studying their arrangement in order
to improve the efficiency and the neutron to vy-ray discrimination.

We elaborated a pure analytical study, proved by experiments, on the layer arrangement to
increase the detector efficiency. We developed a suite of equations to help the detector con-
struction, i.e. we derived analytical formulae to optimize the '°B-coating thicknesses. Those
results can be also applied to other kinds of solid neutron converter, such as %Li, and not only
to 10 B-films.

This theoretical study has also demonstrated that the magnetron sputtering is a suitable tech-
nique to make optimized converter layers. We also derived the analytical expression for the
Pulse Height Spectrum (PHS) that helps to predict the neutron to 7-ray discrimination.

For a standard neutron detection efficiency, less than 10~6 y-ray sensitivity can be easily achieved
in 3He detectors. The discrimination procedure is also easy to be applied and it is based on
the distinction of the energy deposited in the gas volume. While there is a good separation
in energy between neutron and ~-ray events for He detectors, this is not the case for solid-
converter-based detectors. We investigated deeply the y-ray sensitivity of '°B-based detector
and we compared with 3 He detectors. We exposed '°B and 3 He detectors to the same calibrated
~-ray background in order to quantify their sensitivity, when the same energy discrimination



method is used.

Since there is always a certain loss of neutron detection efficiency for 1B detectors, we investi-
gated one more method to perform the neutron to y-ray discrimination for those detectors.

In order to quantify the ~-ray background a detector is exposed to on a real instrument we
measured the typical background on the time-of-flight spectrometer IN6 at ILL.

We elaborated a procedure to measure both the PHS and the counting curve of '°B-based
detectors free from v-rays that can be compared with the theoretical model we developed.

The Multi-Blade prototype is a small area detector for neutron reflectometry applications. It is
a Multi Wire Proportional Chamber (MWPC) operated at atmospheric pressure. The Multi-
Blade prototype uses '°B4C converters at grazing angle with respect to the incoming neutron
beam. The inclined geometry improves the spatial resolution and the count rate capability of
the detector. Moreover, the use of the '°B,C conversion layer at grazing angle also increases
the detection efficiency.

While detection efficiency increases as the inclination decreases, the reflection of neutrons at the
surface can be an issue. We studied this potential problem by developing a theoretical model
about neutron reflection by strong absorbing materials such as 1B,C.

We characterized '°B,C layers deposited on several types of substrates by using neutron reflec-
tometry. We quantified the loss by reflection of such a layer as a function of the hitting angle and
neutron wavelength. We investigated which properties of the layer and its substrate influence
the reflection that has to be minimized. Our analytical model helped to investigate the data
and to get information about the neutron converter itself.

The Multi-Blade prototype is conceived to be modular in order to be adaptable to different
applications. A significant concern in a modular design is the uniformity of detector response.
Several effects might contribute to degrade the uniformity and they have to be taken into account
in the detector concept: overlap between different substrates, coating uniformity, substrate flat-
ness and parallax errors.

We studied several approaches in the prototype design: number of converters, read-out system
and materials to be used.

We built two versions of the Multi-Blade prototype focusing on its different issues and features.
We measured their detection efficiency and uniformity on our test beam line. We quantified
their spatial resolution and dead time.

We investigated a different deposition method for the °B converters which is not magnetron
sputtering but °B glue-based painting.

We hope that in our work we have laid a solid theoretical basis, confirmed by experiments, for
the understanding of the main aspects of solid converter layers employed in neutron detectors.
We also explored practically, by the construction and characterization of prototypes, a specific
type of solid-converter-based neutron detector, the Multi-Blade, especially suited for application
in neutron reflectometry.



Chapter 1

Interaction of radiations with matter

This chapter summarizes the prerequisites needed for the comprehension of the material aboarded
in this manuscript. We present notions of interactions between particles and matter, and we
introduce some neutron physics. We pay especially attention to the meaning of coherent and
incoherent scattering lengths, and to the meaning of the imaginary part of the scattering length.
The main sources of the material for this Chapter are: the books [1], [6], [7], [8], [9] and the
articles [5], [10], [12].



1.1 Definition of cross-section

The collision or interaction of two particles is generally described in terms of the cross-section
[1]. This quantity essentially gives a measure of the probability for a reaction to occur. Consider
a beam of particles incident on a target particle and assume the beam to be broader than the
target (see Figure 1.1). Suppose that the particles in the beam are randomly distributed in
space and time. We can define ® to be the flux of incident particles per unit area and per unit
time. Now look at the number of particles scattered into the solid angle df) per unit time. By
scattering we mean any reaction in which the outgoing particle is emitted in the solid angle . If
we average, the number of particles scattered in a solid angle d2 per unit time will tend toward
a fixed value dNNs. The differential cross-section is then defined as:

do 1 dN;
a0 PO =3 o

(1.1)

that is, 3—6 is the the average fraction of particles scattered into df2 per unit time per unit
incident flux ® for df) infinitesimal. Note that because of ®, do has the dimension of an area.
We can interpret do as the geometric cross sectional area of the target intercepting the beam.
In other words, the fraction of flux incident on this area will interact with the target and scatter

into the solid angle df2 while all those missing do will not.

unit area

incident flux target

Figure 1.1: Definition of the scattering cross-section for a single scattering center.

In general the differential cross-section of a process varies with the energy of the reaction and
with the angle at which the particle is scattered. We can calculate a total cross-section, for any
scattering whatsoever at an energy FE, as the integral of the differential cross-section over all
solid angles as follows: p
o

o(E)= /dQ (E,Q)dQ2 (1.2)
Consider now a real target, which is usually a slab of material containing many scattering
centers. We want to know how many interactions occur on average when that target is exposed
to a beam of incident particles. Assuming that the slab is not too thick so that the likelihood of
interaction is low, the number of centers per unit perpendicular area which will be seen by the
beam is then n - dx where n is the volume density of centers and dx the thickness of the material
along the direction of the beam (see Figure 1.2). If A is the perpendicular area of the target
and the beam is broader than the target, the number of incident particles which are eligible for

10



an interaction per unit of time is ® - A. The average number of scattered particles into df2 per
unit time is:
do

NS(Q)zé-A'n-éx'm-dQ (1.3)

The total number of scattered into all angles is similarly:
Nip=®-A-n-dx-0o (1.4)

In the case the beam is smaller than the target, we need only to set A equal to the area covered
by the beam. We can take another point of view; that is the probability of an incident particle
of the beam to be scattered. If we divide Equation 1.4 by the total number of incident particles

per unit time (®- A), we have the probability for the scattering of a single particle in a thickness
ox:

Ps, =n-o-d6x (1.5)

I
flux O target of
O -4 density n

Figure 1.2: Definition of the scattering cross-section for an extended target.

Note that the probability for interaction is proportional to the distance traveled, dx in first
order.

Let us consider now a more general case of any thickness . We ask what is the probability
for a particle not to suffer an interaction over a distance x traveled in the target. This can
be interpreted as the probability for a particle to survive the interaction process. Let’s denote
with P(z) the probability of not having an interaction after a distance = (hence the probability
to survive to the interaction process after a distance x traveled) and with w dz the probability
to have an interaction in the interval (z,z + dx). From Equation 1.5 we define ¥ = n - o the
macroscopic cross-section. The probability of not having an interaction up to x + dx is given

11



P(x +dx)=P(z)- (1 —Xdx) =
P(x) + %dm =P(z)— P(x)Xdx =

dP(x)
P(x)
P(z)=C-e 2% = ¢ =7

=-Ydzx =

where C' is an integration constant. Note that C' = 1 because we require that P(z = 0) = 1.
From Equation 1.6 we can immediately deduce the probability to have an interaction over a
distance x:

Pi(z) =1—-P(z)=1—e =% (1.7)

We can define the mean distance 7 traveled by a particle without interacting; this is known as
the mean free path that a particle can travel across the target without suffering any collision,

thus:
_ JaP(x)dz 1 1

= W =y (1.8)
The survival probability of a trajectory of length x becomes:
P(x) =e 2% = e (1.9)
and the probability of interaction:
Pp(z)=1—e 2 =1— e (1.10)

1.2 Charged particles interaction

In general two principal features characterize the passage of charge particles through matter: a
loss of energy by the particle and the deflection of the particle from its incident direction [1].
Mainly these effects are the result of two processes:

e electromagnetic interactions with the atomic electrons of the material;
e clastic scattering from nuclei.

These reactions almost occur continuously in matter and it is their cumulative result which
accounts for the principal effects observed. Other processes include the emission of Cherenkov
radiation, nuclear reaction (this is the case for neutrons) and bremsstrahlung.

It is necessary to separate charged particles into two classes: electrons and positrons on one side
and heavy particles, i.e., particles heavier than the electron, on the other.

1.2.1 Heavy charged particles

The inelastic collisions with the electrons of the material are almost solely responsible for the
energy loss of heavy particles in matter. In these collisions energy is transferred from the particle
to the atom causing an ionization or excitation of the latter. The amount of energy transferred
in each collision is generally a very small fraction of the particle’s total kinetic energy; however,

12



in normally dense matter, the number of collisions per unit path length is so large, that a
substantial cumulative energy loss is observed in relatively thin layers of material.

Elastic scattering from nuclei also occurs although not as often as interactions with the bound
electrons. In general very little energy is transferred in these collisions since the masses of the
nuclei of most materials are usually large compared to the incident particle.

The inelastic collisions are statistical in nature, occurring with a certain quantum mechanical
probability. However, because their number per macroscopic unit of path length is generally
large, the fluctuations in the total energy loss are small and one can meaningfully work with the
average energy loss per unit path length. This quantity, often called stopping power or %, was
first calculated by Bohr using classical arguments and later by Bethe and Bloch using quantum
mechanics.

The classical derivation, that is shown in details in the Appendix A, helps to clarify the line of
reasoning which stands behind the result.

Even Bohr’s classical formula gives a reasonable description of the energy loss for very heavy
particles; the correct quantum-mechanical calculation leads to the Bethe-Bloch formula (see
Appendix A).

Software packages are freely available which simulate the energy loss, from which one can deduce
the stopping power. They give a similar result as the Bethe-Bloch calculation. We use SRIM
[2], [3] to calculate the stopping power.

It is clear from the behavior in E that as a heavy particle slows down in matter, its rate
of energy loss will change as it loses its kinetic energy. More energy per unit length will be
deposited towards the end of its path rather than at its beginning. This effect is more clear in
the central plot in Figure 1.3 which shows the amount of ionization created by a heavy particle
as a function of its position along its slowing-down path. This is known as a Bragg curve, and
most of the energy is deposited close to the end of the trajectory.

dE d E E remi
dx & Eo |
ET h Rezicrr.
0 0 d
log £ x . R X

eff

Figure 1.3: The stopping power as a function of E (left) and x (center). Remaining energy E,en, as a function
of z (right).

If we assume the energy loss to be a continuous function, we can define the particle range which
is the average distance a particle can travel inside a material before stopping. The latter depends
on the type of material, the kind of particle and its energy. In reality, the energy loss is not
continuous but statistical; two identical particles, with the same initial energy, will not suffer
the same number of collisions and hence the same energy loss.

There are various ways to define the actual range of a particle. In order to clarify the definition
of the range we refer to Figure 1.3. The right plot represents the energy a particle still owns as a
function of the distance it has traveled in the material that can be calculated from the stopping

13



power function according to:
T dE
Erem(z) = Ey — / d—d{ (1.11)
o d§
where Fj is the particle initial energy. Note that, in our model, a particle that has slowed down,
below the minimum energy necessary to create a ion-pair, is considered stopped. As a result
we define extrapolated range the average distance a particle can travel until it carries an energy
below the minimum needed to ionize an atom. In Figure 1.3 the extrapolated range corresponds
to a threshold energy of about Epp ~ 0.
An alternative definition of range can be the effective range; this corresponds to the distance
a particle on average has traveled in order to conserve at most the threshold energy Epp. In
general this definition is useful when dealing with particle detectors. Furthermore, if a particle
detection system is sensitive to the particle energies until a minimum detectable threshold (or
LLD - Low Level Discrimination [4]), it is meaningful to consider the effective range, that is
associated only to particles that carry a minimum threshold energy necessary to activate the
detector.

1.2.2 Electrons and Positrons

Like heavy charged particles, electrons and positrons also suffer a collisional energy loss when
passing through matter. However, because of their small mass an additional energy loss mech-
anism comes into play: the emission of electromagnetic radiation arising from scattering in the
electric field of a nucleus (bremsstrahlung). Classically, this can be understood as radiation
arising from the acceleration of the electron as it is deviated from its straight trajectory by the
electrical attraction of the nucleus.

The total energy loss of electrons and positrons, therefore, is composed of two parts:

dE dE dE
().~ (&), (%) @12
dx tot dx rad du coll

In Figure 1.4 the energy loss in radiative and collisional contributions are plotted for electrons
in common Aluminium (p = 2.7 g/cm?). At energies of a few MeV or less, the radiative loss is
still a relatively small factor. However, as energy increases, the probability of bremsstrahlung
rises and it is comparable to or greater than collision loss.

The Bethe-Bloch formula is still essentially valid, but we have to take into account two issues.
Due to their small mass, the assumption the incident particle remains undeflected during the
collision process is not valid. Second, for electrons, we are dealing with interactions between
identical particles, and the quantum-mechanical calculation has to take into account their in-
distinguishability.

Because of electron’s greater susceptibility to multiple scattering by nuclei, the actual range of
electrons is generally very different from the calculated one obtained from the stopping power
function integration.

1.3 Photon interaction
The behavior of photons in matter is different from that of charged particles. The probability of

single interaction is much lower, but their effect is much more important. The main interactions
of x-rays and v-rays in matter are:
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Figure 1.4: The stopping power for electrons in Aluminium p = 2.7g/cm?.

e photoelectric effect;
e Compton scattering;
e pair production.

X-rays and ~-rays are many times more penetrating in matter than charged particles and a
beam of photons is not degraded in energy as it passes through a thickness of matter but it is
only attenuated in intensity.

The first feature is due to the small cross-section of the three processes, the second is due to the
fact that the three listed processes remove photons from the beam entirely, either by absorption
or scattering. As a result the photons which pass straight through are only those which have
not suffered any interactions all. The attenuation suffered by a photon beam can be expressed

by Equationl.9:
I(z) = Ipe #* (1.13)

where Iy is the incident intensity, x is the absorber thickness and p the linear attenuation

coefficient.
The linear attenuation coefficient is characteristic of a material and it is directly related to the

total interaction cross-section.

1.3.1 Photoelectric effect

The photoelectric effect involves the absorption of a photon by an atomic electron with the
subsequent ejection of the electron from the atom. The energy of the outgoing electron is:

E. = hw — E, (1.14)
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where hw is the photon energy and Fj is the electron binding energy.

A free electron can not absorb a photon because of conservation laws, therefore the photoelectric
effect always occurs on bound electrons with the nucleus absorbing the recoil momentum.
Figure 1.7 shows the linear attenuation coefficient y for lead (p = 11.34 g/cm?) as a function of
the incident photon energy. The red curve is the contribution given by the photoelectric effect.
In general, rather than the linear attenuation coefficient u, one gives the absorption coefficient
¢ or the cross-section o; one can be calculated from the other by using [5]:

(] )

where p is the material mass density, A its atomic mass and N4 is Avogadro’s number.

Still referring to Figure 1.7, the photoelectric coefficient value shows discontinuities due to the
atomic energy shells. From the highest energy down to smaller energies, the shells are called
K, L, M, etc. At energies above the highest electron binding energy of the atom (K-shell), the
cross-section is relatively small but increases as the K-shell energy is approached. By lowering
the energy, the cross-section drops drastically since the K-electrons are no longer available for
the photoelectric effect. Below this energy, the coefficient u rises again and dips as the L, M,
etc. levels, are passed.

In general when a photon knocks-out an electron this leaves a vacancy in a specific atomic
orbital. The higher electrons tend to relax to the minimum atomic energy with a consequent
emission of an x-ray owning the electron binding energy Fj. Since the probability for an x-ray to
undergo the photoelectric effect is even lager than for a y-ray, in most cases it is absorbed again.
Hence, if a «-ray energy spectrum is measured through a scintillator, the energy measured will
be the full incoming -ray energy because the x-ray will be reabsorbed.

1.3.2 Compton scattering

Compton scattering is the scattering of photons on free electrons. In matter the electrons are
bound; however, if the photon energy is high with respect to the electron binding energy FEj,
this latter can be neglected and the electrons can be considered as essentially free.

Incoming photon /i

Scattered photon
ho'

Figure 1.5: Compton scattering kinematic.

Figure 1.5 shows the scattering process. By applying the energy and momentum conservation,
the following relation can be obtained:
;o hw
1+ (1—cosh)

(1.16)
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where v = hw/mec?. The kinetic energy the knocked electron gains in the process is:

B, = hw — ! — hw v (1 — cosf)

14+7(1—cosh) (1.17)

Figure 1.7 shows, in black, the linear absorption coefficient for Compton scattering in lead as a
function of the incoming photon energy.

Note from Equation 1.17 that the maximum energy is transferred from the photon to the knocked
electron when 6 = 7, that results into Fe(pney) = hw%; this is called the Compton edge. The
latter is always smaller than the energy an electron can acquire if a photoelectric interaction
occurs. As a result, the continuous spectra due to Compton interactions and the peak shaped
spectrum due to photoelectric interactions will always be well separated in energy. Figure 1.6
shows a ~y-ray energy spectrum when a Nal scintillator is exposed to three different vy-ray sources:
a neutron induced source of 480 KeV photons, a %°Co source that emits almost only two radia-

tions above 1 MeV and a 22 Na source that emits at 511 KeV and 1274 KeV .
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Figure 1.6: Measured y-ray spectra with a Nal scintillator.

In the spectra are clearly visible the photo-peaks and the continuous spectrum extended until
the relative Compton edge.

The scintillator energy calibration can be performed by exposing it to a y-ray source. A calibra-
tion source should present at least two photons of well defined and well distinguished energies.
22Na is a suitable calibration source thanks to its 511 KeV and 1274 KeV ~-rays. The calibra-
tion is done by applying a linear scaling between the two photo-peaks.

1.3.3 Pair production

The process of pair production involves the transformation of a photon into an electron-positron
pair. In order to conserve momentum, this can only occur in presence of a third body, usually
a nucleus. Moreover, to create the pair, the photon must have at least the energy of 1022 KeV;
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being 511 KeV the rest mass of an electron (or positron). In Figure 1.7 the pair production
coeflicient is plotted in green, and indeed it vanishes at 1022 KeV'.

1.3.4 Total absorption coefficient and photon attenuation

The total probability for a photon to interact with matter is the sum of the individual linear
attenuation coefficients (or cross-sections, or absorption coefficients) we mentioned above.

Htot = Hph.el. + HCompt. + Hpair (118)

In Figure 1.7 the total linear attenuation coefficient is plotted in blue. From Figure 1.7 we

— photoelectric
—— Compton scatt.

: pair prod. [

—total

linear absorption coefficient p (1/cm)

y-ray energy (KeV)

Figure 1.7: The linear absorption coefficient 4 in lead as a function of the y-ray energy for different processes.

notice that the three possible interactions of photons dominate in three different energy regions.
At low energies the photoelectric effect is dominant, Compton scattering is the main effect at
energies around 1 MeV, and pair production prevails at higher energies.

1.4 Sources, activity and decay

1.4.1 Activity

The activity of a radioisotope source is defined as its rate of decay where Ay, the decay constant,
is the probability per unit time for a nucleus to decay [6]:

AN (t)

A(t) = ‘dt

‘ = |-MN(t) = N(t) = Noe ! (1.19)
where N and Ny is the number of radioactive nuclei at the time ¢ and ¢t = 0 respectively. Activity

can be measured in C%, defined as 3.7 - 10'° disintegrations per second, or in Bq which is its SI
equivalent and that is 1 disintegration per second. Equivalently the activity can be expressed as
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a function of the decay constant A4, the average lifetime 7 = 1/); or the half-life ¢,/ = 7 - In2.
By knowing the activity at time t = 0 (Ag) it is possible to calculate the activity at the time ¢
by:

A(t) = Ag- N(t) = Mg - Noe Mt = Ay - e Aat (1.20)

It should be emphasized that activity measures the source disintegration rate, which is not
synonymous with the emission rate of radiation produced in its decay. Frequently, a given
radiation will be emitted in only a fraction of all the decays, thus a knowledge of the decay
scheme of the particular isotope is necessary to infer a radiation emission rate from its activity.
Moreover, the decay of a radioisotope may lead to a daughter product whose activity also
contributes to the radiation yield from the source.

Figure 1.8 shows the decay scheme for %°Clo, in green is shown its half life (in days), in black the
radioisotopes and the energy of the levels (in KeV') and in blue the characteristic y-ray energies
and their probability.
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Figure 1.8: %°Co decay level scheme.

E.g. if we imagine to deal with a source of activity A = 10* Bq at the present time, its emission
rate of y-rays of energy 1173.2 KeV is given by 0.9985 - 10* Bq.

1.4.2 Portable neutron sources

The most common portable source of neutrons is obtained by the bombardment of Be with
a-particles emitted by an other element, e.g. Am. a-particles emitted by the 24! Am have an
energy greater than 5 MeV that is sufficient to overcome the Coulomb repulsion between the
particle and the nucleus (Beryllium is used because of its low Coulomb force). The reaction is
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the following:
a+?Be— 2C+n (1.21)

The resulting neutrons emitted are fast and they have to be slowed down if thermal neutrons
are needed. Most of the a-particles are simply stopped in the target, and only 1 in about 10*
reacts with a Be nucleus. About 70 neutrons are produced per M Bq of ?*! Am. This process to
produce neutrons is very inefficient and an AmBe source has a +-ray emission which is orders of
magnitude higher than the neutron yield.

The slowing down of fast neutrons is known as moderation. When a fast neutron enters into
matter it scatters on the nuclei, both elastically and inelastically, losing energy until it comes
into thermal equilibrium with the surrounding atoms. At this point it diffuses through matter
until it is captured or enters into other type of nuclear reaction. Elastic scattering is the principal
mechanism of energy loss for fast neutrons. If we consider a single collision between a neutron,
of unity atomic mass, with velocity vg and a rest nucleus with an atomic mass A; in the center-
of-mass system, the average velocity of the neutron v,, after the collision is:

B A
A1’

0 (1.22)

Un

Note that the maximum velocity loss is attained when the neutron scatter on light nuclei, i.e.
protons (A = 1). Intuitively, the lighter the nucleus the more recoil energy it absorbs from the
neutron. This implies the slowing down of neutrons is most efficient when light nuclei are used.
With 2C as a moderator of 1 MeV neutrons slowing down to thermal energies would require
about 110 collisions. For H, instead, only 17.

When thermal neutron sources are needed, the AmBe core is surrounded by polyethylene in
order to moderate fast neutrons.

1.5 Neutron interaction

1.5.1 Neutron interactions with matter

Because of their lack of electric charge, neutrons are not subject to Coulomb forces. Their prin-
cipal means of interaction is through the strong force with nuclei. These interactions are much
rarer, in comparison with charged particles, because of the short range of this force. Purely from
a classical point of view, neutrons must come within ~ 10715 m of the nucleus before anything
can happen, and since matter is mainly empty space, it is not surprising that neutrons are very
penetrating particles. Figure 1.9 shows the penetration depth of a beam of electrons, x-rays, or
thermal neutrons as a function of the atomic number of the element. The main characteristic of
charged particles which distinguishes them from photons and neutrons is that their penetration
into a material cannot be described by an exponential function. Although there is a finite prob-
ability that a photon or neutron, however low in energy, can penetrate to a large depth, this
is not the case for a charged particle. There is always a finite depth beyond which a charged
particle will not travel.

The peculiarity of neutrons to be weakly absorbed by most materials makes it a powerful probe
for condensed matter research. On the other hand, this is also the reason why it is rather difficult
to build efficient neutron detectors, particularly if position sensibility is required.
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Figure 1.9: The plot shows how deeply a beam of electrons, x-rays, or thermal neutrons (1.4A) penetrates a
g Yy Y
particular element in its solid or liquid form before the beam intensity has been reduced by a factor 1/e.

The energy E of a neutron, in the non-relativistic limit, can be described in terms of its wave-
length A through the De Broglie relationship:

wh2
My A2

B 2mh

Mpv

1
= imn’l)Q =

A = E (1.23)

where h is the Planck’s constant and m,, is the mass of the neutron. In this manuscript we will
talk about neutron velocity v, kinetic energy or wavelength equivalently. The energy classifica-
tion of neutrons is shown in Table 1.1.

Energy classification

kinetic energy E (eV)

wavelength (A)

velocity (m/s)

ultra cold (UCN)
very cold (VCN)
cold

thermal
epithermal
intermediate

fast

E<3-1077
3.100" < E<5-107°
5-107° < E < 0.005
0.005 < E < 0.5
0.5 < E < 103
10® < E < 10°
10° < E < 100

A > 520
520 > A > 40
40>A>14
4>)X>04
0.4>X>0.01

0.01 > A > 0.001
0.001 > XA >3-1076

v<T75
7.5 < v < 99
99 < v < 990
990 < v < 9900
9900 < v < 4.4 - 10°
4.4-10° < v < 4.4-10°
4.4-10% < v <1.3-10°

Table 1.1: Energy classification of neutrons.

Neutron states of motion owe their name to the temperature because they carry energies that
are comparable with the daily life temperatures. E.g. thermal neutrons are those with energies
around kpT (where kp is the Boltzmann constant and 7 is the absolute temperature corre-
sponding to 20°C') or about 25meV.

When the neutron interacts with an individual nucleus, it may undergo a variety of nuclear
processes depending on its energy. Among these are:
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e Elastic scattering from nuclei, i.e. A(n,n)A. This is the principal mechanism of energy
loss for neutrons.

e Inelastic scattering, e.g. A(n,n’)A*. In this reaction, the nucleus is left in an excited state
which may later decay by ~-ray or some other form of radiative emission. In order for the
inelastic reaction to occur, the neutron must have sufficient energy to excite the nucleus,
usually order of 1 MeV or more. Below this energy threshold, only elastic scattering may
occur.

e Radiative neutron capture, i.e. n+ (Z,A) = v+ (Z, A+ 1). In general, the cross-section
for neutron capture goes approximately as 1/v with v the neutron velocity. Therefore,
absorption is most likely at low energies. Depending on the element, there may also be
resonance peaks superimposed upon the 1/v dependence. At these energies the probability
of neutron capture is greatly enhanced.

e Other nuclear reactions, such as (n,p), (n,d), (n,a), (n,t), etc. in which the neutron
is captured and charged particles are emitted. These generally occur in the eV to KeV
region. Like the radiative capture reaction, the cross-section falls as 1/v. Resonances may
also occur depending on the element.

e Fission, i.e. (n, f). Again this is most likely at thermal energies.

e High energy hadron shower production. This occurs only for very high energy neutrons
with £ > 100 MeV'.

The neutron has a net charge of zero and a rest mass slightly greater than that of the proton.
B decay is therefore possible according to n — p + e~ + .. The maximum electron energy is
781.32 KeV and half-life in free space is (11.7 & 0.3) minutes.

The total probability for a neutron to interact in matter is given by the sum of the individual
cross-sections listed above (as long as interference effects are not significant), i.e.:

Otot = E 0; = Oclastic T Tinelastic T Tcapture + -+ (124)

7

If we multiply oy, by the atomic density we obtain the macroscopic cross-section ¥ of which
the inverse is the mean free path length 7 as indicated in Equation 1.9:

1 Na-p
=3, . =n- -2 = 1.25
1 tot T - Otot A Otot ( )

where p is the material mass density, A its atomic number and N4 the Avogadro’s number. In
general Y is a function of A because o depends on the neutron energy and it has units of an
inverse length.

In analogy with photons, a beam of neutrons passing through matter will be exponentially

attenuated. The probability for a neutron of wavelength A to interact with a nucleus of the
matter at depth z in a slab of thickness dz, is given by:

K(z,\)dx =L e "N dg (1.26)
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Consequently, by integration over a finite distance d, we obtain the number of neutrons that
have interacted:

N(d d d
(d) = / dx K(z) = / dzYe ™ =1 — ¢ o (1.27)
No 0 0

with Ny the initial incoming neutron flux. The percentage of neutrons which pass the layer of
thickness d is then e~%>.

1.5.2 Elastic scattering

We consider now the neutron elastic scattering by a single nucleus in a fixed position. From
general scattering theory [7], [8] the incoming particle can be described by a plane wave which
interacts, through a potential V(7), with the nucleus. The resulting wave-function will be a
superposition of the incoming wave and a spherically diffused wave. This is a solution of the
stationary Schrodinger equation.

[—S;VQ + V(F)} V=BV (1.28)

In a scattering experiment one wants to determine the probability, i.e. the cross-section, for the
diffusion process to happen. Hence, one is interested in the asymptotic (7 — oco) behavior of

such a solution: ,
ikr

U 00) ~ €77 + £(0, 0)

where f(0,¢) is the diffusion amplitude and it depends on the interaction potential V(7). One
can wonder whether there are constraints on the form of f(6,¢) for ¥ to be a solution of the
Schrédinger equation.

In order to evaluate the cross-section of the process one should study the diffusion of a wave-
packet hitting a potential V(7). A simpler way is to calculate the cross-section from the incident
and diffused probability currents:

J(7,t) = m(\ﬂ*d\p— dm*) (1.30)

(1.29)

r

2m dr dr
For the incident plane wave and for the scattered wave individually, it results in:

k. Rk 1 )
Ti= o= f(0,6) P (131)

m m

which can be interpreted as the number of particles flowing through a unity surface per unity
time. The scattered wave probability current, for ¥ — oo, can be considered only radial.

The cross-section per unity of solid angle is the ratio between the number of particles that have
been scattered over the number of incoming particles per unity time over the surface dS = r2 dQ:

ik 11 £00, $)[2 r2dQ) d
do = mt LEINTEE g pyae = 97 50,02 (1.32)

No assumptions on the potential have been made so far. We consider now the case of a central
potential, V(7) = V(r). The hamiltonian commutes with the angular momentum operator,
hence there exist stationary states of well defined energy and angular momentum, i.e. a common
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eigenfunction base for both operators. The angular dependence of these functions will be the
spherical harmonics. A plane wave can be written as a superposition of spherical waves:

kz — lf;zl 47 (21 + 1)y (kr) Y2 (6) (1.33)

where the functions j;(kr) are the spherical Bessel functions and the Y,°(#) are the spherical
harmonics with m = 0 because k has been chosen along z, hence they do not depend on ¢. For
large r:

1
Ji(kr) ~ . sin (k‘r - lg) (1.34)

When a plane wave interacts with a central potential, it introduces a phase shift in the scattered
wave amplitudes of each of the harmonic terms. This can be shown as follows. The asymptotic
behavior of the radial stationary Schrodinger equation with a central potential, assuming V' (r —
o0) =0, is:

d2
with solutions ‘ ‘
up, (1) = Ae'*" 4 Be~ kT (1.36)

for large r. This solution contains as well the incoming as the outgoing particle flux. Unitarity
requires |A| = | B|, as there is in a stationary case no destruction or creation of particles within
a large sphere. Hence:

up(r) = |A| (eikrew’* + e_ikTei‘pB> = C'sin (k:r - lg + 55) (1.37)

with § = 1§ — 2524 chosen to have ¢; = 0 when V(r) = 0, to find the asymptotic behavior of
the spherical Bessel functions of the plane wave expansion as given in Equation 1.34. Note that
d; is a real quantity.

The Equation 1.37 is the solution to the radial part of Schrodinger’s equation; the complete
asymptotic solution, for r — oo and considering the spherical waves is:

<e*“” ol _ gikr e—ilg) +eihreily L (1 — e2i0)

D -
2ikr

We can interpret the two terms as follows: the incoming wave is a free particle, as it approaches
the region where the potential increases, it is more and more perturbed by the potential. When
it is scattered, i.e. is the outgoing wave, it has accumulated a phase shift 20; with respect to the
outgoing free wave that it would be if the potential were V = 0.
By comparing Equation 1.29 and Equation 1.38, and using Equation 1.33, the diffusion amplitude
f(0,¢), in terms of spherical waves, is:

Qpgm(T) =

Y™(6,9) (1.38)

1 oo
%Z VAT (21 4 1)e™ sin(6;) Y, (0) (1.39)
1=0
The differential scattering cross-section is:
d R ’
o =lOr =5 > Vw20 + 1) sin(6,)Y,(0) (1.40)
1=0
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Note that for the wave-function in Equation 1.29 to be a solution of the Schrédinger’s equation
f(0) has to satisfy Equation 1.39. Not all the forms for f are admitted.

We consider now the interaction of neutrons with nuclei. The nuclear forces which cause the
scattering, we recall, have a range of about 10~ m while the wavelength of a thermal neutron
is of the order of 10719 m, thus much larger than the range of those forces. On the scale of a
wavelength the potential is non zero only in a very small region. The potential is central and
can be written as a three-dimensional Dirac’s delta of intensity a, which is a real constant:

V() = ad(7) (1.41)

The multi-pole development of a §-distribution being limited to [ = 0, we can consider the only
spherical wave to undergo a phase shift to be the component YOO(H) =1

. Hence, the scattering

eNG
amplitude and the cross-section become (Equations 1.39 and 1.40):
1, d 1
[ = e sin8), d% = 5 sin’(9) (1.42)

The outgoing scattered wave amplitude has to satisfy the Equation 1.42 with 6 € . Not all the
complex plane is accessible for f, but only the circle e sin(d), shown in red in Figure 1.10.
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Figure 1.10: The value of the diffusion amplitude f - k in the complex plane for § € [0, ] (in red). €* in blue
and the parabola § + i §2 in black.

In neutron scattering the incoming neutron can be described as a plane wave and the wave-
function of the scattered neutrons at the point 7 can be written in the form:

W e

(1.43)

where r is the module of the vector 7 and b is a constant independent of the polar angles. The
minus sign is a standard convention. If one considers the Fermi pseudo-potential:

B 2 h?

mMp

V()

b (F) (1.44)

and one uses the Born approximation one will find Equation 1.43 as the solution.
The quantity b is known as the scattering length ! and depends on the nucleus. Even though

!The scattering length relates to a fixed nucleus and it is known as the bound scattering length. If the nucleus
is free, the scattering must be treated in the center-of-mass system.
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in strict potential scattering, b should be independent of incident neutron energy, in general
scattering theory, it can: this happens when there are nuclear resonances. The scattering length
are experimentally determined and most b values are of the order of a few fm.

The value of b does not only depend on the particular nucleus, but on the spin state of the
nucleus-neutron system. The neutron has spin % Suppose the nucleus has spin I, not zero.
Hence the spin of the system can be either I + % or I — % Each spin state has its own value of
b. Every nucleus with non-zero spin has two values of the scattering length. If the nucleus spin
is zero, the system nucleus-neutron can only have spin %, there is only one value of b.

The values for b are determined experimentally, because the lack of a proper theory.

The b is an empirical quantity known for most nuclei, varying strongly across the periodic
table and often varying sharply between isotopes of the same element. Most materials have a
positive b; therefore in a positive potential a neutron has less kinetic energy and hence a longer
wavelength (opposite to light where the wavelength shortens). This quantity defines the nature
of the neutron-nucleus interaction: whether it is attractive or repulsive and it also determine
the strength of the interaction. Moreover, this is a specific quantity that strongly depends on
the target nucleus and it can even depend on the neutron energy, e.g. in the case of 13Cd
resonances occur as well.

All the neutron scattering theory is based on this simple assumption that the neutron-nucleus
interaction can be considered a Dirac’s delta potential and all the information a scattering
experiment can reveal is all related to the quantity b.

By comparing Equations 1.29 and 1.43, —b is the diffusion amplitude f:

f= %ei‘s sin(0) = —b = kb= —e“sin(f) (1.45)

b ~ 107 m and, for thermal neutrons k£ = 10'9m~!, thus the product kb ~ 107° and
¢ sin(8) << 1. Expanding Equation 1.45 at the first order for § << 1 we obtain:

—kb=e“sin(d) = (cos(d) + i sin(4)) - sin(d) ~ & +i 2 ~ —107° (1.46)

The scattering length b for thermal neutron scattering can be considered to be a real quantity
because its imaginary part is always at least five orders of magnitude smaller. The values of
b make the scattering amplitude f to vary in the small range § € [-107°,107°], i.e. f € R.
In Figure 1.10 is shown the approximated behavior for b in Equation 1.46 which results in a
parabola in the complex plane (k f = —kb). We see that b is essentially real.

The differential cross-section, Equation 1.42, becomes:

do &2 9
= =b (1.47)

From which the total scattering cross-section can be derived:
oy = 4w b? (1.48)

Let us consider now the scattering by a general system of particles. Its potential is:
V= Vi(F-R)=> Vi) (1.49)
i i
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where (f — Ri) = z; and V; (F — Ri) is the potential the neutron experiences due to the ¢ — th

nucleus. Explicitly it is:

Vi) = 27 o) (1.50)

mp

where b; is the scattering length of the nucleus i — th.
One can define the average value of b of the system and the average value of b% as:

l_): Z I/Z'bi, bf2 = Z I/Zb? (1.51)

) 7

where v; is the frequency with which the value b; occurs in the system. Note that the system
can be made up of the same element atoms and the b; would be different for each nucleus. We
recall the scattering length value depends on the spin states of the neutron-nucleus system.

In a scattering experiment a neutron beam impinges on a target, which is a large amount of
nuclei. Any combination of spins can occur, i.e. the value of b; is averaged over a large number
of atoms. On the assumption of no correlation between the b values of different nuclei:

bibj =b*  ifi#j 152)
bib; =b2  ifi= '

I
S

we can calculate the scattering cross-section of a process averaging over all the nuclei.
It can be shown that the overall cross-section of the scattering on such a system consists of
two terms: a term depending only on the correlation of the position of each center with itself
(incoherent part) and a term depending on the correlation of position of pairs of centers (coherent
part) [9]. The incoherent part will be proportional to o; and the coherent to o, where we have
defined:

oo = 4nb?,  op=dr (172 - 62) (1.53)

the coherent and incoherent scattering cross-sections.
The physical interpretation is as follows: the actual scattering system has different scattering
lengths associated to different nuclei. The coherent scattering is the scattering the same system
would give if all the b were equal to b. The incoherent scattering is the fluctuation we must add
to obtain the scattering due to the actual system. The latter arises from the random distribution
of the deviations of the scattering lengths from their mean value. As it is completely random,
all interference cancels in this incoherent part.
We define:

2=, 2= \z?z_z‘)?) (1.54)

Note that averages taken are defined over the system at hand. In general the scattering system
consists of many spin states. We recall that the scattering length depends on the coupling of
the neutron and nucleus spins. Let’s denote with I, the nuclear spin of the system made up
of a single isotope. The resulting spin for the system neutron-nucleus can be either I 4+ 1/2 or
I —1/2. We associate to the two compositions of spins the scattering length by and b_. If the
system is unpolarized, all the possible combinations of spins can occur and by gets a weight of

I+L while b_ gets a weight of Tﬂrl in the statistical ensemble.

27+1
If the neutron and the nuclei system are now both polarized the population over which we

average is now defined and if only the coupling I + 1/2 occurs, the average would be exactly
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b = b, with variance (bf2 — 52> =0.

From the definition of the scattering length comes directly the definition of the various cross-
sections already mentioned in Equation 1.24.

The actual total scattering cross-section is then given by the sum of the two contributions.

0s = 0o + 0; = 4Tb2 (1.55)
If the neutron or the nucleus is unpolarized, the cross-section becomes:
0s = 0.+ 0; :47T\bc|2—|—47r|bi|2 (1.56)

The scattering cross-section does not depend on the neutron energy if we have potential scat-
tering (b constant).

The mixture of isotopes or different nuclei, denoted by j, is an additional source of incoherence
in the scattering of neutrons. The average scattering length of such a system is:

_ Zj bjn;
Zj nj

where n; is the number density of each isotope or nucleus and spin state.

b (1.57)

1.5.3 Absorption

Let us consider now the possibility for a neutron to be absorbed. Let assume the interactions
responsible for the absorption to be invariant under rotation around the origin. As a result, the
scattering amplitude f can still be decomposed in spherical waves. The phase shift method has
to be modified in order to take into account the absorption. We demonstrated that an incoming
plane wave is shifted by a factor e sin(d) = (e — 1)/2i by the potential action. We recall § is
a real number. Since || = 1, the incoming and outgoing wave amplitudes are the same: the
total probability flux for the plane wave and the scattered wave is conserved. The total number
of particles is conserved in the scattering process. This was the requirement of unitarity.

In order to consider absorption this probability is not any more conserved and we need to add
an imaginary part to the phase shift that results in: |62“5| < 1. The amplitude of the scattered
wave is smaller than the one of the incoming wave. In Equation 1.36, |A| = |B| signified that
there was no source or no sink (unitarity) in the large r sphere. Absorption means that there is
a sink, thus |A| < |B|: |n| = |A/B].

Since § is a complex quantity we can denote n = € with |n| < 1. The asymptotic solutions of
Schrodinger’s equation (Equation 1.38) become:

o—ikr ils _ ik =il

Ui
2ikr

Pp0,0(r) = A (1.58)
where we focus only on the component [ = 0 because, for the neutron-nucleus interaction, we
assume the potential to be central and a Dirac’s delta.

The scattering amplitude and the differential scattering cross-section (Equation 1.42) are:

_Inp-—1 do 2

ko2 ds?

1

1=

n—1
21

f (1.59)
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Note that even for a perfect absorbing material, with n = 0, elastic scattering can and will still
occur. The effect is called shadow diffusion and it is a purely quantum effect [7].

The absorption cross-section can be defined in a way similar to the scattering cross-section, as
the number of particles absorbed, i.e. that have suffered the interaction, over the incident flux
per unit time.

To calculate this cross-section we need to quantify the probability that a particle disappears,
AP, per unit time which is given by the difference between the integrals of the probability
current that enters and exits a given volume of the space, that we take at r — oo to use the
asymptotic solutions of the Schrodinger’s equation (Equation 1.38).

By using Equation 1.30 we calculate the probability current for the asymptotic solution in
Equation 1.38.

= hk m 9
Jroo = _min k22 (1 — [nl ) (1.60)
We integrate the current to obtain the missing probability:
- hk
AP = —/ Trsoer?d = == 2 (1= |n]?) (1.61)
r>>1 mn k

The absorption cross-section we normalize to the incident current of the plane wave (Equation
1.31):

T
Oabs = ﬁ (1 - ‘77‘2) (162)
The absorption cross-section is zero only when |n| = [e?®| = 1, i.e. when § € R.
We can still put:
b=V —it =—f (1.63)

We may distinguish three types of nucleus. In the first type b is complex and varies rapidly with
the neutron energy. The scattering of such nuclei is associated with the resonant absorption and
or scattering of the neutron. In the second type the neutron is not absorbed, the imaginary part
of the scattering length is small and the scattering length is independent of the neutron energy.
For such a nuclei the scattering length can be considered to be a real quantity. In the third type
there is absorption and scattering but the complex scattering length is constant.

In most cases the scattering length b can be considered a real number. We demonstrated that, for
thermal neutrons, the product § ~ kb ~ 107> (Equation 1.46) and the scattering cross-section
is, under these circumstances, given by Equation 1.47:

o5 = %T sin(8) ~ %52 = 47b? (1.64)
which is independent from k, i.e. the neutron energy in as much we can consider it to be
potential scattering.

For absorbing materials we have Re{b} ~ Im{b} ~ 10~ m and k ~ 101 m~!. Hence:

In|? = 2ikb + 1|? = |2ikb + 2kb" + 1|* = 4k%0" + 4k*0" 4 4kb" + 1 ~ 4KV + 1 (1.65)

because we can neglect the quadratic terms which are at least five order of magnitudes smaller
than the first power term. Substituting in Equation 1.62:

_ 1 o 2 1 /I 4£ (/A 4£
Oabs = 13 (1—n) k24kb = V' = p Im{b} (1.66)
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The absorption cross-section is therefore uniquely given by the imaginary part of the scattering
length. However, the scattering cross-section depends on both the real and imaginary parts.
The absorption cross-section depends on the neutron energy, it scales as 1/k ~ 1/v, the neutron
velocity. It should be emphasized that in the regions where this dependence does not follow the
law 1/v, the imaginary part of the scattering length b” as well depends on the neutron energy,
which is typically the case for resonance scattering and absorption.

To be more precise as value for b” one should take the statistical average over the neutron and
nuclear spins. As for scattering, absorption as well depends on the specific spins coupling at the
moment of the interaction between the neutron and the nucleus. There are then the coherent
and the incoherent imaginary parts for absorption as well. Im{b.} is the average of absorption
we would obtain on a non-polarized system;

4
Tabs = %Im{bc} (1.67)

It is only when the neutron and the nucleus are both polarized that the imaginary part of the
bound incoherent scattering length Im{b;} contributes to the value of ogps.
It should be pointed out that the actual absorption cross-section is defined as follows:

Oaq = Ocapt + of (168)

where o is the fission cross-section typical for fissile elements, e.g. U. For fissile materials o, is
mostly given by oy and for light atoms by ocqpt. The absorption cross-section we have discussed
so far is more properly ocqpi. Fissile elements do not show imaginary part in their scattering
lengths because the capture and the fission are two different physical processes.

Table 1.2 shows scattering lengths and partial cross-sections for several elements, where the
absorption cross-section is tabulated for neutron of k = 3.49A~! (X = 1.8A). In this Table the
sign of b; is given by the sign of (by — b_), the difference between the spin up (I + 1/2) and
the spin down (I — 1/2) values for b. We defined b; somewhat different in Equation 1.54, as
the standard deviation of the b for a general population of neutron-target system, and not for a
single isotope.

We notice that all the isotopes that own an imaginary part in their scattering length have also
a large absorption cross-section.

Figure 1.11 shows the partial cross-sections for 'H, 2H and ®He as a function of the incoming
neutron energy. We recall that elastic cross-section stands for a processes such as A(n,n)A; and
its contribution is implicit in os. Moreover, processes like (n,7) or (n,p) can be considered as
implicit in oeqpt.

Since 2He is a strong neutron absorber, its total cross-section is entirely dominated by Ocapt
and only at very high energies the elastic scattering prevails. Below 1 KeV the 3He capture
cross-section behaves as 1/v then the proportionality is lost.

On the other hand, hydrogen is a great neutron scatterer and its total cross-section is entirely
given by the elastic contribution. Moreover, in a wide range, its oy, does not depend on energy.
In neutron detection, the material with high o4y are the most interesting because of their prop-
erty to commute the neutron into a charged particle that can be detected, this will described
more in details in Chapter 2.

Figure 1.11 shows the o4y for several elements employed as neutron converter in neutron de-
tectors.
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Isotope bc(fm) bz(fm) Uc(b) Uz(b) Us(b) Ja(b)
g —3.74 25.27 1.76 | 80.27 | 82.03 | 0.33
’H 6.67 4.04 5.59 | 2.05 | 7.64 | 0.00052
3He 5.74 —1.48; | —2.5+2.57i | 4.42 1.6 6 5333
1He 3.26 0 1.34 0 1.34 0
6L 2 —0.267 —1.89+0.26; | 0.51 | 0.46 | 0.97 940
Li —2.22 —2.49 0.62 | 0.78 | 1.40 | 0.045
0p —0.1-1.07 | —4.7+1.23i | 0.14 3 3.1 3835
np 6.65 -1.3 5.56 | 0.21 | 5.77 | 0.0055
2c 6.65 0 5.56 0 5.56 | 0.0035
160 5.80 0 4.23 0 4.23 | 0.0001
2T Al 3.45 0.26 1.49 | 0.0082 | 1.5 0.231
2865 4.11 0 2.12 0 2.12 | 0.171
3¢ —8 —5.73i 0 12.1 0.3 12.4 | 20600
B7qd | —1.14 —71.9i | +5—55.8: 650 394 | 1044 | 259000
251 10.47 +1.3 13.78 | 0.2 14 680.9
238 py, 14.1 0 25 0 25 558
Table 1.2: Neutron scattering lengths and partial cross-sections [10]. Absorption cross-section is tabulated for

k=349A""1 (A =1.8A).
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Figure 1.11: Several partial cross-section (expressed in barn) for ', 2H and ®He as a function of the neutron
energy (left). Capture cross-sections for *He, '°B, ®Li, *'3Cd and ®"Gd (right).

The 1/v dependence of the capture cross-section corresponds to the imaginary part of the scat-
tering length b” being independent on the neutron energy. We notice that for C'd or Gd the 1/v
dependence is broken by nuclear resonances that occur at precise energies.

The most common neutron reactions for neutron converter elements are listed in Table 1.69.
The associated energy that is liberated at the moment of the absorption is also indicated. At
the moment of the creation of the two fragments, the atomic electrons are dispersed, thus the
two fragments carry a net electric charge.
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n+3He— 3H4+p+T70KeV

n+%B =  "Li+ o+ 480KeVy-ray +2300KeV (94%)
-  "Lit+a + 2780KeV (6%)

n+%Li— SH + a+ 4790K eV (1.69)

n+%"Gd — Gd* — y-ray spectrum — conversion e~ (< 182KeV)

n+23¥ U —  fission fragments + ~ 80MeV

The energies carried by the individual fragments can be calculated from the energy and momen-
tum conservation. We can neglect the incoming neutron energy in this calculation because it
is several orders of magnitude smaller than the absorption reaction energy: as a result the two
fragments can be considered emitted back-to-back. In the thermal range neutrons have energies
between 5 meV and 500 meV to be compared with typical energies of the M eV order carried by
the neutron absorption reaction. Hence the energies carried by the fragments in Table 1.69 are:

n+3 He — 3H(193 KeV) + p(577 KeV)

n+19B — TLi(830 KeV) + a(1470 KeV) + 480K eV~y-ray (94%) (1.70)
—  TLi(1010 KeV) 4+ a(1770 KeV) (6%) '

n+%Li — 3H(2740 KeV) + (2050 KeV)

It is important for a neutron converter, used to reveal thermal neutrons, to have a large absorp-
tion cross-section and for its capture reaction to yield a large amount of energy available to be
detected. This will be treated in details in the next chapter.

1.5.4 Reflection of neutrons by interfaces

The reflection of light from surfaces is a well-known phenomenon caused by the change of refrac-
tive index across the interface. The mirror neutron reflection was demonstrated by Fermi and
Zinn in 1944 [11] and they observed the total reflection of thermal neutrons below the critical
angle. Neutron reflection follows the same fundamental equations as optical reflectivity but with
different refractive indices. The optical properties of neutron propagation arise from the fact
that quantum-mechanically the neutron is described by a wave-function. The potential in
the Schrodinger equation, which is the averaged density of the scattering lengths of
the material, plays the role of a refractive index. The neutron refractive index is given
by the scattering length density of its constituent nuclei and the neutron wavelength. As with
light, total reflection may occur when neutrons pass from a medium of higher refractive index
to one of lower refractive index.

Neutron reflection is different from light reflection because the neutron refractive index of most
of materials is slightly less than that of air or vacuum. As a result total external reflection is
more commonly observed instead of the total internal reflection experienced with light. The
angle where no neutrons penetrate the surface, hence all of them are reflected, is called critical
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angle: the reflectivity of neutrons of a given wavelength from a bulk interface is unity at smaller
angles (ignoring absorption effects) and falls sharply at larger angles. As with light, interference
can occur between waves reflected at the top and at the bottom of a thin film, which gives rise
to interference fringes in the reflectivity profile [12].

Neutron reflection is used as an analytical tool and offers many advantages over traditional
techniques and to x-ray reflection. In particular, because of the short wavelengths available, it
has a resolution of a fraction of a nanometer, it is nondestructive and it can be applied to buried
interfaces, which are not easily accessible to other techniques.

Neutron reflection is now being used for studies of surface chemistry (surfactants, polymers,
lipids, proteins, and mixtures adsorbed at liquid/fluid and solid/fluid interfaces), surface mag-
netism (ultrathin Fe films, magnetic multilayers, superconductors) and solid films (Langmuir-
Blodgett films, thin solid films, multilayers, polymer films) [12].

Neutron reflection can be described using the Schrodinger equation:

2

ViU + VU = E¥ (1.71)
mp,

where V' is the potential to which the neutron is subject and E its energy. V represents the net

effect of the interactions between the neutron and the scatterers in the medium through which it

moves. We model V' as the smeared-out potential of all nuclei, instead of looking at the individual

scattering centers [13]. From Equation 1.44, we average out the Fermi pseudo-potential:

v — 27 h?

Ny (1.72)

mn

where Ny is the scattering length density of the medium the neutron is crossing defined as:
Ny = Z bin; (1.73)
i

where n; is the number of nuclei per unit volume and b; is the coherent scattering length of
nucleus 7, because we take the spin-average (unpolarized beam or sample).

As already mentioned in Section 3.1, most materials have a positive scattering length b; therefore
in a positive potential a neutron has less kinetic energy and hence a longer wavelength (light
usually behaves in the opposite way). Moreover, some materials, such as ' B, present a complex
b, of which the imaginary part represents the power for that material to absorb neutrons. In this
Section, we only consider real b; the reflection of neutrons by strong absorbers will be treated
in details in Chapter 4.

Referring to Figure 1.12; we consider a neutron beam approaching a surface with a bulk potential
V. The only potential gradient and hence force is perpendicular to the surface; this will be not
the case when the reflection surface is not ideally flat and its roughness will play a role in the
reflection process.

Since we are considering a specular reflection only elastic scattering has to be taken into account.
This implies k.| = k;] .

The solution of the Schrédinger equation for this specific two-dimensional case can be factorized
as two plane waves, one orthogonal to the surface and one parallel:

U(z,z) = (6“’“”2 + Te_ikuz) etk it z<0

' ‘ (1.74)
Y (z,2) = tetikz  otikye itz>0
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Figure 1.12: Reflection of an incident neutron beam from an ideally flat interface, k; and k, are the incident
and scattered wave vectors, ¢ is the wave vector transfer; and V is the potential of the semi-infinite substrate.

where r and t are the probability amplitudes for reflection and transmission. By substituting
the solutions into the Schrodinger equation 1.71 we obtain the total energy conservation:

2

h2
HV=EV  — (k2 +H3) = o (R +8) -V =0 (175

my,
Continuity of wavefunctions and their derivatives at boundaries lead to:

U(z,2)=Y(z,2) = (1 +7)etiki® = tetikuz = l+r=t
Owz) _ w2 gy (1 —r)etthn® = thy PP ® — Ky (1—7) =tk (1.76)

0z 0z
8\1/(%@) _ aYé;,z) [ ki”\I/(LI:,z) = kt”Y(:I:,z) [ ki” — kt||

The potential the neutrons experience affects only the normal component of the momentum.
Without loss of generality we can deal with a one-dimensional problem considering only the
orthogonal solution of the Schrodinger equation, with &y = k; in Equation 1.75:

U, = etikinz 4 peikinz if 2z<0

Y, = tetihLz if 2>0 (L.77)

In the case of an ideally flat interface only the normal component of the incoming wave vector
k; is altered by the barrier potential. It is ”the normal component of the kinetic energy FE;,”,
that determines whether the neutron is totally reflected.
2 hki)? (hk;sin(8;))?  hq?
E’ij_ — plj_ — ( J~) — ( 1 ln( l)) — q (178)

2my, 2my, 2my, 8y,

where 6; is the incoming neutron angle with respect to the surface. ¢ = 2k;; = 2k;sin(6;)
is the momentum transfer, as shown in Figure 1.12. If the normal component of the kinetic
neutron energy does not exceed the barrier potential (F;; < V'), total reflection occurs and no
neutrons penetrate into the layer. This happens when the momentum transfer ¢ is smaller than
the critical value of wave vector transfer ¢., deduced by the condition F;; = V from Equations

1.72 and 1.78 we obtain:
ge = /16T Ny (1.79)
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Conservation of momentum implies that 6; = 6, where 0, is the reflected beam angle; i.e. the
reflection is specular. Off-specular scattering is elastic as well but occurs in presence of in-plane
structures, mixing parallel and normal components. We do not treat it here.

On the other hand if the perpendicular neutron kinetic energy is E;| > V, neutrons can pen-
etrate into the layer, thus reflection is not total and the neutron can be either reflected or
transmitted into the bulk of the material. As for light the transmitted beam k; must change
direction because its normal component of kinetic energy is reduced by the potential; i.e. it is
refracted. The change in the normal wave-vector is given by E;| = F;; — V, and it equals:

k2| = k2 — 47Ny (1.80)
The latter relation allows to define the refractive index n:
2 2
2 K K3+ (k2 — 4mNy) _ ANy AN, (181)
K2 2 12 7 '

where A is the neutron wavelength. For most materials N, << 1, hence Equation 1.81 can be
approximated up in the thermal neutron energy range as n ~ 1 — )‘ijb. This result confirms
that the wavelength change in the bulk is opposite to that of light (for positive b, n is less than
1). It can be important to notice that materials with constant IV, are naturally dispersive (n
depends on \) [14].

Referring to the solution of the Schrédinger equation (Equation 1.77), if the potential is real
and F;; <V (see Equation 1.86), then k| is imaginary and the solution for z > 0 in Equation
1.77 is an evanescent wave (an exponential decay).

From Equation 1.76 we can solve the classical Fresnel coefficients as it is in optics:

kit — ket 2kiL
_ po 2l 1.82
it + ket kit + keo (1.82)
The continuity equation considered for the stationary case 8P8(:_’t) = 0 where P(7,t) = |¥(7,t)|?,
and using unitary (no absorption):
P(7,t - -
(951;’)+V~J(7’,t):0 = V- J(Ft)=0 (1.83)

where J(7,t) is the quantum probability current defined in Equation 1.30. Assuming E;; >V,
the probability for a neutron to be reflected or transmitted into the layer, given by the ratio of
the reflected or transmitted flux over the incoming flux, is:

R = ]{:Ar? =72 T= kt—lt2 (1.84)
ki1 ki1

By using the Equations 1.79, 1.80 and 1.82 the reflectivity R can be also written as:

2

_e_(i-ve-a@

R=r"= NCET for q>q. (1.85)
q-+ qa” —qc

When g >> q., Equation 1.85 at the air-solid interface can be approximated as R = 123{2 Nb2.

Y., using Equation 1.80, is a real solution when F;; <V (or ¢ < q.):

YZ — te“!‘l‘ktLZ — t€+i(]€i2Lf47TNb)l/2Z — te*%(qgqu)l/%Z (186)
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When the potential barrier is higher than the particle energy normal to the surface it can still
penetrate to a characteristic depth of D, = (qg — q2)_1/ 2, but there is no quantum probability
current associated to it. This evanescent wave travels along the surface with wave vector k| and
after a very short time it is ejected out of the bulk in the specular direction. Taking as example
the value of Ny, for Si this penetration is on the order of 100A at ¢ = 0, rising rapidly to infinity
at ¢ = ¢.. No conservation laws are broken, as the reflectivity is still unity due to the fact that
this wave represents no flux transmitted into the bulk.

The interface between materials may be rough over a large range of length scales. A boundary
may be smooth but with one material diffused into the other. It turns out that in both the
rough and diffuse cases the specular reflectivity is reduced as ¢~*. The resulting density profiles
are the same. Equation 1.85 in the case of ¢ >> ¢, is affected in the manner:

2
R~ <121r Nf) e for q¢>>q. (1.87)
where o is a characteristic length scale of the layer imperfection, the surface roughness. In the
case of the diffuse interface the lost intensity given by the factor e~ %o’ goes into the transmitted
beam as there are no potential gradients in any other direction than normal to the surface. This
is not the case for the rough interface where intensity is lost by local reflections in directions
away from the specular direction or off-specular scattering. If the in-plane structure is regular
as in an optical grating then the off-specular can be quite dramatic.

The objective of a specular neutron reflection experiment is to measure the reflectivity as a
function of the wave vector perpendicular to the reflecting surface, g. The measurement can
be done by varying either the angle of incidence 6 at constant wavelength or measuring the
time-of-flight, hence varying wavelength, at constant 6. The corresponding incoming intensity
must also be measured. The reflectivity is simply the ratio of these two intensities, as a function

of 6 or \ which is converted to ¢ by:

q= 4; sin(0) (1.88)
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Chapter 2

Neutron gaseous detector working
principles

An overview of the state of the art in neutron detection is discussed after we are going to describe
the working principles of neutron gaseous detectors.
The main sources of the material for this Chapter are the books [1] and [6].
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2.1 Principles of particle detectors

2.1.1 Introduction

Many types of detector have been developed so far, all are based on the same fundamental
principle: the transfer of part or all of the radiation energy to the detector matter where it is
converted into some other form more accessible to human perception [1]; usually an electrical
signal. In Chapter 1 we discussed the interaction of charged particles and photons with matter.
They transfer their energy to matter through direct collisions with the atomic electrons, thus
excitation or ionization of the atoms.

The way to produce the electrical signal output is different for gaseous detectors, scintillators
or semiconductors.

Gaseous detectors are based on the direct collection of the ionization electrons and ions produced
in a gas by passing radiation. During the first half of the 20" century ionization chambers,
proportional counters and Geiger counters were developed. During the late 1960’s the multi-
wire proportional chamber was invented.

The scintillation detector makes use of the fact that certain materials, when struck by a radiation,
emit a small flash of light, i.e. a scintillation. When coupled to an amplifying device such as
a photomultiplier, these scintillations can be converted into electrical pulses. They detect the
passing radiation trough the indirect process of light detection.

Semiconductors are based on crystalline semiconductors materials, most notably Si and Ge.
These detectors are also referred to as solid-state detectors. The basic operational principle is
analogous to gas ionization devices. Instead of gas, the medium is a semiconductor. The passage
of ionizing radiation creates electron-hole pairs which are then collected by an electric field. The
advantage of semiconductors is that the average energy required to create a pair is an order of
magnitude smaller than that required for gas ionization. On the other hand, being crystalline
materials, they also have a greater sensitivity to radiation damage.

The neutron lack of charge and the fact that it is weakly absorbed by most materials are
properties which have contributed to its powerfulness as a probe for condensed matter research.
On the other hand, these properties make the construction of efficient neutron detectors difficult.
Neutral radiation must first undergo some sort of reaction in the detector producing charged
particles, which in turn ionize and excite the detector atoms.

As mentioned in Section 1.4.2, elastic scattering is the principal mechanism of energy loss for
fast neutrons. A fast neutron, hitting a light atom target, can transfer its energy and generate
an energetic charged particle by recoil.

For thermal neutrons the energy is too low to generate fast charged particles by elastic scattering.
Thermal neutrons are detected indirectly by exploiting a capture reaction. Those reactions
produce either prompt ~-rays or heavy charged particles such as protons, tritons, « or fission
fragments. Those secondary radiations have sufficient energy to be directly detected. The
processes used to detect those secondary particles can be ionization, excitation or scintillation.

2.1.2 Gas detectors
Charged particles in gas

A common method to detect a charged particle is based on sensing the ionization produced when
it passes through a gas. As described in Section 1.2, the primary interaction of charged particles
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is to ionize and excite the gas molecules along their tracks. After a neutral molecule is ionized,
the resulting positive ion and free electron is called an ¢on pair. The ionization generated by the
heavy charged particles is called primary ionization. The free electrons and ions created may
diffuse. Some of the electrons may also have enough energy to be an ionizing charged particle
themselves and to produce a secondary ionization. We define n,4; as the total number of ion
pairs created by the passage of a charged particle, both considering primary and secondary ion-
ization.

With secondary ionization several different processes are intended. In this manuscript, we al-
ways refer to it as the ionization induced by electrons that have been created, though primary
ionization, by the passage of a charged particle. In Section 2.1.2 we will introduce the multipli-
cation process which is another kind of ionization performed by electrons in strong electric field;
we refer to this ionization as avalanche process.

As already explained in Chapter 1, the energy loss of a charged particle in matter is essen-
tially given by two types of reactions: ionization and excitation. In Table 2.1 the excitation
and ionization potential for several gases are listed. It should be emphasized that the actual
energy transfer needed, on average, to create a ion pair is w;. I; is the ionization potential. The
difference is due to excitation which costs energy to the particle but which does not create ion
pairs. The average energy lost by a charged particle in the formation of an ion pair is about
w; = 30eV and it is not strongly dependent on the type of molecule or charged particle. The
number 7,44, of ion pairs created is given by [15]:

AFE
Npair = —— 2.1
pair w; ( )
where AF is the charged particle energy loss. The net charge created by the passage of a charged
particle in a medium is directly proportional to the energy it deposits. E.g. for an a-particle of
1 MeV the process ends up with the creation of a net charge of a few fC.

gas | Lez(eV) | Li(eV) | wi(eV)
Hy 10.8 15.4 37
He 19.8 24.5 41
No 8.1 15.5 35
O9 7.9 12.2 31
Ne 16.6 21.6 36
Ar 11.6 15.8 26
COq 5.2 13.7 33
CH, 9.8 13.1 28
CFy 12.5 15.9 54

Table 2.1: Excitation and ionization potential for several gases [15].

The occurrence of the ionizing reactions is statistical in nature, thus two identical particles will
not, in general, produce the same number of ion pairs. Hence, 1,4 has to be considered as the
average number of ion pairs created by a ionization process.

While the number of ion pairs created is important for the efficiency and energy resolution of
the detector, it is equally important that these pairs, or at least the electrons, remain in a free
state long enough to be collected. Two processes contribute to diminish the net charge created:
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recombination and electron attachment [6]. In absence of electric field, ions and electrons can
only diffuse and they will generally recombine under the force of their electric attraction, emitting
a photon in the process. Electron attachment is the capture of free electrons by electronegative
atoms to form negative ions. The presence of electronegative gases in the detector severely
diminishes the efficiency of electron collection by trapping the electrons before they can reach
the electrodes. Some well known electronegative gases are Os, HoO and CO,. It has been
observed that a small amount of C'O2 does not dramatically affect the detector performances
but helps to stop more efficiently the ionizing particles. In contrast, noble gases He, Ar, etc.
have negative electron affinities and are suitable for application in gaseous detectors.

In the absence of electric field, electrons and ions liberated by the passage of the charged particle
diffuse uniformly outward from their point of creation. It is important to distinguish the words:
diffusion, which is the free motion of ions and drift, which is the motion due to an external force,
e.g. an electric field.

In the diffusion process the electrons and ions suffer multiple collisions with the gas molecules
and come quickly into thermal equilibrium with the gas. The charges velocities distribution can
be described by using the Maxwelian distribution.

In Figure 2.1 we plot the charge created by ionization, that eventually can entirely be collected,
as a function of the voltage applied to two electrodes immerse into the gas volume, through
which we apply the electric field. When V = 0, the electric field between ions and electrons
causes a drift which leads to recombination. Only thermal diffusion occurs and no net charge
can be collected.
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Figure 2.1: Practical gaseous ionization detector regions.

As the potential applied to the gaseous detector increases, several operational modes occur:
e ionization mode;

e proportional mode;
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e Geiger mode.

Before describing in details the detector operational modes, we are going to explain how the
charge created into the gas is translated into a readable signal.

The Shockley-Ramo theorem

The signal from a detector is a current signal read from electrodes. It arises from the motion of
charge carriers and not from their physical collection. This statement is valid for gas-filled detec-
tors as well as for semiconductor detectors. The output pulse begins to form immediately when
the carriers start their motion toward the electrodes. When the charge carriers deposit their
electrical charge on the electrodes the process is over and no output signal is induced anymore
[6]. The time evolution of the signal is fundamental for understanding the timing properties of
detectors.

The method to calculate the induced charge on electrodes due to the motion of charges in a de-
tector makes use of the Shockley-Ramo theorem [16], [17], [18] and the concept of the weighting
field.

Referring to Figure 2.2, consider a volume where there are some, in this case three, conductors.
Each conductor is maintained at his fixed potential V; through a generator. We take the volume
surrounded by a conductor maintained at ground potential. Let’s imagine a net charge ¢ has
been created, e.g. from the passage of a radiation.

Figure 2.2: Three conductors are polarized through a generator and a charge ¢ moves along dF in the resulting
electric field generated by the conductors.

The resulting electric field F in a generic point of the space can be calculated as the superim-
position of the single electric field generated by each conductor.

E:ZV,;Ei:VlEl-i—VgEQ—FVgE‘g (2.2)

where E; is the weighting field associated to the i — th conductor. It is measured in 1/m and
can be interpreted as the electric field that would be generated by the i — th conductor if its
generator is set to V; = 1V and all the other conductors are at ground potentil. The actual
electric field generated by a conductor can be obtained by setting each potential to zero apart
from the one under interest. E.g. Eireal =V,E;.

41



Let’s imagine the charge ¢ to move over an interval dr. The work done by the electric field on
the charge is: B
dW, = qFE - dr (2.3)

Since the volume is closed, and assuming that the charge ¢ does not perturb the electric field
generated by the conductors, we assume the conservation of energy in the volume, i.e. dW, =
dW. Where we denote with dW the work done by the sources:

dW:—Z%Iidt:—(‘ﬁf1+v2fz+v?>l3)dt (2.4)

By comparing Equations 2.3 and 2.4 we obtain:

_ dr _ _ _ _
—(V1[1+V212+V3[3):qE~d—Z:qE~17:q(V1E1+V2E2+V3E3)-?7 (2.5)

where v is the charge velocity.
By differentiating with respect to the ¢ — th potential V; the Equation 2.5, we obtain the current
I; that flows through the i — th generator to compensate the motion of the charge ¢:

I;=—qFE;-v (2'6)
which in its differential form, by using [ = %, is:
dQ; = —qu -odt (2.7)

d@); is the instantaneously induced charge on the ¢ — th conductor. Note that, from Equation
2.7, when the charge q reaches one electrode, i.e. ¥ = 0, there is no more charge induced dQ.
The total amount of charge induced on the 7 — th conductor is:

Qi = —Q/Ei'vdt (2.8)

Let us consider now two plane electrodes facing each other at a distance D. The first is polarized
at Vi = Vp, i.e. the anode, and the second at ground, Vo = 0, i.e. the cathode. In this
configuration the actual electric field, neglecting side effects is uniform £ = V;/D and orthogonal
to the electrodes. We denote its direction with x. The charge ¢ is created at a distance d from
the anode (a distance D — d from the cathode). The weighing filed associated to the anode is
Ey = 1/D. The current and charge induced on the first electrode, Equations 2.6, 2.7 and 2.8,
by a negative charge (¢ < 0) going to the anode, is:

0
I = —%vw, dQ, = —%vm dt, Q= —q/ %vw dt = lq)/d de = %d (2.9)
where v, is the component of the charge g velocity parallel to the electric field. A negative
charge induces a negative charge on the anode.
From Equation 2.9 we notice that the total induce charge does not depend on how the charge
g moved but only from the starting and ending points of its path: i.e. the electric field is
conservative. This is not the case for the current which depends on the charge velocity. The
current depends on the path traveled by the charge and not only on the starting and ending
points.
The charge induced on the cathode is the same as the one induced on the anode, except for the
sign.
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Signal read-out

The detector read-out can be essentially carried out in two ways: continuous current mode or
current pulse mode.

In continuous current mode, the induced current is measured at the detector electrode. Because
in strong irradiation conditions the detector response time is often long compared with the aver-
age time between events, the effect is to average out many fluctuations and the output depends
on the product of the interaction rate and the charge per interaction.

In the current pulse mode, the current pulse due to a single event is measured. The transimpen-
dence amplifier, connected to the electrode, has a bandwidth corresponding to a time constant
T. tc is the time of the charge collection in the gas volume. If 7 << t. (short integration time),
the voltage output will follow the instantaneous value of the current flowing in the detector.
On the contrary, if 7 >> t. the current flow is integrated over a time 7. The amplitude of the
voltage output will be proportional to the integral of the current flow, i.e to the charge generated
in the detector.

Common values for charge amplifier gains are G = 5V/pC with integration time of 7 = 2 us.
A standard charge amplifier presents a sensitivity of about 10 fC, below that charge level a
low-noise amplifier should be used. For example, if a neutron is converted by 2*°U, its fission
fragments carry about 80 MeV that translates into about 3-10° ion pairs in Argon, i.e. 500 fC,
which is a sufficient charge to be amplified electrically. On the other hand, the proton of the
3 He-capture reaction carries 577 KeV that turns into a net charge of about 3 fC.

Tonization chambers

In the presence of an electric field, the electrons and ions created by the radiation are accelerated
along the field lines toward the anode and cathode respectively. This acceleration is interrupted
by collisions with the gas molecules which limits the maximum average velocity which can be
attained by the charge carriers. The average velocity is called drift velocity of charges and it is
superimposed on their random diffusion movement. Compared with the thermal speed, the drift
speed of ions is slow, however, for electrons can be much higher since they are much lighter.

The mobility of a charge is defined as:

=2 (2.10)

where u is the drift velocity and E is the electric field strength. For positive ions u is found to
depend linearly on the ratio E/P (with P gas pressure) with relatively large field values. At
constant pressure it implies that mobility is constant and, for e given F, mobility varies as the
inverse of the pressure. The usual mobility of a positive ion in a noble gas is about 1 C&”j

The recombination process decreases the net charge seen by electrodes; it is then necessary to
increase the applied voltage, i.e. the electric field strength, until it is large enough to avoid
recombination. In Figure 2.1 when the voltage is sufficient to collect the whole charge a plateau
is attained (ion saturation). A detector operates in ionization mode when the whole charge
created by a ionizing radiation is collected at the electrodes.

As mentioned in the previous section, neutrons that have been converted by 23°U into charged
particles lead to induced charge of about 0.5 pC' which is a readable by using a standard amplifier;
hence 23°U is suitable to build an ionization chamber working in pulse mode because of its
reaction energy yield.

Generally ionization chambers work in continuous current mode.
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Proportional counters

Not all neutron capture reactions can lead to fragments that, carrying hundreds of KeV', produce
enough charge to be amplified by standard amplifiers.

In order to increase the ion pair yield of limited energy fragments, one can exploit the gas
multiplication process. At low values of the electric field the electrons and ions created simply
drift toward their collection electrodes, as in the case of an ionization chamber. During the
migration ions collide with neutral gas molecules and, because of their low mobility, they achieve
very little average kinetic energy between collisions. If the electric field is risen to a sufficient
high value, free electrons, on the other hand, can be accelerated to get enough kinetic energy
to produce further ionizations. Because the average energy of the electron between collisions
increases with the electric field, there is a threshold value for the field above which this further
ionization occurs. In typical gases, at atmospheric pressure, the threshold field required is of
the order of 107 V/m.

The liberated electrons are accelerated as well and they can create additional ionization. The
gas multiplication process therefore takes the form of a cascade, known as Townsend avalanche.
The number of electrons per unit path length is governed by the Townsend equation:

dn _ adr (2.11)
n
where « is the first Townsend coefficient of the gas. Its value is zero when the electric field
is below the threshold value and generally increases very rapidly as the electric field increases.
In a spatially constant field the electron density grows exponentially with the distance as the
avalanche progresses:

n(x) = n(0) e*” (2.12)

where n(0) is the original charge at the point z = 0.

In the proportional counter, the avalanche terminates when all free electrons are collected at the
anode. As a result, the number of electrons created by the gas multiplication is proportional
to the number of initial ion pairs created by the incident radiation, i.e. the net charge created,
or read-out, is proportional to the incoming radiation energy. Referring to Figure 2.1, as the
applied voltage rises, the actual electric field increases, hence the Townsend coefficient increases
and the charge created grows exponentially.

This charge amplification reduces the signal to noise requirement of the amplifiers and signifi-
cantly improves the signal-to-noise ratio compared with pulse-type ion chambers.

The formation of an avalanche involves many energetic electron-atom collisions in which the
variety of excited atomic or molecular states may be formed. The performance of proportional
counters is therefore much more sensitive to the composition of trace impurities of the fill gas
than in the case of ion chambers.

Increasing further the electric field introduces nonlinear effects. Although free electrons are
quickly collected, the positive ions move much more slowly, and during the time it takes to col-
lect electrons, they barely move at all. Therefore, each pulse within the counter creates a cloud
of positive ions which is slow to disperse and represents a space charge that can significantly
alter the shape of the electric field within the detector.

The actual electric field necessary to produce gas multiplication can be problematic to be real-
ized from a practical point of view of power supplies or electrical and mechanical constraints.
E.g., in order to increase the electric field up to 2 - 10 V/m in a planar geometry detector,
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where the two electrodes are faced one to the other and they stand at a distance d, = 10mm, a
potential of 200 KV has to be applied. A way to address this problem is to use anodes of small
radius. The electric field in a cylindrical geometry is given by:

Vo 1
Bl ==

|77‘ In (T—c)
TA
where r¢c and r4 are the cathode and anode radius respectively; V4 is the potential difference
between them. Note that if 7o > 74, the electric field rises in a region close to the wire, say up
to ~ 5-14. This latter is the so-called multiplication region. The number of pairs created in the
multiplication region rises as we approach the anode and also the Townsend coefficient increases
strongly. Most of pairs are formed close to the anode surface. The exponential growth (Equation
2.12) predicts that half of the charge is created in one path A = 1/«. At atmospheric pressure,
for Ar, A = 2 um. In reality, because of the rising «, the growth is faster than exponential.
As example we take a tube of radius rc = 5mm (at ground potential) in which center is placed
an anode wire r4 = 10 um. By only applying V) = 1000 V' we can easily obtain a strong electric
field of 1.6 - 107 V/m.
The main contribution to the signal formation on electrodes is due to positive ions. The multi-
plication occurs in the multiplication region, i.e. around the anode wire. Let’s take the previous
example of a cylindrical detector. Denote with ¢ = |n-e| the net charge created by the avalanche
process (n is the number of pairs created) and let us assume for simplicity that it is placed at
A = 2 um from the wire surface, thus at r =r4 + A.
By using the Schokley-Ramo theorem, the charge induced on the anode is given by Equation
2.8:

(2.13)

72 T2
_ ~ qi dr i r

Qanode = _Qi/ Eanode -vdt = _Z/ = = -— ln('r') ‘rf (214)

T In (T—C) r |7 In (T—C)
A TA

where we use as weighting field |E| /Vp as defined in Equation 2.13. The charge induced on the
cathode, in presence of only two electrodes, is Qcath. = —Qanode- ™1 and ro are the integration
limits different for electrons (¢; = ¢¢ = —¢q) and ions (¢; = Gion = +q). From the point
where the charge is created, electrons will travel toward the anode (r; = r4 + A = 12 um and
rg = r4 = 10 um) and ions toward the cathode (r1 = r4 + A = 12um and ry = ro = 5mm).
Hence:

_ e r _ de rA N -
Qanode = _hq(TC)ln(r) |r§+A— _ln <LC> In (TA n A) ~ +0.03¢e = —0.03¢
T '
! ! (2.15)
] Gion Gion rc
anode = —hl(qb)hl(r) ’:§+>\: _ln (LO) In (m m )\) ~ —0.97 gion = —0.97¢q
TA T

where we denoted with Q¢ . and QZ%”Ode the charge induced by electrons and ions on the anode.
Note that the ions contribution is larger on the signal formation than the electrons’ one.
Proportional counters are generally operated in pulse mode because they suffer from space charge

effects before the count rate is high enough to have continuous current mode.

Geiger counters

Referring to Figure 2.1, if the applied voltage is made sufficiently high, the space charge created
by positive ions can become completely dominant in determining the subsequent history of the
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pulse. Under these conditions, the avalanche proceeds until a sufficient number of positive ions
have been created to reduce the electric field below the point at which additional gas multi-
plication can take place. The process is then self-limiting and will terminate when the same
number of positive ions have been formed regardless of the number of initial ion pairs created
by the incident radiation. Thus, each output pulse from the detector is on average of the same
amplitude and no longer reflects any properties of the incident radiation. This is called the
Geiger-Mueller region of operation [6].

In a proportional counter each original electron leads to an avalanche that is basically indepen-
dent of all other avalanches formed from other electrons associated with the original ionizing
event. Because all the avalanches are nearly identical, the collected charge remains proportional
to the number of original electrons. On the other hand, in a Geiger tube, the higher electric
field enhances the intensity of each avalanche; but as well each avalanche can itself trigger a sec-
ond avalanche at different position within the tube and the process becomes rapidly divergent
creating a discharge. In a typical avalanche many excited gas molecules are formed by electron
collisions. Within few ns those molecules return to their ground state through the emission of a
photon, generally in the UV region. These photons are the key element in the avalanche chain
propagation that makes up the discharge.

A typical pulse from a Geiger tube represents a large amount of charge collected, about 10°
ion pairs. Therefore, the output pulse is so intense that in principle no amplifier electronics
is needed; thus a Geiger tube is often an inexpensive choice when a simple counting system is
needed.

Quencher and stopping gas

As mention for the Geiger counters, for proportional counters as well, the gas multiplication
process creates many excited molecules from the collisions of electrons and neutral molecules.
These excited molecules do not contribute directly to the avalanche process but decay to their
ground state through the emission of a photon, generally an UV-photon. Under certain circum-
stances these de-excitation photons could create additional ionization elsewhere in the fill gas
or at the cathode. Although such photon-induced events are important in the Geiger region of
operation, they are generally undesirable in proportional counters because they can lead to a
loss of proportionality and/or spurious pulses. Furthermore they can cause avalanches which
spread in time and space and, consequently, they reduce the spatial and time resolutions.

The addition of a small amount of polyatomic gas, such as methane, to many of the common fill
gases, e.g. Argon, will suppress the photon-induced effects by absorbing the photons in a mode
that does not lead to further ionization. This additional gas is often called quench gas.

Noble gases are commonly used as main gas fill, however for specific applications the sole use
of such a gas can be not enough to guarantee a certain time or spatial resolution. E.g. neutron
counters are filled with 3 He, which does not only convert neutrons but it is as well a suitable gas
fill for the detector operation. Usually to reduce dead time it is recommended to add a second
element, i.e. the stopping gas as C'Fy, to the gas mixture to increase its global stopping power.
In such way the detector time response improve because ions are stopped on shorter tracks.
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2.2 Thermal neutron gas detectors

2.2.1 The capture reaction

Mechanisms for detecting thermal neutrons in matter are based on indirect methods [19]. The
process of neutron detection begins when neutrons, interacting with various nuclei, initiate the
release of one or more charged particles or y-rays. The electrical signal produced by this sec-
ondary radiation can then be processed by the detection system. Thermal neutrons carry a too
small amount of energy to be transferred to a recoil nucleus and to produce ionization. As intro-
duced in Chapter 1, neutrons can cause nuclear reactions. The products from these reactions,
such as protons, alpha particles, v-rays, and fission fragments, can initiate the detection process.
Detectors employing the reaction mechanism can use solid, liquid, or gas-filled detection media.
The choice of reactions is limited and most of the suitable materials, for their large neutron
absorption cross-section, are listed in Equation 1.69.

The commonest capture process is one which results in the emission of a prompt v-ray. Although
these (n,~) reactions occur for most nuclides, the resulting photons, being uncharged, are also
difficult to detect directly.

Hence, most thermal neutron detectors, with prompt read-out, are based on the few absorption
reaction that result into heavy charged particles or fission fragments: 2He, 6Li, 1B, 23U, Gd,
etc.

In the thermal neutron detection process the information on the initial neutron energy is com-
pletely lost. Once a neutron is captured, the energy available, to be detected, is the one of the
capture reaction. Thus, in general, neutron detectors provide information only on the number
of neutrons detected and not on their energy. The only effect of the neutron energy is via the
absorption cross-section which usually follows the 1/v law. The latter influences the probability
of the neutron to be detected by the detector medium.

We focus now on thermal neutron gaseous detectors. To detect a thermal neutron we need a
converter and a stopping gas to be ionized by the charged particles originated by the neutron
capture. Only fission fragments from ?3*U have enough energy to operate the detector in ioniza-
tion mode, usually >He and 'Y B-based gaseous detectors are operated in proportional regime.
Since YLi is solid at room temperature and does not produce any 7-ray after the neutron cap-
ture, is a suitable material to be embedded in a scintillator.

3He, which is a gas at room temperature, is both a powerful converter of neutrons and a
stopping gas. Its capture reaction produces a proton and a triton (see Table 1.70). At 1bar
(p = 1.3-107* g/em3) and room temperature the 577 KeV proton is stopped within about
55.3mm; at 10bar in 5.5mm. The track length can be too long to efficiently localize the in-
teraction point of the neutron (see Section 2.2.3). Usually a variable amount of a more efficient
stopping gas is added to >He to reduce the particle traces, e.g. CFy. In a mixture >He/CFy in
the ratio 80/20 at 1bar the proton track length is reduced to 12.2mm, at 10 bar to 1.2mm.

In addition to stopping gas can be added a quencher to absorb UV photons. In neutron detection
any quenching gas containing a large amount of Hydrogen should be avoided because they can
cause a strong neutron scattering.

Another gaseous converter exploited in thermal neutron detection is ' BF3, but for its toxicity
its use is limited.

For solid converters, such as 1B or '°B,C, the gaseous material acts only as stopping medium.
The neutron is converted in the solid converter and escaping particles ionize the gas. The
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description of such a detector will be discussed in details in Chapter 3.

2.2.2 Pulse Height Spectrum (PHS) and counting curve (Plateau)

In many applications of radiation detectors, the object is to measure the energy distribution
of the incident radiation. This is not the case for thermal neutron detectors because the in-
formation on the neutron energy is completely lost in the conversion process of a neutron into
charged particles. The energy information we can access is always the neutron capture fragment
energy. An important detector aspect is to make it able to distinguish between real events and
background events, e.g. between neutron events and 7-rays. As a result, energy resolution is
required on the fragment energies and it is an important feature to be able to discriminate
between particles.

When operating a detector in pulse mode, each individual pulse amplitude carries the informa-
tion on the charge generated in the gas volume, i.e. on the energy deposited. The amplitudes
will not all be the same. The pulse height distribution is a fundamental property of the detector
output that is routinely used to deduce information about the incident radiation, or, in the case
of neutrons, on the neutron capture reaction. This distribution is more commonly known as
differential pulse height distribution and in this manuscript we will always refer to it as PHS
or Pulse Height Spectrum. Figure 2.3 shows a typical PHS of a 3 He-based gaseous detector, in
which we recall the capture reaction yields about 770 KeV of which 577 KeV goes to the proton
and 193 KeV to the triton. When a neutron is converted by 2 He the two fragments immediately
release their energy into the gas volume, consequently an amount of charge proportional to the
total reaction energy will be created. A pulse of amplitude proportional to the energy will be
readable at the detector output. Let’s imagine now that a neutron is converted so close to the
detector wall that one of the two fragments hits the wall without releasing its energy into the
gas. The related output pulse will have a smaller amplitude. Obviously the energy loss by wall
effect is a continuous process because neutrons can be converted at any distance from the wall
and fragments can be emitted with a random angle. The effect of the walls is then visible on
the PHS as a tail energy distribution toward smaller energies from the full energy peak.
Generally a neutron detector can be sensitive as well to other radiations, more commonly -
rays. Events generated by ~-rays, according to the detector construction, generally deposit a
small amount of energy in the gas volume compared with capture fragments, hence they are well
separated in energy on the PHS (see Figure 2.3).

A Dbetter energy resolution, which is defined as the FWHM (Full Width Half Maximum) of the
full energy peak, would improve the distinction between real events (neutrons) and spurious
events (y-rays).

In practice, the PHS is measured by accumulating the pulses using an integrating amplifier that
is characterized by a given electronic noise. In order to measure properly the PHS a threshold
in amplitude should be set just above the electronic noise to avoid false triggers.

In the proportional counting region (see Figure 2.1), the charge created in the detector can be
set by changing the operational voltage and it grows exponentially with it. As a result, in pulse
mode, the amplitude of the output from the detector varies as a function of the operational
voltage. In Figure 2.4 we show three PHS corresponding to three operational voltages applied,
with V4 < Vg < V. As the voltage increases, events with smaller energy are amplified over the
noise level threshold of the amplifier and give rise to events on the PHS. We define the counting
curve (or Plateau) as the integral of the counts over a given threshold (set by the electronics
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Figure 2.3: Typical PHS of an ®He-proportional tube.

used) on the PHS, plotted as a function of the operational voltage. Its behavior with the voltage
V' is strictly related to the PHS shape and an example is shown in Figure 2.5. As the voltage
increases, according to the PHS shape, the counting curve can vary its slope.

Generally, once the plateau is attained, it starts to rise again at higher voltages because of y-ray
events.

Once a detector geometry and electronics is defined, a detector should be operated in a stable
regime where a small change in parameters (voltage, threshold, gas pressure, ...) does not affect
efficiency. Referring to Figure 2.5, the best operating voltage would be V3. Below this voltage
the detector is not counting the totality of events, hence is less efficient; above this voltage, we
are mixing up neutron events with other events at low energy.

It should be emphasized that the plateau depends on the detector geometry and read-out sys-
tem, e.g. amplifier gain, thus the operational voltage chosen to operate the detector is related
to the detector working configuration.
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Figure 2.4: Examples of ® He-based counter tube PHS as a function of an increasing operational voltage applied
to the detector.
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Figure 2.5: Example of counting curve plot (plateau) for an ® He-based counter tube.

2.2.3 GGas spatial resolution

In neutron scattering science it is often crucial to determine the neutron impact position on
the detector. For such application a PSD (Position Sensitive Detector) is needed. The detector
operational modes explained are valid for PSD, and an easy way to get the positional information
is to place more anode wires in a gas chamber (Multi Wire Proportional Chamber - MWPC).
Those wires act as individual detectors hence give the position of the neutron interaction point.
To get the second dimension information a X-Y coincidence, a delay-line read-out, a charge
division read-out, etc. Those are explained in details in Section 2.3.

The spatial resolution Ax is defined as a distance and represents the ability for a detector to
distinguish between two events that occur at a distance Az, for a given confidence level. A
widely used criterion, to define the spatial resolution, is to give the FWHM (Full Width Half
Maximum) of the image of a point. If the image is a gaussian, it corresponds to 88% probability
to properly distinguish between two events at that distance.

In the slowing down of a charged particle the charge is generated all along the particle path, thus
what it is measured at the electrodes is the charge centroid [20]. The neutron capture reaction
is asymmetric because of the difference in masses of the two fragments. For 3He, most of the
energy will be carried by the proton and it will have a longer path with respect to the triton.
Consequently the charge centroid does not correspond to the neutron interaction point.

If we use charge centroid read-out the gas spatial resolution is proportional to the charged
particle range in the converter. The interaction point and the charge centroid approach as the
particle ranges diminish. The higher the gas pressure, the lower are the particle ranges.

In 3 He-based neutron detectors the spatial resolution is limited by mechanical constraints on
the vessel containing the detector which limits the maximal pressure.

For a given neutron interaction point the direction the two capture fragments are emitted is
isotropically distributed. The detector response, depending on its geometry, will be different
according to the particle ejection direction. What is measured, when the detector is exposed
to a point source, is an average over all the possibilities that results into a distribution with its
own FWHM that defines the resolution due to the gas.

In Figure 2.6 the stopping power for the the two 3He capture reaction fragments in 1 bar,
T = 300 K, 2He/CFy in the ratio 80/20 is shown. The resulting gas mixture density is p =
8.8 -107*g/em3. At atmospheric pressure in such a gas mixture, the extrapolated range for
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the 577 KeV proton is 1.22¢m and for the 193 KeV triton is 0.44 cm. The charge centroid is
shown in Figure 2.6, and the error committed between the actual neutron conversion position
and the detector read-out position is about 0.48 cm. This limits the actual spatial resolution the
detector can attain and it can be improved by increasing the gas pressure. Since the stopping
power is directly proportional to the density, thus the gas pressure, the particle range is inversely
proportional to pressure. At 10 bar, in the same gas mixture just taken as example, the particles
ranges are diminished by a factor 10. The charge centroid, thus the maximum spatial resolution
achievable, would be around 0.5 mm.
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Figure 2.6: Stopping power for the 3He capture reaction fragments in a gas mixture of *He/CFy (80/10)
(p=8.8-10"*g/ecm?) at 1bar.

It has to be pointed out that modern electronics allows to perform the reconstruction of the
fragment tracks in order to determine the neutron interaction point. In this case the gas pressure
in 3 He-based detectors is needed only to increase the detection efficiency. Pressure remains an
issue if the detector is operated in vacuum. We will not use such electronics.

2.2.4 Timing of signals

The time response of a gaseous detector is related to the time differences over which the different
moving charges generate their signals on one hand, and the time of the signal development of a
single charge on the other hand.

The stopping time of a charge in gases is a few nanoseconds. Hence, this time is not the
bottleneck of the time response of a detector and it can often be neglected.

What limits the detector time performance is instead the time the charges, created by the
ionization, need to be collected at the electrodes and the time duration of the signal induction.
This latter depends on the strength of the electric field the detector is operated at and, according
to the geometry, to the mobility of charges. This latter can be tuned by playing with the gas
composition. Generally, in 3 He-based neutron detectors the simple 3He would be enough to
assure a correct gas ionization and collection of charges. On the other hand, a fraction of other
gases, such as C'Fy, are added to it to form a mixture that increases the stopping power of the
particles, in order to get faster responses and better resolution.
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For example, according to Equation 2.10, the time for a general ion (u = 16&”—52) to drift over
Lem at 1bar in an uniform electric field of 10° V/m results in t = 10%7%/5 = 1ms. This time
for electrons generally is about three orders of magnitude smaller; i.e. 1 us.

2.2.5 Efficiency

Detection efficiency is defined as the ratio between the detected events by the detector and the
total amount of incident radiation.

In general, for neutron detectors, the detection efficiency is related to the absorption probability
of a neutron but it is not strictly the same. The absorption probability increases with the
converter density p, i.e. pressure for gases, because it follows the neutron absorption exponential
law (see Equation 1.27) with ¥(\) macroscopic cross-section. Detection efficiency is the number
of converted neutrons that give rise to a signal output over the total. It can happen that not all
the converted neutrons give fragments that release sufficient energy over the noise level into the
gas. Hence some neutrons can be absorbed without that a signal output is generated above the
threshold. Usually this loss can be neglected and detection efficiency as well follows the neutron
absorption exponential law. We recall, that since o435 depends on the neutron energy as 1/v
the detection efficiency increases with the neutron wavelength.

By keeping the detector volume constant, a way to increase the neutron detection efficiency is
to increase the converter gas pressure.

For solid neutron converter based detectors efficiency does not depend in such a simple way on
the neutron wavelength as for gas converters.

A full explanation of that will be given in Chapter 3.

2.3 Read-out and dead time

2.3.1 Read-out techniques

If position sensitivity is required a PDS (Position Sensitive Detector) is needed. A PSD allows to
identify the point of interaction of the radiation in one direction or in a two-dimensional plane.
The segmentation of the anodes or cathodes in a gas detector allows to get the positional infor-
mation. We can imagine to segment a single cathode plane into strips and to place many wires
close to each other to make an anode plane, i.e. MWPC. Each wire acts as a single detector.
The read-out works in the same way for cathodes as for anodes. Once an ionization and gas
multiplication occur there will be only a region in a gas chamber interested by the induction of
the signal; there could be one or more wires where the signal is induced. The individual read-
out can be performed by connecting each wire to a single charge amplifier. To get the second
dimension information, a second wire plane, orthogonal to the first, can be placed in the gas
volume and read-out in the same way. Equivalently, the cathode can be segmented and read-out
by an individual amplifier for each strip. The number of read-out channels can diverge rapidly
for a large detector. The large amount of electronics required can be expensive and unwieldy.
In order to reduce the number of read-out channels we discuss here the delay line and charge
division approaches.

Figure 2.7 shows the schematic for a delay line and for charge division. In a delay line N wires
(or strips) are connected in a chain through inductances, say L. Each wire has an intrinsic
capacitance to ground (C). Usually it is 100 pF'/m. The circuit we obtain is a discrete trans-
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Figure 2.7: Delay line read-out, charge division on several wires and charge division on a single resistive wire.

mission line where signals travel at the velocity v = 1/v/Ly, Cy,, where L, and C,, are the
inductance and capacitance per unity of length. At the two outputs, A and B, we measure the
difference in the arrival time of the signals. The position along the delay chain is calculated as:

ta—1tp
r=—-—>=

Y (2.16)

where At is the maximum delay possible. The position x is normalized between —1,+1 along
the chain. The amplitude of the two outputs signals, neglecting the resistivity of the chain, is
the same at both ends.

The delay line approach is widely used in radiation detectors in which the development of the
signal is very fast. If the development of the signal is slow and variable from event to event,
this introduces an error on the determination of the two arrival times and, consequently, on z.
This is the case for neutron detectors where the particle track orientation in the gas introduces
a large jitter on the signals.

Charge division consists of connecting several wires through resistors or using resistive wires
of resistivity p (see Figure 2.7). The charge induced in one wire (for the chain) or at certain
position along the resistive wire, will split according to the total resistance seen toward the two
terminations A and B. The amplitude of the signals at the two outputs (Q 4 and @ g proportional
to the charge) is decreased proportionally to the resistance seen from the induction point. The
position, normalized between [0, 1], is:

v Qa
Qa+Qp

where Q4 + @ p is the total charge induced.

By neglecting any parasite capacitance, the two signals at both ends arrive at the same time.
By using resistive wires we avoid the use of a second wire plane in a MWPC because the two-
dimensional information is given by the number of the wire fired and the charge division at its
outputs.

(2.17)
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A single wire can not be used as a single delay line as for charge division. The propagation
velocity of the signal on the wire is of the order of the speed of light, and the delay too short to
be of any use.

Johnson noise is inversely proportional to resistance. While in an ideal delay line there is no
problem of noise, in a resistive chain its is necessary to increase the gas avalanche gain at which
the detector operates in order to increase the signal to noise ratio. For this reason, neutron
detectors read-out in charge division are operated at higher gain with respect to the same
detector with individual read-out.

2.3.2 Dead time

The dead time is the minimum amount of time that must separate two events in order that they
can be recorded as two separate pulses [6]. It can be limited by the processes in the detector
itself or by the associated electronics. Usually the detector is not susceptible of the incoming
radiation in a interval of a dead time and the information is then lost.

The read-out system also affects the detector dead-time.

A detector can be characterized by a paralyzable or non-paralyzable behavior. In a non-paralyzable
detector, an event happening during the dead time of the previous event, is simply lost. With
an increasing event rate the detector will reach a saturation rate equal to the inverse of the dead
time. In a paralyzable detector, an event happening during the dead time will not just be missed,
but will restart the dead time. With increasing rate the detector will reach a saturation point
where it will be not capable to record any event at all. A semi-paralyzable detector exhibits
an intermediate behavior, in which the event arriving during dead time does extend it, but not
by the full amount, resulting in a detection rate that decreases when the event rate approaches
saturation.

2.4 The 3He crisis

2.4.1 The *He shortage

Scintillators, gaseous detectors and semiconductors are the main technologies to detect neutrons.
Neutron detection is a key element for applications in homeland security, industry, and science
[21]. Other uses are for commercial instruments, dilution refrigerators, for targets or cooling in
nuclear research, and for basic research in condensed matter physics [22].

One of the principal thermal neutron converter materials is 2 He, that has been the main actor
for years because of its favorable properties. ?He is a gas with high absorption cross-section and
no electronegativity. 3He is an isotope of helium, an inert, nontoxic, nonradioactive gas. Most
helium is *He. The natural abundance of 3He, as a fraction of all helium, is very small: only
about 1.37 parts per million. Rather than rely on natural abundance, one usually manufactures
3He through nuclear decay of tritium (see Equation 2.18), a radioactive isotope of hydrogen.
The supply of 2He comes almost entirely from US and Russia. By far the most common source
of 3He in the United States is the US nuclear weapons program, of which it is a byproduct. The
federal government produces tritium for use in nuclear warheads. Over time, tritium decays
into ®He and must be replaced to maintain warhead effectiveness. From the perspective of the
weapons program, the extracted 2He is a byproduct of maintaining the purity of the tritium
supply. This means that the tritium needs of the nuclear weapons program, not demand for

o4



3He itself, determine the amount of *He produced.
SH (tip=123y) — *He+e +1 (2.18)

3He does not trade in the marketplace as many materials do. It is accumulated in a stockpile
from which supplies are either transferred directly to other agencies or sold publicly at auction.
Despite declining supply and increasing demand, the auction price of > He has been relatively
steady, at less than 100$ per liter.

Until 2001, 3He production by the nuclear weapons program exceeded the demand, and the
program accumulated a stockpile. In the past decade > He consumption has risen rapidly. After
the terrorist attacks of September 11, 2001, the federal government began deploying neutron
detectors at the US border to help secure the nation against smuggled nuclear and radiological
material. Thus starting in about 2001, and more rapidly since about 2005, the stockpile has
been declining. By 2009, the US government and others recognized that ongoing demand would
soon exceed the remaining supply.

Nowadays, the world is experiencing a shortage of >He [21]. US federal officials have testified
that the shortage is acute and, unless alternatives are found, will affect federal investments in
homeland security, scientific research, and other areas. Scientists have expressed concern that
the shortage may threaten certain fields of research.

The 3He stockpile grew from roughly 140000 liters in 1990 to roughly 235000 liters in 2001.
Since 2001, however, He demand has exceeded production. By 2010, the increased demand
had reduced the stockpile to roughly 50000 liters (see Figure 2.8).

Liters of He-3

250,000 Size of the stockpile
(rough estimate) 100,000 -

Other USG
v Other non-nuclear

i

200,000 Science

80,000
Neutron
Detection

60,000
40,000
20,000 I

0 N . h 0
1990 1992 1994 1996 1998 2000 2002 2004 2005 2008 2010 FY0S FY10 FY1l FY12 FY13 FYl4 FY1S FY1e FYl7 Fvis
Year Fiscal Year

150,000

Helium-3 (liters)

100,000
Disbursements

from the stockpile
Additions to the stockpile

from tritium decay (rough
50,000 estimate)

Figure 2.8: Size of the *He stockpile 1999 - 2010, the size of the stock in red and the demand in blue (left).
Projected ®He demand 2009 - 2018 (right). Adapted from [21].

The US weapons program currently produces tritium by irradiating lithium in a light-water
nuclear reactor. Before 1988, the program used heavy-water reactors at the DOE Savannah
River Site in South Carolina. In 1988, the last operating Savannah River Site reactor, the
K reactor, was shut down for safety reasons. For the next several years, reductions in the
nuclear weapons stockpile meant that tritium recycling met the weapons programs needs without
additional tritium production. Over time, as the tritium produced before 1988 decayed into 3 He,
the total amount of remaining tritium decreased. The annual rate of 3 He production from the
remaining tritium declined commensurately. The DOE restarted tritium production for the
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weapons program in 2003.

Prior to 2001, the demand was approximately 8000 liters per year, which was less than the
new supply from tritium decay. After 2001, the demand increased, reaching approximately
80000 liters in 2008. The projections, shown in Figure 2.8, show demand continuing at above
the available new supply for at least the next several years. These projections contain many
variables and are therefore considerably uncertain.

Given such a large mismatch between supply and demand, users are likely to seek out alternative
technologies, reschedule planned projects, and make other changes that reduce demand below
what it would be in the absence of a shortage.

One way to address the >He shortage would be to reduce demand by moving 2He users to
alternative technologies. Some technologies appear promising, though implementation would
likely present technical challenges. For other applications, alternative technologies may not
currently exist. It is unclear whether federal agencies and the private sector can reduce demand
sufficiently to match the current 3He supply and still meet priorities for security, science, and
other applications.

2.4.2 Alternatives to ®He in neutron detection

Because of its detection performance, nontoxicity, and ease of use, 3 He has become the material
of choice for neutron detection. Nevertheless, other materials also have a long history of use.
With the current shortage of 2 He, researchers are reexamining past alternatives and investigating
new ones. Existing alternative neutron detection technologies have significant drawbacks relative
to 3He, such as toxicity or reduced sensitivity. A drop-in replacement technology does not
currently exist. The alternatives with most short-term promise as ® He replacements are boron
trifluoride, boron-lined tubes, lithium-loaded glass fibers, and scintillatorcoated plastic fibers.
A new scintillating crystal composed of cesium-lithium-yttrium-chloride (CLYC) also appears
promising. Other materials, less suitable in the short term, show promise for the long term.
Before the 3 He shortage became apparent, most neutron detection research was directed toward
long-term goals such as improving sensitivity, efficiency, and other capabilities, rather than the
short-term goal of matching current capabilities by alternative means. The neutron detectors
used for homeland security present both an opportunity and a challenge. The large base of
already deployed equipment, if retrofitted with an alternative technology, could be a substantial
source of recycled 3 He for other uses. At the same time, the scale of planned future deployments
presents a potentially large future demand for  He if suitable alternatives are not identified. For
retrofitting, any alternative would need to match the dimensions, power requirements, and other
characteristics of the existing technology. For future deployments, especially beyond the near
term, some of these requirements might be relaxed or altered. In either case, the large number
of systems means that any alternative would need to be relatively inexpensive. In addition,
because of how and where the equipment is used, any alternative would need to be rugged, safe,
and reliable.

In the last years several efforts have been made to address the 3 He shortage. B technologies
have been investigated in gaseous detectors for neutron science [23], [24], [25], [26], [27], [28] and
for homeland security applications [29], [30]. 9B in solid junction detectors and GEMs as [31],
[4] and [32].

In this work, we will concentrate on 9B solid converters in gas detectors.
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Chapter 3

Theory of solid neutron converters

This chapter is born from the collaboration between Patrick Van Esch and me. I want to really
thank him for the precious discussion we had on the subject [33].

Here are explained the principles of neutron detection via solid converters and how such detectors
have to be optimized.

o7



3.1 Introduction

Using powerful simulation software has the advantage of including many effects and potentially
results in high accuracy. On the other hand it does not always give the insight an equation can
deliver.

The calculations we are going to show originate from the necessity to understand both the Pulse
Height Spectra (PHS) given by solid neutron converters employed in thermal neutron detectors
as in [23], [27], [29], and from the investigation over such a detectors efficiency optimization.
When a neutron is converted in a gaseous medium, such as 3He detector, the neutron capture
reaction fragments ionize directly the gas and the only energy loss is due to the wall effect. As a
result, such detectors show a very good ~-rays to neutron discrimination because v-rays release
only a small part of their energy in the gas volume and consequently neutron events and -rays
events are easily distinguishable on the PHS. Moreover, the detector efficiency is essentially
given by the absorption probability.

On the other hand, when dealing with hybrid detectors, as in [23], [34], [35], where the neutron
converter is solid and the detection region is gaseous, the efficiency calculation is more complex.
Also the y-ray to neutron discrimination for such a detector can be an issue [30], [36]. Indeed,
once a neutron is absorbed by the solid converter, it gives rise to charged fragments which have
to travel across part of the converter layer itself before reaching the gas volume to originate a
detectable signal. As a result, those fragments can release only a part of their energy in the gas
volume. The neutron PHS can thus have important low energy contributions, therefore ~-ray
and neutron events are not well separated just in energy.

In this chapter we want to give an understanding of the important aspects of the PHS by
adopting a simple theoretical model for solid neutron converters. We will show good agreement
of the model with the measurements obtained with a 'Y B-based detector.

The analytical model can help us to optimize the efficiency for single and multi-layer detector
as well as a function of incidence angle as neutron wavelength distribution.

The model we use is the same as implicitly used in many papers such as [4] or [26]. It makes
the following simplifying assumptions:

e the tracks of the emitted particles are straight lines emitted back-to-back and distributed
isotropically;

e the energy loss is deterministic and given by the Bragg curves without fluctuations;
e the energy deposited is proportional to the charge collected without fluctuations.

We will consider solid neutron converters deposited on an holding substrate. We consider the
substrate and the layer indefinitely extended in the plane (no lateral border effects). Referring
to Figure 3.1, we talk about a back-scattering layer when neutrons are incident from the gas-
converter interface and the escaping particles are emitted backwards into the gas volume; we call
it a transmission layer when neutrons are incident from the substrate-converter interface and
the escaping fragments are emitted in the forward direction in the sensitive volume. We consider
a neutron to be converted at a certain depth (z for back-scattering or d —y for transmission) in
the converter layer and its conversion yields two charged particles emitted back-to-back.

For the moment, we consider perpendicular impact on a layer. We will later see that impact
under an angle is easy to implement in the resulting expressions.
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We recall that the probability density per unit of depth for a neutron of wavelength A to be
absorbed by a converter at depth x is given by:

K(z,)\) = e =W (3.1)

where 3(\) = n - o(X) is the macroscopic absorption cross-section as already demonstrate in
Chapter 1; n is the number density of the material and ¢ () the microscopic absorption cross-
section (expressed in barn).
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Figure 3.1: Variables definition for a back-scattering and transmission layer calculations.

Focusing on the back-scattering case in Figure 3.1, where we consider for the moment 6 = 7,
the neutron absorption coordinate is denoted by x, the escape probability for one particle, of

range R, emitted isotropically at depth x, where the neutron is absorbed, is given by:

J3(—-%) ifz<R

As a matter of fact, the ratio 27 - % = 27 - cos (¢) is the solid angle of unity sphere coming out of
the layer (see Figure 3.2). There are two particles emitted by the neutron reaction and they are
emitted back-to-back. Each time a neutron is absorbed one of the two fragments is lost because
of the holding substrate. The escape probability in this case is:

Q—RilfRiJ if 2<Ry<R
1—}%) if Ry<uz<R (3.3)
if Ro<Ri<z

§(x) =

O NI NI

where R; and Rs are the two particle ranges, with Ry < R;.

Still referring to Figure 3.1, in the case we consider the Transmission mode the variable z has
to be replaced by y, therefore the neutron is absorbed at depth d — y.

As already mentioned in Section 1.2 of Chapter 1, since we are interested in particle detection,
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Figure 3.2: Geometric interpretation of Equation 3.2.

the range defined here is the effective range a particle has to travel through a material to still
conserve an energy Fp, which is the minimum detectable energy. As an example we take
the four fragments originated by the neutron capture in '°B (see Table 1.70). Their stopping
powers and remaining energies E,¢,, (Equation 1.11) are shown in Figure 3.3 [2]; e.g. one of the
"Li particles, that carries 1010 KeV, presents an extrapolated range of about 2 um but if our
minimum detectable energy is Epp = 200 KeV the effective range is reduced to about 1.25 um.
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Figure 3.3: Stopping power and remaining energy E,c., as a function of the distance traveled = for the four
0B neutron capture reaction fragments.

3.2 Theoretical efficiency calculation

3.2.1 One-particle model

Let’s start by considering a neutron interaction with the material that generates one outgoing
particle isotropically in 47 sr.
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Two cases could happen: either the range of the fragment is longer than the thickness of the
layer or it is shorter.
In the first case (d < R) in the back-scattering case the efficiency is given by:

eps(d) = /0 ! oK (@) = /0 ! drpe (; - 2‘2) - % <1 _ le> (1- ) 4 % s
(3.4)

In the case of transmission:

o= L avmta—so = [l (=) =5 (1 5) (1)
(3.5)

In the second case (d > R) the back-scattering efficiency is:

eps(d) = /OR deK(z)¢(z) = /OR drye *> @ - 2%) = % (1 - ﬁ + e;:) (3.6)

For transmission:

R R
ern(d) = [y = e = [ ayme 0B (Jo B = e (e pn )
(3.7)

In Figure 3.4 the efficiencies, at 1.8A, for the four particles of the °B neutron capture re-
action are shown. We took 1°B4C of density p = 2.24g/em? for which the four fragments’
effective ranges under a threshold of 100 KeV are: Rp;s3okev) = 1.3 um, Ro(ar0kxevy = 3 pm,
Rriqoorevy = 1.5 um and Ry 1770kev) = 3.9 wm. The single particle efficiency is plotted for a
layer in back-scattering mode and for one in transmission. The total efficiency for such a layer
is also shown and it is obtained by adding the four particles efficiencies according to the relative
branching ratio probability.
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Figure 3.4: Efficiency per particle and for the whole reaction for a single back-scattering layer of '°B4C' (left)
and for a transmission layer (right). ¥ = 0.04 wm ™" and 100 KeV energy threshold applied.

From Figure 3.4 we can see that the maximum efficiency is attained at different thicknesses for
the four fragments, this is due to the difference in the particle effective ranges. The maximum
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efficiency position, considering the whole reaction, lays in between the four maxima.

A layer operated in back-scattering mode saturates its efficiency once attained the maximum.
This is due to the fact that adding more material to the layer only gives rise to particles that
can never escape the converter hence they can not deposit energy in the gas volume. The max-
imum is reached at the value of the effective range. On the other hand, the material added
to a layer in transmission mode starts absorbing neutrons without any particle escaping as in
the back-scattering layer but now the actual neutron flux the layer close to the gas volume can
experience is diminished, consequently the efficiency drops.

In general, the direction of the incoming neutrons could be non-orthogonal to the converter
layer. Referring to Figure 3.1, this angle is indicated by 6 and it is measured starting form the
layer surface. All the formulae deduced for the efficiency are still valid under an angle. It is

sufficient to replace X by %. We demonstrate the validity only for the back-scattering case

and d < R (Equation 3.4). By inclining the layer the effective layer thickness (the path length

of the neutron in the layer) will be ﬁ and the integration variable x can be modified in the

same way to z = . However, in £, the distance is still the perpendicular distance to the
sin(6)

surface, x = z sin(0).

d/sin(6) d/sin(6) .
eps(d, X, 0) :/ dzK (2)&(z - sin(h)) :/ daSe—7% <; _ zsm(0)> _
0 0

(3.8)
1 sin(6) __dz_ d __ds_ z o
=— — — sin(6) - sin(0) — —
2 <1 R > (1 ¢ ) *oR¢ BS <d’ sm@)? =% )
Hence: 5
Y0 (3.9)

This result can be alternatively derived by considering that the absorption distance x under an
angle 6 is equivalent to increase it by a factor: z — ﬁ

Moreover, this result points out that only the parameter ¥ plays a role in the
efficiency determination, indeed the same value of ¥ can be obtained by changing
either the inclination of the layer or the the neutron wavelength or the number
density. Furthermore, in the cold and thermal neutron energy region the microscopic neutron

absorption cross-section can be approximated by a linear behavior in A, hence:

a(N) A

A =n- e T G

(3.10)

where the constant o4 is the linear extrapolation of the neutron absorption cross-section from
the value tabulated for 1.8A. In the case of 1°B: 014 = 34[b/A]. As a result the same value for
Y (A, 6), thus the same efficiency, can be obtained, for example, at 10A under an angle of 80° or

equivalently at 5A under an angle of 30° as shown in Figure 3.5.

3.2.2 Two-particle model

Now we consider two fragments emitted back to back. The two particles have two different
ranges, and hereafter we consider Ry < R; without loss of generality.
For two particles we have three different cases: the layer is thinner than both ranges, it is in
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Figure 3.5: Value for the macroscopic neutron cross-section ¥ (expressed in um ™) for ** B4C (niop = 1.04-10%
atoms/cm®) as a function of neutron wavelength (\) and neutron incidence angle (6).

between or it is thicker than both of them.
Case d < Ry < R; for back-scattering;:

eps(d) = /Od dzK(x){(z) = /Od dzXe > <1 - 2iR1 _ 2ng> -

1 1 1 1 (3.11)
—(1- _ 1 — 4= T —d%
( 9N R, 22R2> ( ¢ ) + <2R1 * 2R2> de
For transmission:
d d y y
crld) = [ dyK@ - = [ dyme S (1o o V) -
0 0 2R1 2R2
1 1 1 1 (3.12)
< Tosm T 22R2> ( ¢ ) (231 * 2R2>
Case Ry < d < R; for back-scattering:
Ro d
cos(d) = [ oK@ + [ deK()e() =
0 Ro
Re T T d 1 T
= deXe ™ (1 - — — deXe ™ (= - ) = 3.13
/0 vl ( 2R, 2RQ>+/RgI6 (2 2R1) (3:13)

(o L1 +e—322_e—d2 L d
a 2YR;  2YXRs 2Rs% 2 RiY Ry
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For transmission:

d

Ry
sTww:A dwad—ymwwy/twKw—yx@>=

Ry
Ro2 d 1
_ dySe—dvz (1Y _ Y dySe—d=vs (2 _ Y ) _ 3.14
/0 yue 9R, 2R, + Ro y=e 2 2R3 ( )

_w_ 1+ 1 + 1 eidz—i—} 1+L_i
 2RyY% 2YR,  2YXRs 2 RiY Ry

Case Ry < Ry < d for back-scattering:

Ry Ry
ps(d) = [ oK (@)eto) + [ deK (@)t -

R>

Ry x €T ! 1 x
= dzYe ™™ (1 - —— — dzYe ™ (= - | = 3.15
/0 ree < 2R, 232> +/R2 ree <2 2R1> (3.15)

1 1 i 22
=|1- - + +
2> R 2XR> 2R 2R1X

For transmission:

Ry

Ro
ww=A @mwwmw+/ duFC(d — y)é(y) =

R>

Ro R 1
[ gse @ (1 Y Y / dyse-@v= (L Y Y _ 316
| 2R 2Ry) " Jp M 2 2R o

1 1 +RoX +R1Y
_ e_dz (_1 _ e e >

YR, 2YR, + 2RsY + 2R Y%
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3.3 Double layer

We put a double coated blade in a gas detection volume. A blade consists of a substrate holding
two converter layers, one in back-scattering mode and one in transmission mode.

Starting from the analytical formulae derived in Section 3.2 and [4] we are going to derive
properties that can help to optimize the efficiency in the case of a monochromatic neutron beam
and in the case of a distribution of neutron wavelengths. E.g. since the sputtering technique [37]
coats each side of each substrate with the same amount of converter material, one can wonder
if this is optimal or if there exists a different optimal thickness for each side of the substrate
to increase the neutron detection efficiency. The questions are: which are the two coatings
thicknesses that maximize the efficiency of the blade for a given set of parameters (6, A, ...)?
And in the case the neutron beam is not monochromatic but it is a distribution of wavelength?
By denoting with dpg the thickness of the coating for the back-scattering layer and with dp the
transmission layer thickness, the efficiency of a blade is:

e(dps,dr) = eps (dps) + e 985 . e (dy) (3.17)

where epgs (dps) and er (dr) are the efficiencies for a single coating calculated as shown in
Section 3.2. The relation Ve(dgg, dr) = 0 determines the two optimal layer thicknesses.

In order to keep calculations simple, we consider only two neutron capture fragments yielded by
the reaction. This approximation will not affect the meaning of the conclusion. In the case of
6Li Equation 3.17 is exact, for 1B the expression 3.17 should ideally be replaced by:

e(dps, dr) = 0.94- (3 (dps) + e 7905 - 4% (dr) ) +0.06 (3% (dps) + =105 - 4 (dr) )
where €794 means the efficiency calculated for the 94% branching ratio reaction with the right
effective particle ranges. We will limit us to the 94% contribution as if it were 100%. As already
defined in Section 3.2, R; and Ry, with (R < Rj), are the two ranges of the two neutron capture
fragments. Those regions, delimited by the particle ranges, in the £(dpg, dr) plot, are marked by
the blue lines in the Figures 3.7 and 3.8. In case of 1°B,C (p = 2.24g/cm?), which is the converter
used in [23], the two 94% branching ratio reaction particle ranges are R; = 3 um (a-particle)
and Ry = 1.3 um ("Li), when a 100 KeV energy threshold is applied (as defined the minimum
detectable energy in [4]). If one would like to use pure 9B of density p = 2.17g/cm?, the two
94% branching ratio reaction particle ranges are Ry = 3.2 um (a-particle) and Ry = 1.6 um
("Li), when the same energy threshold is applied. We will take 1°B4C as the coating material
in our examples.

As epg (d) and e7 (d) have different analytical expressions according to whether d < Ry < Ry,
Ry < d < Ry or Ry < R; < d we need to consider 9 regions to calculate Ve(dpg,dr) as
shown in Figure 3.6. If we were to include the four different reaction fragments we would have
to consider 25 domain partitions (see Figure 3.6). We will see later that the most important
regions, concerning the optimization process are the regions square 11 (where dps < Ry < R
and dr < Ry < Ry) and square 22 (where Ry < dp < Ry, Re < dps < Ry).

In order to consider a non-orthogonal incidence of neutrons on the layers, it is sufficient to

replace ¥ with ﬁ, where 6 is the angle between the neutron beam and the layer surface (see

Figure 3.1). This is valid for both the single blade case and for a multi-layer detector. The
demonstration was derived in Section 3.2.
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Figure 3.6: Domain for the blade efficiency function. The domain is divided into 9 partitions according to
the neutron capture fragments ranges. In red and blue are the domain partition where the efficiency directional
derivative along the unity vector 4 is respectively always positive or always negative. The red dotted line represents
the case when the substrate effect is not negligible and the maximum efficiency can not be attained on the domain
bisector.

3.3.1 Monochromatic double layer optimization

In the domain region called square 11 the efficiency turns out to be:

Ell(dBS,dT) = (]_ — ﬁ — ﬁ) (]. — e_EdBS) + dBS . (ﬁ + ﬁ) e_ZdBS+

—5d 1 1 —xd 1 1 _
+e =0Ps ((1 tovg t+ 2232) (1 —¢€ T) - (ﬁ + %) de) =

—A. (1 _ e—ﬁst) +dps-C - e~ 2dBs | o—Xdps (B . (1 — e~ dT) —-C- dT)
(3.18)
where we have called:
1 1
A= (1 T 2R, 2ZR2>
B:<1+ L ) (3.19)
2YR;  2YXR>

1 1
C=(— 4+ -
<2R1 2R2)
From Equation 3.19, we obtain the useful relations: ¥ (A — B) = —2C, ¥A = ¥ — C and
Y¥B =%+ C. By calculating Veq1(dpgs,dr) = 0, we obtain the result that dgs = dp and

1 c
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We repeat the procedure for the square 22 in which the efficiency is:

_ 1 1 e~ > e~ >dBs 1 dps _Ydps
e22(dps; dr) _(1_22R1 _22R2>+ s~ 2 U sm—E) te :
|l = —Xdr _1 _1 1 1 _dl eiZ(dT7R2) _
( e <1 +oosp T QERQ) +3 (1 + 5w Rl) + oy ) T (3.21)
— ﬂ e_EdBS . L dlj 7EdBS' :
=A+ 5w — L =spm =% ) te

—%d 1 1 d —3(dp-Ra)
'<—B’6 T+§<1+27}21_R7T1)+6227R2)

We obtain again dpg = dr and

1 Ry 1
dBSZdT:—E'ln <]%1 <2RQEB—€+2R2)> (322)

Naturally each result of Equations 3.20 and 3.22 is useful only if it gives a value that falls inside
the region it has been calculated for.

The points defined by Equations 3.20 and 3.22 define a mazimum of the efficiency function in
the regions either square 11 or square 22 because the Hessian matrix in those points has a

.. . 2. . . .
itivi rminant an is n ive. i monstr re are no extrem
ositive dete atada‘;’lf S negative It is easy to demonstrate there are no extreme
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d

Figure 3.7: Efficiency plot for a double coated substrate with '°B4C at § = 90° incidence at 1.8A (left) and
20A (right).

points outside the domain regions where either dgg > Ry or dr > Ry, i.e. square jk with j =3
or k = 3 or both. This outcome is also intuitive. In back-scattering mode when the converter
thickness becomes thicker than the longest particle range (R;) there is no gain in efficiency by
adding more converter material. In the transmission case, increasing the thickness above R; will
add material that can only absorb neutrons without any particle escaping.

For the cases of squares 12 and 21, we obtain that Ve(dpg,dr) = 0 has no solution; thus the
efficiency maximum can never fall in these domain regions.

In Figures 3.7 and 3.8 the efficiency for four different cases are plotted. The red circle identifies
the point of maximum efficiency calculated by using Equations 3.20 or 3.22; it stands out
immediately that even though the efficiency function is not symmetric relatively to the domain
bisector (drawn in black) the maximum nevertheless always lies on it.
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Figure 3.8: Efficiency plot for a double coated substrate with '°B4C at § = 10° incidence at 1.8A (left) and
20A (right).

This is a very important result because the sputtering deposition method [37] coats
both sides of the substrate with the same thickness of converter material and it is
also suited to make optimized blades.

3.3.2 Effect of the substrate

If we consider the neutron loss due to the substrate, the Equation 3.17 has to be modified as
follows:

E(st, dT) = EBS (st)—i-e_ES“b'dS“b -e_z'dBS ET (dT) = €RBS <d35>+5<)\)-6_2d35 “ET (dT> (3.23)

where Y45 and dgp are the macroscopic cross-section and the thickness of the substrate.

If we optimize the layer thicknesses, we find the same result of Equations 3.20 and 3.22 for the
transmission layer thickness dp but, on the other hand, the back-scattering layer thickness does
not equal the transmission layer thickness anymore. It becomes:

5-(1=68)+d-dr for square 11
dps =4 R1-(1—20)4+6- (1 + %) ~dp for square 21 (3.24)
Ri-(1—=906)+0-dp for square 22

The maximum efficiency can now also lie in square 21 but not in square 12, because § € [0, 1].
The dotted line in squares 11, 21 and 22, in Figure 3.6, are Equations 3.24. The slope of the
line in squares 11 and 22 is equal to 6(A) < 1. The maximum efficiency, when d(\) is different
from 1, now lies on the dotted lines right above the optimum without substrate effect.

From Equation 3.24 we can observe that when ¢ is close to zero, i.e. the substrate is very opaque
to neutrons, the thickness of the back-scattering layer tends to the value R;. On the other hand,
when ¢ is close to one, dpg tends to dp. The factor d(A) is usually very close to one for many
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materials that serve as substrate. We define the relative variation between dgg and dr as:

—6)ldr— L
(=0 ldr—g| for square 11

dr — dps

dr
Ay = . _ )(1+5+5%).dT—Rl(1—25))

(3.25)

for square 21

d
Wl#f for square 22
Still considering the '°B neutron capture reaction for the 94% branching ratio, we list in Table
3.1 the values for §(\) and A4 for a 0.5mm and 3mm thick Aluminium substrate of density
p = 2.7g/cm? at 1.8A. In case the substrate is inclined under an angle of 10° a substrate of
0.5 mm looks like a substrate of about 3 mm. We consider a neutron to be lost when it is either

scattered or absorbed, therefore, the cross-section used [10] is: o4 = 0%5*(A) + o557 = 0.2 b(at
1.8A)+1.5b = 1.70.

deup(mm) | 6 (1.8A) | Ay (1.8A)
0.5 0.995 0.0004
3 0.970 0.0026

Table 3.1: Neutron loss factor § for an Aluminium substrate and percentage difference between the two coating
thicknesses held by the substrate for 1.8A.

Even though the substrate effect can be neglected in most cases when dealing with a small
amount of blades, its effect in a multi-layer detector can strongly differ from the results obtained
for the ideal case of completely transparent substrate. A further step is to take its effect into
account.

3.3.3 Double layer for a distribution of neutron wavelengths

The result of having the same optimal coating thickness for each side of a blade has been
demonstrated for monochromatic neutrons. We want to prove it now for a more general case
when the neutron beam is a distribution of wavelengths and when the substrate effect can be
neglected (0(A) =~ 1).
We will prove a property that will turn out to be useful. We will show that the directional
derivative of e(dpg,dr), when descending along the unit vector @ = % (1,—1), is positive up
to the bisector dgg = dr and it changes sign only there. This vector identifies the orthogonal
direction to the bisector (see Figure 3.6).
In the square 11:

Ccy

Dge(dps,dr) =@ x Ve(dps,dr) = 7 e 85 (dpg — dr) (3.26)

In the square 22:
by

2V2R,

which are both positive above the bisector and negative below. In the other domain regions the
demonstration is equivalent. E.g. in the square 12:
) _dps  dgs dT)

Daeldps, dp) = ———— . ¢~Sdss (1 _ 4BS _0Bs 0T
e(dps,dr) >3 e ( o R1+R1

Daé(dgs, dT) = . e~ >dBs (dBS — dT) (3.27)

(3.28)
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which is strictly negative in the square 12 where dpg < R2 < R; and Re < dr < R; except on
the bisector where dgg = dr = Rs. The following theorem is therefore proved.

Theorem 3.3.1 The efficiency function defined by the Equation 3.17 is strictly monotone in
the two half-domains identified by the bisector dgs = dr (see Figure 3.6).

In a general instrument design one can be interested in having a detector response for a whole
range of A. An elastic instrument can work a certain time at one wavelength and another
time at another wavelength. In a Time-Of-Flight instrument one can be interested in having a
sensitivity to neutrons of a certain energy range including or excluding the elastic peak. One can
define a normalized weight function w (), such as f0+°° w (A\) d\ = 1, that signifies how much
that neutron wavelength is important compared to others. I.e. the price we want to spend in
a neutron scattering instrument to be able to detect a neutron energy with respect to an other
one. We can also consider an incident beam of neutrons, whose wavelength distribution is w (\),
and we want to maximize the efficiency given this distribution.

The efficiency for a blade exposed to a neutron flux which shows this distribution is:

+oo
culdps. dr) = / w () e(dps, dr, A) dA (3.20)
0
where £(dpg, dr, A) is the efficiency in Equation 3.17.

In order to optimize the efficiency defined by the Equation 3.29, its gradient relative to dgg and
dr has to be calculated:

+00 +oo
Vew(dss,dr) = V / w (N e(dps, dr, A) dA = / w(N) Veldps, dr, ) dA  (3.30)
0 0

Both gradient components have to cancel out ( 6?1555 = gif; = 0), this leads to Dye,, = 0. E.g.

in square 11: f0+°° w (X) (785 (dp — dpg) CX) dX = 0. As a result, in order for the efficiency
to attain a maximum, necessarily (but not sufficiently), its directional derivative along the unity
vector 4 = % (1,-1):

+o0
Dacw(dps, dr) = / w () Dac(dps = dy, dp, ) dA (3.31)
0

has to be zero. More explicitly, the condition Ve,, = 0 also implies that @ - Ve, = Dye,, = 0.
For a general family of functions f(dpg, dr, \) for which the maximum always lies on the domain
bisector it is not true that the function defined by their positively weighted linear combination
must have the maximum on dpg = dr, because in general V f(dpg,dr, ) can be positive, null
or negative, thus there are many ways to accomplish V f,,(dps,dr) = 0. However, thanks to
Theorem 3.3.1, Dse,, = 0 is satisfied only on the bisector. Below the bisector, Dse,, is always
negative, as it is a positively weighted integral of strictly negative values; similarly, above the
bisector, D&, is always positive. The only place where it can be zero, is on the bisector. Hence,
the maximum of ¢, can only be attained on the bisector.

The gradient can hence be replaced by % and the function maximum has to be searched on
the bisector, therefore:

+o0 o
V&w(st, dT) = / w ()\) 87€(ng = dT, dT, )\) d\ (332)
0 T
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In the end the same layer thickness for both sides of a blade has to be chosen in
order to maximize its efficiency, even if it is exposed to neutrons belonging to a
general wavelength distribution w ().

Equations for the optimal thickness (like in the case of a single wavelength, Equations 3.20
and 3.22) can be obtained from Equation 3.32 once a neutron wavelength distribution has been
established. At first %E(d]gg = dr,dr,\) has to be calculated, furthermore it has to be
integrated over d\ before searching for its solutions.

The integration over A can be alternatively executed in the variable Y; indeed X is just a
linear function in A because o is proportional to A in the thermal neutron region. Moreover,
as indicated previously, X is also a function of # and this is the only appearance of 6 in the
efficiency function. Hence, we can just as well consider a weighting in A and 6 which
results in just a weighting function over Y. In other words, all the results that have been
derived for a wavelength distribution also hold for an angular distribution or both.

Flat neutron wavelength distribution example
As a simple example we take a flat distribution between two wavelengths A\; and Ao defined as

follows:
1

\) = 3.33
W)= (3.33)
In square 11 we obtain:
0 —%d —3d
% c(dps = dr,dr, \) = 2e~ 54 (BE@ T c) (3.34)
odrp
We call 1 = X(A1) and X = X(A2). We recall that A and B are function of ().
1 Y29
Vew(dps,dr) = ————— ———c¢(dps = dp,dp, %) d¥X =
ew(dps, dr) M0a =) Js, 9d,c (dBs = drdr, %)
9 (3.35)
1 |:622dT <2C Sdy o 1 >:| 2 0
= e — — —_— =
(X9 —X%4) dr 2dr ) |5,
Where the relation BY, = ¥ 4 C and X (A — B) = —2C were used.
In the same way the solution in square 22 can be determined.
) etXR2 1
——¢c(dps = dr,dr, \) = e 24 [ e7¥ (2BY — - = 3.36
8dT6( Bs =dr,dr,\) =e (6 Ry i (3.36)
By integrating we finally obtain:
1 e—25dr [ AXdr 1 dp et SR T2
VE’w d 7d = - C - E - - = O
[ss, dr) = 5y { dr < R 2dr Ry (Ry — sz)>Ll
(3.37)

The solution of Equations 3.35 and 3.37 gives the optimum value for the thickness of the two
converter layers in the region of the domain called square 11 and square 22 respectively for
a uniform neutron wavelength distribution between A; and Ao. E.g. for a uniform neutron
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Figure 3.9: Efficiency plot for a double coated substrate with 0B,C at 6 = 10° for a flat distribution of neutron
wavelengths between 1A and 20A (left). Efficiency on the bisector which attains its maximum at 1 um (right).

wavelength distribution between 1A and 20A the optimal thickness of coatings on both sides
of the blade inclined at 10° is 1 um (see Figure 3.9).

Note that in Figure 3.9 the asymptotic efficiency for thick layers is not much lower than the
optimum at 1m. Thus at an incidence angle of 10° between 1A and 20A, a very thick piece
of 1°B4C is almost as efficient as a double layer.
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3.4 The multi-layer detector design

123456 - N

1 2 0 == Np
n_’I l I . I I
\/

substrate coatings

Figure 3.10: A multi-layer detector schematic. N}, blades, holding N = 2 - N, converters layers, are placed in
cascade alternate with detection regions.

uncoated Al-blacles coatedblades coatedblades

neutrons

Figure 3.11: The Multi-Grid detector [23]. 15 blades coated with °B4C, are placed in cascade alternate with
gaseous detection regions.

In a detector like that presented in [23] (see Figure 3.11), [38], or in [25], all the substrates have
the same coating thickness. The actual working principle of the Multi-Grid will be explained in
details in Chapter 5.

One can ask if it is possible to optimize the coating thicknesses for each layer individually in
order to gain in efficiency. This is also applicable to neutron detectors which use solid converters
coupled with GEMs [31].

In Section 3.3 we demonstrated that, for a single substrate holding two converter layers (blade),
efficiency is optimized when both layers have the same thickness such as naturally happens with
a sputtering technique. In general, this property is not preserved in a multi-layer detector of
which we can see the sketch in Figure 3.10. In a multi-layer detector, composed by N layers or
Ny = % blades, the efficiency can be written as follows:

Ny (k—1)
(%Y (dpsj+dry))-S
etot(No) = €1(dps1,dr1) + Y _ e1(dpsk, dry) - € (235" oy ars)) (3.38)
k=2
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Where €1(dpsk, dri) represents the efficiency for a single blade already defined by the Equation
3.17; dpgsk and dpy, are the coating thicknesses of the k — th blade.

If the detector is assembled with blades with all coatings of the same thickness, i.e. dpgip =
dry =d, Yk =1,2,..., Ny, Equation 3.38 can be simplified as follows:

No (k1) No —2d%N,
—2(XiVd)-s —2(k—1)d- 1—e
etot(Ny) = e1(d)+ ) _e1(d)-e (S50 a)= _ er(d)- Y e k¥ = e1(d) g (3:39)
k=2 k=1
Therefore, d‘zjt = 0 optimizes the efficiency for one single neutron wavelength for a detector
containing blades of same coating thicknesses:
detor  €1(d) - 28 —2dSN,  _—2d% —2d%(Np+1) dey 1 —e 22N _
dd (1 — e~2d%)? (Ne — —(1=Ny)e )+w' [ —coaz

(3.40)
where ¢1(d) and Cfiidl are expressed in Equations 3.18 and 3.21 where we impose dpg = dr = d
and Equations 3.34 and 3.36 respectively if we are calculating in the Square 11 or Square 22.
From Equation 3.40, we notice that the maximum efficiency for a multi-layer detector made up
of identical coating thickness blades, depends explicitly on N,. This means that the optimal
coating thickness for a multi-layer detector depends on how many blades it is composed of.
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Figure 3.12: Multi-layer detectors containing blades of same coating thickness optimized for 1.8A (left) and
for 10A (right).

Figure 3.12 shows the optimization of several multi-layer detectors containing 1, 5, 10, 15, 20
blades, done for both 1.8A and for 10A. Note that the longer the neutron wavelength, the
thinner is the thickness of the layers has to be chosen.

In Figure 3.13 the efficiencies and the coating thicknesses, given for each blade, of the five multi-
layer detectors already described are plotted as a function of the neutron wavelength. There,
each detector is optimized for each neutron wavelength and consequently the coating thickness
changes with X. The values at 1.8A and at 10A correspond to the maxima already shown in
Figure 3.12.

We consider now a neutron wavelength distribution defined by w () (with f0+oo w(A) d\=1)
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Figure 3.13: Efficiency (left) and optimal thickness of the identical blades (right) as a function of neutron
wavelength for a 2, 10, 20, 30 and 40 layers multi-layer detector. Solid lines indicate the optimized efficiency, for
each wavelength, for a detector made up for blades of identical thicknesses.

as in Section 3.3.3 for a single blade. In this case the efficiency for such a detector can be written
as follows:

+00 +o0 1— G—QdE(A)Nb
£ (Ny, d) = /0 w () 10t (N, A) dA = /O W) a3

where 1(d, \) is Equation 3.18. We considered the optimal efficiency of a multi-layer detector
with all-identical layer thicknesses. If we relax this constraint (that is, if we allow different layers
to have different thicknesses) we can in principle achieve still higher efficiencies.

If individual layer thicknesses have to be optimized for the maximum efficiency for a multi-layer
detector, the approach to follow is different if we want to optimize for a single neutron wavelength
or for a wavelength distribution. Indeed, for a single lambda, we can start by optimizing the
last layer and, hereafter, we go backward up to the first layer. If the wavelength if fixed, we
are requiring the layer we are considering to be at its maximum efficiency. On the other hand,
if we deal with a distribution of lambda, the previous layers to the one we are optimizing will
change the distribution it is receiving. Hence the optimization process has to take into account
the whole detector at once. The Multi-Grid detector optimization for a given wavelength and
for a distribution will be elucidated.

3.4.1 Monochromatic multi-layer detector optimization

As already mentioned the way to optimize the layers in multi-layer detector for a given neutron
wavelength is to maximize the last layer efficiency for this wavelength. Once that is done, we
can go backward until the first layer. Each time we find the optimal thickness of a layer we fix
it and we move on to optimize the previous one.
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By expanding Equation 3.38 we obtain:

etot(Ny) = 1(dps1, dr1) + e @BS1HITOE Lo (dpgy dro)+
+ e~ Bsi+dr)Y | —(dpsa+dr2)¥ e1(dpss, drs) + . ..

—(d dr1)2 —(d dro)X —(d _1n+d )X
oo g e~ @Bs1Hdr)T | —(dpsatdr)T L o~ (dBs(n,—1)Tdr(v,-1) -e1(dBsn,, drn,) =

= e1(dps1, dr1) + ¢~ @psrtar)®. [gl(dBS% drs) 4 e (@Bs2Hdr2)x,
- ley (d3537 dTB) + e—(st3+dT3)Z ..... [ - [El(dBS(Nb—l)a dT(Nb—l))+

e IBsmy - TIrw,-0) gy (dpgy,, dTNb)i| B }H

(3.42)
Note that the variable dy, appears only once, in the efficiency function €1(dpsn,, drn,). In the
case of a single wavelength, its optimal value can be determined without taking the other layers
into account. We can optimize the detector starting from the last blade and going backward
till the first. Any change on the previous blades will only affect the number of neutrons that
reach the last blade, and we require the last blade to be as efficient as possible for that kind of
neutron. As the layer thickness optimum of each blade does not depend on the previous ones,
the system of equations is triangular.
This will be not true for the wavelength distribution case and it will be clarified in Section 3.4.3.
Intuitively, for a distribution, the gradient of Equation 3.42 is in addition integrated over A, thus
all the blades have to be taken into account simultaneously in the optimization process.
Looking carefully into the Equation 3.42, we can see that the optimization process involves each
time a function of structure:

f €1 (dBSk7 di) + e~ (dpsktdri)® apr1 if K< Ny (3 43)

k= . .
e1(dBsk, drk) if k=N,

In fact, if the k—th layer it is going to be optimized, all the following layers up to N = 2- N have

been already optimized, hence a4 1 is a fixed number and represents the cumulative efficiency of

the detector from the blade (k + 1) —th to the end. As a result, the optimization is an iterative

process where a function like 3.43 has to be optimized each time, taking into account that a1

is always a fixed number and not a function of the thicknesses to be determined, because their

optimal values have been already found.

The two gradient components of Equation 3.43 are:

P v o~ (dpsktdri)S :
e _ angk51(dBSkadi) Ne(sitdri)® . o ?f k< N (3.44)
adBSlc mgl(dBSka di) if k= Nb
) v o (dpsitdr)S ,
M _ @ﬁwBSk,di) SeUasitdr)E . o) ?f k < Ny (3.45)
ddry aarE1(dBsk, drk) if k=N

Note that the only difference between Equation 3.44 and Equation 3.45 is the partial derivative
variable.
Thus, the condition V fi = 0 turns out to be:

{(%J(chgl(dBSkydi) = ﬁ&(dBSk,di) = Dac1(dpsk,dre) =0 if k< Ny

ﬁgl(dBSkydi) = WBM e1(dpsk, dryr) =0 if k=N,

(3.46)

76



The condition in Equation 3.46 is exactly what was demonstrated in Section 3.3. The Theorem
3.3.1 implies that the directional derivative along the unity vector o = % (1, —1) of the function
e1(dpsk, dri) can only be zero on the bisector domain, in the case of k¥ < N,. Hence, the
maximum efficiency can only be found, again, on the domain bisector. On the other hand, in
the case of kK = N, the Equation 3.46 requires the gradient of the efficiency function to be zero,
property which was also demonstrated in Section 3.3 (Equations 3.20 and 3.22) for these kind
of functions.

As a result, even in a Multi-Grid like detector, that is optimized for a given neutron
wavelength with variable layer thicknesses, it turns out that all the blades have to
hold two layers of the same thickness. On the other hand, thicknesses of different
blades can be distinct.

Thanks to the latter derived property, we can denote with di the common thickness of the two
layers held by the k — th blade (dpsy = drr = di). The detector efficiency function can be
redraft as follows:

Etot(N, CZ) = 81(d1) + e 2hE 61(d2) + e 2hE  o—2d2X 81(d3) + ...
. + eileE . 672d22 ..... 6_2dNb*12 . El(dNb) =

=e1(dy) + e 2h>. [é_l(dQ) 42T {61(d3) 42T,

(3.47)
e, -n) + e 2y ay,)] ]| =
N (k=1) ;.
=g (dl) + Z gl(dk) . 6_2(23':1 dJ)'Z
k=2
where d is the vector of components dj, for k = 1,2,..., N;,. The condition Vf; = 0 can be

simplified by searching for the maximum on the domain bisector, thus Equations 3.44 and 3.45
turns into:

d —2di 2 :
dfk:{ mél(dk)*Qze R Qg1 1fki<Nb }:0 (348)

ddj, a-e1(di) if k=N,

We recognize into the expression ﬁsl(dk) the derivative in Equations 3.34 and 3.36 that have
already been calculated according to the region domain in Section 3.3. In the domain region
called square 11 as defined in Section 3.3, we obtain:

dfy, 27 % (B = agyq1) Be @ - C) if k< N, (3.49)
ddy, | 2~ (BSe ¥4 — C) if k=N '
And in the square 22:
& e~Zdk (¢=Sdk (2(B — ayi1) T — ezﬁa) _ 1%) if k<N (350)
ddy, e~ Xdi (o=2di (9pBy) _ 6??) — R%) if k=N, '

Where we recall B = (1 + ﬁ + ﬁ) and C' = (ﬁ + ﬁ)
Equations 3.49 and 3.50 have solutions similar to Equations 3.20 and 3.22 apart from the fact
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that they are a recursive form with ag41. In the square 11 the solution is:

1 c :
o[ ((B_aka) if k<N, -
k - 1 C . ( : )
—5 - In(55) if k=N,
In the square 22:
1 R 1 .
vt _ —5 - In }Tf 2RoS(B—ap1)—e o3 >> if k<N .
L 11y (B2 1 k=N (3.52)
s R 2R22376+2R2)> =N

As already mentioned in Section 3.3, these solutions are valid if the result they return is included
in the domain region they are defined on.

The optimization method is a recursive procedure that employs the Equations 3.51 and 3.52;
we start from the last blade, and we find its optimal thickness d;’f;;, then we calculate oy, as
the last layer efficiency using the optimal thickness found. Now we can calculate d%’:_l from
Equations 3.51 or 3.52 and ay,—1 and so on until the first layer. By definition a1 is the

detector cumulative efficiency starting from the k& + 1 blade to the end (Ny); hence:

e1(dir1) + e 2H1> ey (dyyo) + €720 22 gy (dyy) +

coo e 201X o 2dptaX L e 2N, —1 e1(dn,) =
Qg1 = —2(Sf5 a) 8 '
— El(dzzfl) + fo\ﬁk+2 €1 (d?pt> .e <Zy:k+1 j ) if k+1< N,
sl(dZitl) if k+1=N,

(3.53)

Example of application

We analyze a detector composed of 30 successive converter layers (15 blades) crossed by the
neutron beam at 90° (like in Figure 3.10). We consider 1YB4C (p = 2.24 g/cm?) as converter; we
neglect again the 6% branching ratio of the 1B neutron capture reaction. A 100 KeV energy
threshold is applied and the effective particle range turns out to be Ry = 3 um («-particle) and
Ro = 1.3 um ("Li), for the 94% branching ratio, which we take to be 100%.

Figures 3.14 and 3.15 show the optimization result for this multi-layer detector; for a monochro-
matic neutron beam of 1.8A and 10A. On the left, the optimal thickness given by either Equa-
tions 3.51 or 3.52 is plotted in red for each blade; for comparison we use two similar detectors
suitable for short and for long wavelengths in which the blades are holding 1.2 ym and 0.5 um
thick coatings. Those values have been obtained by optimizing the Equation 3.39, the efficiency
for a detector holding 15 blades of all equal thicknesses for 1.8A and for 10A. The detector with
1.2 um coatings is very close to the one presented in [23]. On the right, in Figures 3.14 and 3.15,
the efficiency contribution of each blade is plotted, again for an optimized detector for 1.8A and
for an optimization done for 10A. The expression of the efficiency as a function of the detector
depth is given by Equation 3.47 for each blade by fixing the index k.

The whole detector efficiency is given in the end by summing all the blades’ contributions. The
whole detector efficiency is displayed in Table 3.2 for the detector of Figures 3.14 and 3.15. By
optimizing the detector for a given neutron wavelength we gain only about 2% efficiency which
is equivalent to add a few more layers to the detectors optimized to hold identical blades.

78



thickness (um)

Figure 3.14: Thicknesses of the blades coatings (left) and their efficiency contribution (right), for a detector
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Figure 3.15: Thicknesses of the blades coatings (left) and their efficiency contribution (right), for a detector
made up of 15 identical coating thickness blades of 1.2 um, 0.5 wm and for a detector optimized for 10A.

wavelength (A) [ opt. detect. | 0.5 um detect. | 1.2 um detect.
1.8 0.525 0.388 0.510
10 0.858 0.831 0.671

Table 3.2: Efficiency for an optimized multi-layer detector and for a detector which contains 15 identical blades
of 1.2 ym and 0.5 um.

In Figure 3.16 is shown the efficiency resulting from the monochromatic optimization process of
the individual blade coatings and the optimization for a detector containing all identical blades
(which thicknesses are shown on the right for each neutron wavelength), as already shown in
Figure 3.12. Neutrons hit the layers at 90° and five cases have been taken into account with
an increasing number of layers. We notice that about for all neutron wavelengths the gain in
optimizing the detector with different blades, let us to gain few percent in efficiency. The values
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in Table 3.2 are the values on the pink solid curve and the dashed one at 1.8A and at 10A in
Figure 3.16.
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Figure 3.16: Efficiency (left) and optimal thickness of the identical blades (right) as a function of neutron
wavelength for a 2, 10, 20, 30 and 40 layers multi-layer detector. Solid lines indicate the optimized efficiency,
for each wavelength, for a detector made up for blades of identical thicknesses; the dashed one indicate the
monochromatic optimization using different thicknesses inside the detector.

Still referring to Figure 3.16, we notice that a detector with 15 individually optimized blades
(30 layers) has about the same efficiency (above 10A) as a detector optimized to contain 20
blades (40 layers) of equal thickness. On the other hand for short wavelengths the difference is
not very significant. Moreover, there is also a trade off between the constraints of the detector
construction and the complexity of the blade production.

3.4.2 Effect of the substrate in a multi-layer detector

We are going to add the substrate effect in a multi-layer detector; as we have already treated
the case for the single blade in Section 3.3.2. For simplicity we neglect the deviation from the
rule dgs = dpr due to the substrate for each single blade. Hence we can start from Equation
3.47, where each blade has the same coating thickness for its back-scattering and transmission
layer. The latter in the presence of the substrate becomes:

- (k—1)

Ny
BN, d) = () + 3 e (dy) - e DB (T ) (3.54)
k=2

where £5%°(d) is given by Equation 3.23. In the case of a detector made up of identical coating

thickness blades we wrote the efficiency as shown in Equation 3.39 and considering the substrate
it becomes:

Nb ]_ — 6_(2d2+dsubzsub)Nb
gfgtb(Nb) _ Eiub(d) . Ze—(k—1)dsub~23ub€—2(k—1)d-2 _ ETUb(d) .
k=1

1 — e_(2d2+dsubzsub) (355)

sub

where, again, £7“°(d) is given by Equation 3.23.
As an example we take an Aluminium substrate (density p = 2.7g/cm?3) of 0.5mm for each
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blade. We consider a neutron to be lost when it is either scattered or absorbed, therefore, the
cross-section used is: o4 = 0%*(\) + 055 = 0.2b(at 1.8A)+1.5b = 1.7b. Absorption cross-
sections at others neutron wavelengths have been extrapolated linearly in A.

Figure 3.17 shows the five detector taken as example in Figure 3.16 when the detectors are made
up for blades of identical thicknesses considering or not the substrate effect. The optimization is
made for each neutron wavelength separately. Solid lines represent are the same as in Figure 3.16,
dashed-dotted lines are made for the monochromatic optimization considering the substrate, i.e.
optimizing Equation 3.55. On the right in Figure 3.17 is shown the optimal thickness of the
identical blades contained in the detector. The effect of the substrate turns out to change
slightly the optimal coating thickness in order to attain the maximum efficiency. Furthermore,
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Figure 3.17: Efficiency (left) and optimal thickness of the identical blades (right) as a function of neutron
wavelength for a 2, 10, 20, 30 and 40 layers multi-layer detector. Solid lines indicate the optimized efficiency, for
each wavelength, for a detector made up for blades of identical thicknesses; the dashed-dotted ones indicate the
same optimization considering the substrate.

the higher the number of layers, the bigger is the deviation between the efficiencies taking into
account or not the effect of the substrate. At long wavelengths, the difference between a detector
composed of 30 or 40 layers becomes smaller taking into account the substrate.

Moreover, the reasoning explained in Section 3.4.1, through which the efficiency of a multi-layer
detector can be optimized by changing the individual blade coating thicknesses, can be applied
also in presence of the substrate effect. We take a 30-layer detector that we optimize for 4
different cases. In Figure 3.18 the solid line represents the 30-layer detector optimized when it
contains identical coating thickness blades without taking the substrate into account, as was the
case of solid line in Figures 3.16 or 3.17. The dashed line represents the optimization done by
changing the coating thicknesses without substrate effect, as dashed line in Figure 3.16. The
dashed-dotted line, as in Figure 3.17, represents the detector efficiency when it is optimized
considering the substrate and it contains identical blades. The dotted line represents a detector
optimized taking the substrate effect into account allowing the coating thicknesses to change
between different blades.

The substrate effect is to decrease the actual detector efficiency mainly at higher wavelengths.
We can observe from Figure 3.18 that the optimization process helps to gain efficiency even
when substrate plays a role.
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Figure 3.18: Efficiency as a function of neutron wavelength for a 30-layer detector. Solid lines indicate the
optimized efficiency, for each wavelength, for a detector made up for blades of identical thicknesses. The dashed
one indicates the monochromatic optimization using different thicknesses inside the detector. Dashed-dotted and
dotted lines are the same as solid and dashed lines respectively when the substrate is cloistered.

3.4.3 Multi-layer detector optimization for a distribution of neutron wave-
lengths

Let’s consider now a multi-layer detector operating on a neutron wavelength distribution defined
by w (A) and normalized ( 0+°° w (A) d\ = 1). The efficiency for such a detector can be written

as follows:

€ (Ny, dps, dr) = /0 w (N £100(Ny, A) dA (3.56)

where e40¢(Np, A) is the multi-layer detector efficiency for a single neutron wavelength defined as
in Equation 3.38. The efficiency, in this case will be function of N = 2 - N, variables; which can
be denoted using the compact vectorial notation by the two vectors dpg and dr of N compo-
nents each.

The optimization problem, in the case of a neutron wavelength distribution, is the maximiza-
tion of a N-dimensional function. Any change on the previous blades will change the actual
distribution of wavelengths the last blade experiences. The neutron distribution a blade has to
be optimized for depends on all the previous blade coatings.

Therefore, the N-dimensional equation Vep), = 0 has to be solved; explicitly:

+o00 Ny . (k—1) ] ).
Va;g’;tz/o w(N 'V | erldpsi,dri) + Y e1(dps, drw) - e (Zi5 (pssar)) =) 4y (3.57)
k=2
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The k — th N-dimensional gradient component for back-scattering is:

(p—1) d i d i B>
381(53#@9 . Ep (h41) El(dBSpadTp) . (Z (dpsi+dr ))
if k=1
onstdpsiry) (D4 (dnsyvany) )=
Oetot(Np, A) oo (r-1)
T Adnen i1 (dBsitdri))-X 3.58
ddpsk -3 Z (kt1) €1 (dBsp,drp) - € ( BT ) (3.58)
if 1<k<N,
O¢1(dBsk,dTk) 7(Zy(ilfil)(d351+de))'E
~ ddpsk ©
if k=N

Equivalently we find the same expression for the k — th component of the gradient with respect
to the transmission variable; we can substitute ddgg; with ddrj, in Equation 3.58.

The condition Ve}, = 0 implies that for each £ must hold M =0 and %ﬁf’)‘) =0 at

the same time. From Equation 3.58 and the one for the transmlssion variable we finally obtain
(Vk = 1,2,...,Nb):

(3.59)

{361(3551@7@1@) 361(%@5%di) = Dae1(dpsp, dry) =0 if k< N,

O¢1(dBsk,drk) 361(d35k,di) : _
Ddpes Deby =0 if k=N,

As for the monochromatic case, the condition in Equation 3.59 is exactly what was demonstrated
in Section 3.3. The Theorem 3.3.1 implies that the directional derivative along the unity vector
i = % (1,—1) of the function &1(dpgsk,drr) can only be zero on the domain bisector, in the
case of k < Np. Hence, the maximum efficiency can only be found, again, on the bisector. On
the other hand, in the case of kK = N, the Equation 3.59 requires the gradient of the efficiency
function to be zero, property which was also demonstrated for these kind of functions in Section

3.3 (Equations 3.20 and 3.22).

In a Multi-Grid like detector, which has to be optimized for any distribution of
neutron wavelengths, all the blades have to hold two layers of the same thickness.
Naturally, thicknesses of different blades can be distinct. In this case it is not possible

to start the optimization from the last blade because the thicknesses of the previous layers will
affect the neutron wavelength distribution reaching the deeper laying blades. We have in this
case to optimize an Np-dimensional function at once. Therefore, the Np-dimensional equation
Ve, = 0 has to be solved.

Thanks to the property just derived, we can denote with dj the common thickness of the two
layers held by the k —th blade (dpsk = drgr = di). In the detector efficiency function, expressed
by Equation 3.56, we can substitute e4,t(Np, A) with its simpler expression shown in Equation
3.47.

For the optimization process the & — th component of the gradient Viep), can be replaced with
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Ocioy .

o ; because now Ny, = N

unknown, instead of NN, have to be found.

400 O2 ot 400 B No 2(Xz(k—l) d-)E
Vier, = A T d\ = dy) (dg) g=1 dA
kEtot /0 w()f)dk /0 w()c?d (51 1 +k22€1 k)
(3.60)
agé"t is an expression like Equation 3.58 provided that we impose dggr = dri Vk =1,2,..., Np.

Flnally, in order to optimize a detector for a given neutron wavelength distribution, the following
system of Nj equations in NV, unknown (dj) has to be solved:

[ _ (r=1) ;.
0w () [P 9% N e (dy) - e (T ) E] =0 if k=1

i _ (Np=1) .
f+00w ()\) le(dk) e Q(Zj:1 d]) b +

0 ody,
L VAT (3.61)
-2 ZNf(kH) e1(dy) - e 2(21’21 dl) Z} dA =0 if 1<k<N
(Np—1)
—92 - d; |-X
S w () [am(zd)e (=) ] dr =0 it k=N,

We recall that €1(d;) and X are function of A and e1(dj) is the blade efficiency defined in
Equations 3.18 and 3.21; its derivative ac(ld k)
3.36 (Section 3.3).

The system of equations 3.61 can be easily solved numerically.

Comparing this result with the one found in the monochromatic case in Section 3.4.3, where
the solution could be found iteratively starting from the last blade, we have now a system of N,
equations in Np unknown. In Section 3.4.3, the system of equations 3.48 turned out to be upper
triangular.

This is not the case for the distribution case in which the gradient of Equation 3.47 is in addition
integrated over A, thus all the blades have to be taken into account at once in the optimization
process. The optimization problem will be the maximization of a N-dimensional function.

To better understand the meaning of that, we should figure out how the optimization process
works. For a single wavelength, each layer efficiency has to maximize for that well defined
neutron energy; all the previous layers only affect the number of neutrons that can reach the
deeper blades. We require the last blade to be as efficient as possible on that kind of neutron.
On the other hand, in the case of a wavelength distribution, any change on the previous blades
will change the actual distribution the last blade experiences. There can be neutrons of a certain
energy that can not get to a layer it was optimized for. Thus, the neutron distribution a blade
has to be optimized for depends on all the previous blades coatings. In this case, the matrix
does not end up to be triangular.

was already calculated in the Equations 3.34 and

Flat neutron wavelength distribution example

We take a flat distribution w () = ﬁ between the two wavelengths A\; = 1A and Ay = 20A
as in Section 3.3 for the single blade case. In Figure 3.19 the thicknesses of each of the blade
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coatings and each blade efficiency contribution for a 30-layer detector are shown. Three detectors
are compared, the one of simplest construction is a detector holding 15 identical blades of
0.5 um coating thickness, the second is a detector optimized according to Equation 3.61 for that
specific flat distribution and the last is a detector that has been optimized for a single neutron
wavelength of 10A conforming to Equations 3.51, 3.52 and 3.53. The fact to have a contribution
of wavelengths shorter than 10A in the case of the red line makes the coating thicknesses larger
compared to the blue curve.

As a result, frontal layers are slightly more efficient for the distribution optimized detector than
for the one optimized for 10A; on the other hand, deep layers lose efficiency. Figure 3.20 shows
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Figure 3.19: Thicknesses of the blades coatings (left) and their efficiency contribution (right), for a detector
made up of 15 identical coating thickness blades of 0.5 um, for a detector optimized for the flat distribution of
wavelengths and for a detector optimized for 10A.
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Figure 3.20: Efficiency as a function of neutron wavelength (left) for a detector made up of 15 identical coating
thickness blades of 0.5 um, for a detector optimized for the flat distribution of wavelengths and for a detector
optimized for 10A. Difference between the efficiencies for a detector optimized for a flat distribution and for 10A
as a function of neutron wavelength (right).

the three detector efficiencies as a function of neutron wavelength. By comparing red and blue
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lines, of which the difference is plotted on the right plot, the optimized detector gains efficiency
on shorter wavelengths but loses on longer. Moreover, we notice that the optimization process
explained in this section let to gain at most 3.5% at short wavelengths while losing less than
1% on longer ones. The weighted efficiency over w (A) is shown in Table 3.3. We can conclude

opt. detect. | opt. detect. for 10A | 0.5 um detect.
0.796 0.793 0.764

Table 3.3: Averaged efficiency over the flat neutron wavelength distribution (1A-20A) for a detector which
contains 15 identical blades of 0.5 um, for an optimized multi-layer detector for that specific flat distribution and
for a detector optimized for 10A. (Energy threshold 100 KeV applied).

that if we are interested in optimizing a detector in a given interval of wavelengths without any
preference to any specific neutron energy; optimizing according to Equation 3.61 does not give
a big improvement in the average efficiency compared to optimizing for the neutron wavelength
distribution barycenter (about 10A).

Although the averaged efficiency for the optimized detector in the neutron wavelength range
differs from the one optimized for 10A only by 0.3% one can be interested to have a better
efficiency for shorter wavelengths rather than for longer. It is in this case that the optimization
process can play a significant role. On that purpose let’s move to the following example.

Hyperbolic neutron wavelength distribution example

We consider a hyperbolic neutron wavelength distribution between A\; = 1A and Ay = 20A.
1 1

n (k) A

This optimization aims for giving equal importance to bins on a logarithmic wavelength scale.
The barycenter of the wavelength distribution corresponds to [ ;‘1 % w (M) AdX = 6.34A.

In Figure 3.21 are shown the thicknesses of each blade coatings and the efficiency as a function of
the depth direction in the detector for a 30-layer detector. Five detectors are compared, the one
of 1.2 um coating thickness, a detector optimized according to Equation 3.61 for that specific
hyperbolic distribution, a detector that has been optimized for a single neutron wavelength of
10A, 1.8A, and the barycenter of the distribution.

w(A) = (3.62)

opt. detect. | opt. 10A | opt. 6.34A | opt. 1.8A | 1.2 um detect.
0.671 0.641 0.664 0.639 0.597

Table 3.4: Averaged efficiency over the hyperbolic distribution defined in Equation 3.62 for a detector which
contains 15 identical blades of 1.2 um, for an optimized multi-layer detector for that specific distribution and for
a detector optimized for 10A, 6.34A and for 1.8A. (Energy threshold 100 KeV applied).

By only comparing the averaged efficiencies, shown in Table 3.4, the distribution optimized
detector shows only a gain of at most about 3% with respect to the detectors optimized for the
distribution barycenter or other wavelengths. It seems that there is not a big improvement in
the detector efficiency over the full neutron energy range.

Figure 3.22 shows the five detector efficiencies as a function of wavelength and their difference on
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Figure 3.21: Thicknesses of the blades coatings (left) and their efficiency contribution (right), for a detector
made up of 15 identical coating thickness blades of 1.2 um, for a detector optimized for an hyperbolic distribution
of wavelengths and for a detector optimized for 10A, 6.34A and for for 1.8A.
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Figure 3.22: Efficiency as a function of neutron wavelength (left) for a detector made up of 15 identical coating
thickness blades of 1.2 um, for a detector optimized for an hyperbolic distribution of wavelengths and for a detector
optimized for 10A and for 1.8A. Difference between the efficiencies for a detector optimized for a flat distribution
and for 10A, 6.34A and for 1.8A as a function of neutron wavelength (right).

the right plot. By comparing the red (distribution optimized detector) and the green (barycenter
optimized detector) lines, of which the difference is plotted in green on the right plot, we notice
that the detector optimized for such a distribution gains about 4% efficiency at short wavelengths
and loses about 2% at high wavelengths. With respect to a detector conceived for higher
wavelengths (blue curve), i.e. 10A, the distribution optimized one gains about 9% at short
wavelengths and loses about 4% at high wavelengths. A detector conceived for short wavelengths,
such as the one represented by the pink line (1.8A), has an opposite behavior instead. The
distribution optimized detector gains efficiency for long wavelengths reaching about 11%.

Even if the the optimization procedure, explained in this section, shows that there is not a
notable improvement over the full range of neutron wavelength, it can lead to a significant
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efficiency improvement in certain neutron wavelength ranges. As in the case of a flat distribution,
a detector optimized for a distribution according to Equations 3.61, does not show significant
improvement in performances with respect to a detector just optimized for its barycenter.

3.5 Why Boron Carbide?

We are going to explain here why °B,C is a suitable material for neutron detection in solid
converter gaseous detectors.

A good solid converter material that can be employed in a thermal neutron detector should own
features like sufficient electrical conductivity, high neutron absorption cross-section, low density,
no toxicity and easy manipulation. We compare two neutron solid converters °B and 6Li and
their compounds °B4C and ®LiF; their characteristics are listed in Table 3.5. We list their
mass density, microscopic and macroscopic absorption cross-section 3, n = 1/ is the mean free
path, and the electrical resistivity.

A good converter material should not be too resistive because, in general, it acts as a cathode
in the gaseous detector. In order for the electric field to stay constant in time it should evacuate
the charges in a reasonable time.

While 1B, 19B,C and SLiF do not present any strong reactivity, pure ®Li reacts with water
easily. It has to be manipulated and operated in a controlled atmosphere.

Among the features listed in Table 3.5, a converter material should offer a high density to
maximize the number of neutron conversions per unit volume but, on the other hand, a low
density to let the neutron capture reaction fragments escape easily from the layer to produce
a detectable charge in the gas volume. While the microscopic absorption cross-section only
plays a role in the neutron capture process; the mass density influences both the capture and
the fragment escape processes. Hence, 3, or equivalently n, represents the capture power of
a material given its density and its absorption cross-section. The shorter 7, the higher is the
probability for a neutron to be captured. The energy the fragments own contributes to the
escape probability, i.e. in their ranges. For that purpose %Li fragments carrying 4790 KeV are
more probable to escape.

Moreover, mass density plays in the escape process. In Table 3.6 the ranges for the 1B and °Li
reaction fragments (see Table 1.70) are listed for an energy threshold of 100 KeV .

It is true that pure '°B has a slightly higher boron atom density and the fragments have
somewhat longer ranges which makes the potential efficiency of a pure °B coated detector
in principle higher. However, given that pure B is about eight orders of magnitudes more
electrically resistive than Y B4C, therefore one opted in [23] to use 1°B,C.

Because the fragments in %Li have a very long range, although 7 is shorter than the one in
SLiF, it could be a very powerful converter material but hygroscopicity makes it not a very
good candidate.

We compare now YB,C and °LiF. Ranges in LiF are longer, i.e. have higher escape efficiency:
on the contrary, it is °B,C that has a higher neutron conversion power because of its shorter
mean free path . From only these consideration it is not easy to figure out which one exhibits
the highest detection efficiency.

A qualitative parameter to evaluate the goodness of a solid neutron converter is:

YN = (R) £\ = ;ﬁ)) (3.63)
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material | p(g/cm3) | £(1/um)at 1.8A | n(um) at 1.8A | oyps(b) at 1.8A | pe(Q - m)

nat [ 0.53 3.3-1071 3030 940 1077

pure 6Li 0.46 4.4-1073 227 940 1077

nat p 2.35 1.0-1072 100 3835 106

pure 9B 2.17 5.0- 1072 20 3835 106

natp; f 2.64 441074 2273 940 1078

96% enriched S LiF 2.54 5.8-1073 172 940 1078
nat B, C 2.52 84-1073 119 3835 1073

98% enriched °B,C 2.37 4.2.1072 24 3835 1073
glass > 107

Si 1
graphite 107°
Cu 1078

Table 3.5: Physical features of common neutron thermal neutron converter. 7 = 1/3 is the mean free path a
neutron can travel across the material before being absorbed. o4ps is shown for the active nuclide; i.e. SLi or
0B, Natural compounds refer to 7.5% of 5Li and 92.5% of " Li for Lithium and 19.4% of '°B and 80.6% of ''B
for Boron.

material R(pm) R(pm)
a(2050 KeV) | 3H (2740 KeV)
pure °Li 21 132
96% enriched ®LiF 5.2 32.8
R(pm) R(pm) R(pm) R(um)
a(1470 KeV) | "Li(830 KeV) | a(1770 KeV) | "Li(1010 KeV)
pure VB 3.3 1.5 4.1 1.8
98% enriched 1°B,C 2.9 1.2 3.7 1.5

Table 3.6: Ranges of the capture reaction fragments in the material. An energy threshold of 100 KeV is applied.

where as (R) we refer to the average particle range for a given capture reaction. x is a dimen-
sionless number that takes into account both the power of a material to convert neutrons of a
given wavelength and the ease for the produced particle to escape. The higher x, the better is
the converter. y-values are tabulated in Table 3.7.

material | (R)(um) | xat 1.8A
pure L; 76.5 0.34
pure °B 2.43 0.12
96% enriched $LiF 19 0.11
98% enriched °B,C 2.08 0.09

Table 3.7: Average range for different neutron converters and the corresponding x calculated for 1.8A. An
energy threshold of 100 KeV is applied.

Figure 3.23 shows the detection efficiency for a single converter layer either in transmission mode

or in back-scattering plotted as a function of the film thickness. We chose 1.8A as neutron wave-
length and an angle of incidence of neutrons of 10°. An energy threshold of 100 KeV is applied.
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Figure 3.23: Comparison between the efficiencies of pure '°B, enriched °B,C, pure °Li and enriched ®LiF
plotted as a function of the layer thickness. Both efficiencies at 1.8A for a single layer in transmission mode and
in back-scattering mode at 10° incidence angle are plotted. An energy threshold of 100 KeV is applied.

0B,C and SLiF, in back-scattering mode, attain their maximum efficiency, about 21% and 24%
respectively, for a film of thickness d = 3 um and d = 30 um respectively. Even SLiF shows a
slightly higher efficiency, the fabrication of layer of 30 um can be an issue in terms of costs and
deposition time unless a single material block is used.
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Figure 3.24: Comparison between the efficiencies of pure '°B, enriched '°B,C, pure ®Li and enriched ®LiF’
plotted as a function of the single layer thickness. Efficiencies are calculated at 1.8A for a multi-layer detector
made up of 30 layers (/N = 15 blades) at 90° incidence angle. An energy threshold of 100 KeV is applied.

Figure 3.24 shows the efficiency for a multi-layer detector composed of N, = 15 blades (30 layers)
as a function of the single film thickness.

This time B,C presents a higher efficiency (about 50%) with respect to °LiF (about 45%).
This makes it the best candidate for a multi-grid like detector [23].

An alternative to exploit the high escape probability of ®Li fragments, is to coat a 5 Li layer with
a very thin layer of '°B,C that acts as a protection and an additional converter material. The
latter should be optimized to let 6Li particles escape. Moreover, one can make self-supporting
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layers out of °Li to be coated with °B,C; it will increase significantly the neutron detection
efficiency.

3.6 Theoretical Pulse Height Spectrum calculation

The physical model taken into account in [4] and in [26] can be used as well to derive the
analytical formula for the Pulse Height Spectra (PHS). A similar work was done in [26] (see
Appendix C) where only Monte Carlo solutions were shown; here we want to use analytic
methods to understand the structure of the PHS.

We make the approximation mentioned in the Introduction 3.1 and we assume either a simplified
stopping power function (see Section 3.6.1) or one simulated with SRIM [2] for the neutron
capture fragments.

Referring to Figure 3.1, we calculate the probability for a particle emitted from the neutron
conversion point at certain depth (z for back-scattering or d — y for transmission) to travel
exactly a distance L on a straight line towards the escape surface. This distance L is related
to the charged particle remaining energy through the primitive function of the stopping power.
The final electric signal will be proportional to the charge created by these charged fragments
and, thus, to the energy they own after escaping the layer.

We will demonstrate that even under strong approximations of the stopping power function the
model still predicts quite well the important physical features of the PHS.

3.6.1 Back-scattering mode

The probability for a neutron to be captured at depth (z,z + dx) in the converter layer and
for the capture reaction fragment (emitted isotropically in 47 sr) to be emitted with an angle
¢ = arccos(u) (between (u,u + du)) is:

% Ye X%rdu if x <d

x,u)dx du = 3.64
pla,w) {0 if ©>d ( )

where ¥ = n - ¢ with n number density of the conversion layer and ¢ the neutron absorption
cross section; d is the layer thickness. The factor % takes into account that half of the time the
particle travels toward the layer substrate and it is therefore lost.

The fragment will travel a distance L across the converter layer if L = ¥ and it is formally
expressed by a Dirac delta function:

5(§—L):%-5(u—%) (3.65)

By using the following delta function property 6(g(£)) = >, % where &; are the solutions

of g(§) = 0.
The probability for a particle to travel a distance (L, L 4+ dL) across the layer is given by:

< St [ z
P(L)dL—/O /0 5<U—L)p(w,u)dxdu—2p/o dx xe /Odué(u—L>—

5 d e A (&= (& +Le >N dL if L<d
:2/ dx xe > (H(x) —H(z— L)) = Q{ﬂ( ? —E~d) :
2L2 J, g7 (5 — (s +d)e %) dL if L>d

(3.66)

M= M=

91



where H is the Heaviside step function
It is sufficient to replace X with ( ) if neutrons hit the layer under the angle # with respect to
the surface (see Figure 3.1). In the PHS calculation p(x,u) has to be changed as follows:

1 Ee "sin (9)

du if x <d
p(m,u,&)dwdu—{g v

) - (3.67)
if z>d

The demonstration is identical to the one shown in Section 3.2 for the efficiency calculation.
Referring to Figure 3.5 in Section 3.2, this result means that the same PHS can be obtained,
for example, at 10A under an angle of 80° or equivalently at 5A under an angle of 30°. If,
for example, one is interested in measuring some PHS for a given neutron incidence angle and
only a monochromatic beam is available, from Figure 3.5 it is possible to get the effect of
having a different wavelength by changing the inclination instead. Every PHS measured on each
equipotential line in Figure 3.5 is the same.

If E(L) is the remaining energy of a particle that has traveled a distance L into the layer, d]fli(LL)
is the stopping power or equivalently the Jacobian of the coordinate transformation between L
and F.

Once P(L)dL is known we can calculate Q(E)dFE, therefore:

P(L)dL = P(L ’ -dE = P(L(E)) - ‘dlE‘ -dFE (3.68)
dL
Therefore:
Q(E)IE = P(L(E)) ‘dlE‘ -dE (3.69)
dL

where Q(F)dE is the probability that an incident neutron will give rise to a release of an energy
(E, E + dFE) in the gas volume; hence it is the analytical expression for the PHS.

PHS calculation using SRIM output files for Stopping Power

We take the case of the 9B reaction as example, however results can be applied to any solid
neutron converter. We recall the energies carried for the 94% branching ratio is Ey = 1470KeV
for the a-particle and Ey = 830K eV for the 7 Li; for the 6% branching ratio, Ey = 1770KeV for
the a-particle and Ey = 1010KeV for the "Li. Referring to Equation 3.69, the stopping power
% used here was simulated with SRIM [2] (see Figure 3.27) and L(E) obtained by numerical
inversion of the stopping power primitive function, i.e. the remaining energy inverse function.

The full PHS that takes into account the full process can be obtained by adding the four PHS

in the case of 1B according to the branching ratio probability:

Qiot(E)dE = (0.94 - (Qa1470kxev (E) + Q7rissorev (E)) +

3.70
+0.06 - (Qar770kev (E) + Qrrit010kev (E))) - dE (3.70)
Consequently the efficiency for a single layer can be calculated by:
+oo
e (Erp) = Qot(E)dE (3.71)
Erp

where Fry, is the energy threshold applied to cut the PHS. This result is fully in agreement with
what can be calculated by using the Equations derived in Section 3.2.
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In order to confirm our derived formulae a Monte Carlo simulator has been developed taking
into account the same physical model exploited in this section. A random number generator
simulates the probability for a neutron to be absorbed a certain depth in the conversion layer
and with a random emission angle for the fragment. Using the SRIM files, we calculate the
remaining energy after a straight path inside the layer for the fragment in question; this is the
energy released into the gas volume.

Figure 3.25 shows the result of Equation 3.70 for the four single particles and the total PHS
compared with the Monte Carlo PHS, for 1 um single back-scattering layer at 1.8A and 90°
incidence.

—alpha 1470KeV calc.
—Li 830KeV calc.
—alpha 1770KeV calc.
Li 1010KeV calc.
—total calc.
- - -alpha 1470KeV MC
- - -Li 830KeV MC 1
- - -alpha 1770KeV MC
Li 1010KeV MC

- - -total MC 4
0 'ﬂff‘l":fi S R ]
0 500 1000 1500 2000

Figure 3.25: PHS calculated and MC simulated for 1 um back-scattering layer at 1.8A and 90° incidence.

In order to check in practice the formulae derived, a direct measure on the neutron beam is
necessary. A Multi-Grid-like detector [23] was used to collect the data we are going to show
here. The data was collected on CT1 (Canal Technique 1) at the ILL where a monochromatic
neutron beam of 2.5A is available. This particular detector has the peculiarity that in each of
its frames blades of different thickness coating were mounted; as a result the simultaneous PHS
measurement for different layer thicknesses has been possible. The blades are made up of an
Aluminium substrate of 0.5mm thickness coated [37] on both sides by an enriched °B,C layer.
Thicknesses available in the detector were: 0.50 um, 0.75 um, 1 um, 1.5 pm, 2 um and 2.5 um.
In our calculation we are not taking into account several processes, such as wall effects, gas
amplification and fluctuations, space charge effects, electronic noise, etc. but only the neutron
conversion and the fragment escape. Moreover, while the calculation has an infinite energy
precision, this is not the case on a direct measurement because many processes give a finite
energy resolution.

In order to be able to compare calculations and measurements, after the PHS were calculated
for the thicknesses listed above, they were convoluted with a gaussian filter of 0 = 10 KeV'. The
measured PHS were normalized to the maximum energy yield (1770 KeV'). An energy threshold
of 180 KeV was applied to the calculation to cut the spectrum at low energies at the same level
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the measured PHS was collected.

We compare calculated and measured PHS in Figure 3.26; we can conclude that the model gives
realistic results in sufficient agreement with the experimental ones, to be able to describe its
main features.
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Figure 3.26: Comparison between a PHS calculated and one measured at ILL-CT2 on a 2.5A neutron beam
using a Multi-Grid like detector [23] where were mounted blades of different thicknesses.

PHS calculation using a strong approximation

A fully analytical result that does not appeal to experimental or SRIM-calculated stopping
power functions can be useful to understand the PHS structure and to determine its properties.
The stopping power functions % can be approximated by a constant in the case of an a-particle
and with a linear dependency in L for a " Li-ion. As a result the energy dependency as a function

of the traveled distance L is given by:

— Lo - if L <
For)={ ®E-R) HL<E (3.72)
0 it L>R
And equivalently for the 7 Li-fragment:
Ey(L-R? if L<
Br(p)= @ E R DL R (3.73)
0 it L>R

Where R is the particle range and Ej its initial energy.

In Figure 3.27 are shown the stopping power functions % for '© B-reaction fragments and their
primitive E(L), in the case of using SRIM (solid lines) and in the case we use the expression
displayed in the Equations 3.72 and 3.73 (dashed lines). By substituting Expressions 3.72 and
3.73 into the Equation 3.69 we obtain a fully analytical formula for the PHS. It has to be pointed
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Figure 3.27: Stopping power and its primitive E(L) for ' B-reaction fragments, solid curves are for functions
obtained from SRIM, dashed lines are the approximated behaviors in the Equations 3.72 and 3.73.

out that each relation, valid for L < R, is valid in the range F < Ey. Hence Equations 3.74 and
3.75 hold for E < Ejy. The two formulations in Equation 3.66 for L < d and L > d, translate in
two different analytical expressions for Q(E) for E < E* and for E > E*, with d = L(E*). For
the a-particle:

— 1 (L (L e ) dE if E<Ey(l—4%)
S B <é _ <%+R(1_ EEﬂ)) .6—23(1‘50)) dE if E>Ey(1- %)
(3.74)

Where the relation E* = Ey (1 — 4) is derived from d = L(E*).
For the 7 Li:

s (&= (& +d)e>9) dE if B<Fo(l-4)°

Q(E)dE = 4EoR EAO(P E£0)2 <l B <% +R (1 B \/EEO)) ' (3.75)
.e_ER(l_\/ETo>> dE if E>E, (1 — 1)2

\gl

R

Where, again, the relation E* = Ej (1 — %)2 is derived from the condition d = L(E*).

Figures 3.28, 3.29 and 3.30 show the calculated PHS obtained by using the SRIM stopping power
functions and the approximated one displayed in the Expression 3.72 and 3.73 for 0.2 um, 1 um
and 4 pum respectively, when neutrons hit at 90° the surface and their wavelength is 1.8A. They
show similar shapes that differ in some points; e.g. focusing on the 1470 KeV a-particle, the
fact that the approximated E(L) function (see Figure 3.27) differs from the SRIM one at high
L leads to a disappearance of the PHS rise at low energies; it is clearly visible in Figure 3.30.
We see that as d increases what looked like a single peak splits into two peaks. While one peak
stays constant at the highest fragment energy FEy the second one moves toward lower energies
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when the layer thickness increases. This is important when trying to improve the neutron to
gamma-rays discrimination by creating a valley that separates them in amplitude.
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Figure 3.28: Calculated PHS using SRIM (left) and approximated (right) stopping power functions for a single
back-scattering layer of 0.2 um for 1.8A and 90° incidence.
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Figure 3.29: Calculated PHS using SRIM (left) and approximated (right) stopping power functions for a single
back-scattering layer of 1 gm for 1.8A and 90° incidence.

In order to understand the PHS structure, we define the PHS wariable space: on the abscissa
axis is plotted u = cos(p), where ¢ is the angle the fragment has been emitted under, and, on
the ordinates axis, is plotted the neutron absorption depth z. w € [0,1]; x € [0,d] if d < R or
x € [0, R] if d > R because a neutron can only be converted inside the layer and, on the other
hand, if a neutron is converted too deep into the layer, i.e. = > R no fragments can escape
whatever the emission angle would be. In Figure 3.31, on its left, the variable space is shown; an
event in the A-position would be a fragment that was generated by a neutron converted at the
surface of the layer and escape the layer at grazing angle. An event in the position B represents a
fragment that escapes orthogonally to the surface and its neutron was converted at the surface.
An event in C means a neutron converted deep into the layer with an orthogonal escaping
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Figure 3.30: Calculated PHS using SRIM (left) and approximated (right) stopping power functions for a single
back-scattering layer of 4 ym for 1.8A and 90° incidence.

fragment. The straight lines x = L(FE) - u characterize the events with identical escape energy
E, that contribute to the same bin in the PHS. The straight line characterized by z = R - u
is the horizon for the particles that can escape the layer and release some energy in the gas
volume. To be more precise events that give rise to the zero energy part of the PHS lie exactly
on the line £ = L(E = 0) = R because they have traveled exactly a distance R in the converter
material. On the other hand, events that yield almost the full particle energy Fjy, will lie on the
line identified by § = L(E = Ep) = 0.

The events that generate the PHS have access to a region, on the variable space, identified by
a triangle below the straight line z = R - u (see Figure 3.31).

i i dz R

b

Figure 3.31: PHS wariable space and PHS variable space when d > R.

If d > R the variable x can explore the interval x € [0, R]. This is the case of the PHS in

Figure 3.30, where d = 4 um, Rr;s30xev) = 1.7 um and Ry 470kev) = 3.4 pm. We take the two
particles of the 94% branching ratio of °B reaction as example.

If d < R, the variable x can explore the interval z € [0,d] (see Figure 3.32), thus the domain
is now a trapezoid. The events near the line ¥ = L(E*) = d, which is the switching condition
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% d<<R

Figure 3.32: PHS wvariable space for d < R and d << R.

found in the Equations 3.74 and 3.75, give rise to a peak because this line has the maximum
length available. Thus, we expect a peak in the PHS around E*. This is shown in Figure 3.29
where d = 1pum and, again, Rr;s3okxerv) = 1.7um and Ry1470Kev) = 3.4 um, the peaks that
originate from the condition ¥ = L(E*) = d for the two particles are indicated by the arrows.
If d > R, the peak occurs for L(E*) = R, that is, zero energy. This is problematic for y-ray to
neutron discrimination.

If d << R, the variable space is compressed and the straight lines identified by £ = L(E*) =d
and ¥ = L(E) = 0 become more and more similar. The two peaks approach and, the more d is
negligible compared to R, the more the two peaks appears as one single peak (see Figure 3.28).
If we want to avoid a strong presence of neutrons in the low energy range of the PHS, where we
know the v-rays contamination is strong, it is important to try to get the second peak higher
than the energy threshold (E7p). This implies that the thickness d of any layer in the detector
should obey d < L(Ery) for the L corresponding to the particle with the smallest range. This
can be a contradictory requirement with efficiency optimization in which case a compromise
between v-rays rejection and efficiency has to be found.

3.6.2 Transmission mode

Equations for transmission mode can be calculated in the same way they have been determined
for back-scattering mode by substituting = with d — y in the Expression 3.64 and x with y in
the expression § (% — L). As a result we obtain:

1 (1 1
piovar - 4 77 (5e > 3.76
(L) { Lem@d 4 (d— L)) dL if L>d (370

Hence, Q(E)dE can be calculated as shown already in Section 3.6.1.

However the same conclusions can be drawn concerning the qualitative aspects of the PHS
especially the position of the two peaks.
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Chapter 4

Converters at grazing angles

The ideas in this Chapter were born in October 2012, when a discussion between Philipp Gut-
freund and me led us to the question: do the boron converters we are using in detectors reflect
neutrons destroying any possibility to increase the layers’ efficiency? A complete investigation
has been made in the next 6 months and it has led to the discovery of the limits of the solid
converter technology used at grazing angle. I want to thank Carina Héglund for the samples.
I want to thank Philipp Gutfreund for the time he let me use the D17 reflectometer at ILL, I
want to thank my colleague Anton Khaplanov, for the discussion and the support in this study.
At last, I want to thank Anton Devishvili, Andrew Dennison and Boris Toperverg for the time
spent on the reflectometer SuperAdam at ILL and for their important suggestions.
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4.1 Introduction

In Chapter 3 we developed an analytical model to calculate the efficiency of a solid converter
as a function of several parameters. We have already demonstrated that the two parameters
0, the angle under which the neutrons hit the converter layer, and A, their wavelength, enter
in the calculations as a single parameter ¥ (Equation 3.10). This means that same features on
the PHS or in the efficiency can be found either by acting on the neutron wavelength or on the
angle 6.

We can, for instance, fix the A\ and vary the angle. From the derivation of the physics of
neutron conversion layer explained in Section 3.2.2 we can observe that, as 6 decreases, the
efficiency increases. Figure 4.1 shows the efficiency for a single back-scattering layer and for a
single transmission layer as a function of # for two neutron wavelengths: 1.8 A, 10A and 25A.
These neutron wavelengths were chosen to cover the usual neutron wavelength range used in
a neutron reflectometer instrument. The layers are 1 um thick and consist of 100% enriched
0B,C (p=2.24g/cm?). An energy threshold of 100 KeV is applied.

— Back-scatt. layer 1.8A
—— Back-scatt. layer 10A ||
— Back-scatt. layer 25A
- - -Transmiss. layer 1.8A ||
- - -Transmiss. layer 10A
- - -Transmiss. layer 25A

efficiency

~-
~—

TR

0 10 20 30 40 50 60 70 80 90
0 (deg)

Figure 4.1: Efficiency for a single layer 1 um thick '°B4C' as a function of the neutron incidence angle. Energy
threshold of 100 KeV is applied.

The efficiency for a back-scattering layer according to the theory can, in principle, reach 1 for
a sufficiently small angle. When 6 decreases (but not for § = 0) not only the effective layer
thickness increases and consequently the absorption raises, but the source points where the
charged particle are generated when a neutron is captured, are closer to the surface; therefore
they have more chances to escape the layer.

On the other hand, for a transmission layer, as the angle decreases also the effective layer
thickness increases starting absorbing neutrons without any increase in efficiency. In Figure 4.1,
the transmission layer efficiency attains a maximum at low angle, and then starts decreasing
again.

These calculations however do not take into account the potential reflection of the neutron by
the conversion layer.
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It is important to consider neutron reflection in the efficiency calculation when a detector involves
converters at grazing angle.
Layer roughness has to be taken into account because it can affect the neutron reflection.

4.2 Reflection of neutrons by absorbing materials

Materials such as Cd and Gd or '°B, which are very strong absorbers of neutrons, can still
have significant reflectivities. As shown in Section 1.5, the scattering and the absorbtion cross-
sections depend both on the complex phase shift . For absorbing materials || < 1. Referring
to Equation 1.59, even for a perfect absorber (n = 0) there is a contribution to the scattering
cross-section. This effect is what is shadow diffusion [7].

We discussed in Section 1.5.4 the principles of reflection of neutrons at interfaces. When dealing
with neutron absorbers the theory describing the physical process of reflection has to be modified
to take into account, not only the possibility for a neutron to be scattered, but also its absorption
by nuclei. As introduced in Chapter 1, the scattering length of a nucleus is, in general, a complex
quantity. Its real and imaginary parts can be associated to the scattering process but only its
imaginary part to the absorption (see Equation 1.63).

btot = bcoh = b::ah +1 bgoh (41)

where we take only the coherent scattering length for both real and imaginary parts because
we suppose either the sample or the neutrons to be unpolarized (Equation 1.62), and we will
average over the bulk to obtain an effective potential description.
The scalar potential V' (Equation 1.72) in the Schrédinger equation will contain the contribution
given by the absorption:

21 h?

n

V=

(Nge“l ti Ng'm) (4.2)

The potential the neutron experiences at the interface is now complex. To model absorption we
are violating unitarity in the Schrodinger equation: it is a trick that works.

The solutions of the Schrodinger equation, with a complex potential, can still be written as
shown in Section 1.5.4. The wave-vectors will be complex quantities. Referring to Equation
1.80, the change in the normal wave-vector has an imaginary part given by the complex poten-
tial that results into an exponentially reduced amplitude of the wave-function [39]. Note that if
Ny is purely imaginary (a perfectly absorbent material) it still gives a contribution to the change
in the normal wave-vector (the square root of a purely imaginary number does have a real part).
With absorption, even in the total reflection regime (¢ < g.), a neutron wave (this time not
evanescent, see Equation 1.86) can penetrate inside the layer reducing the total reflection am-
plitude to less than 1.

In the absorbing regime the characteristic depth a neutron can penetrate the layer before being

absorbed is given by:
1

D=—+—

Im {ktj_}

As example we take enriched 1°B4C (p = 2.24 g/cm?) to which corresponds a scattering length

density of N = (1.62 —i1.11)-10~% A2, For simplicity we imagine a bulk of '°B,C' of constant

Ny. In Figure 4.2 the scattering length density profiles at the interface air/!° B4C are shown on
the left and the corresponding reflectivities are shown on the right.

(4.3)
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By neglecting the imaginary part of the Ny, reflectivity is 1 when ¢ < g, and it behaves like
o 1/qg* for large ¢. When N, is, on the other hand, complex the reflectivity below g, is reduced.
For those materials having a negligible absorption cross section, absorption does not significantly
reduce the reflectivity.

x10”

) : :
161 ——= 10 —real N,
e —— complex Ny
141 / e 4 10" - - —complex N, + roughness 10A
12f
107
10f
<
= 80 ® 107
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o= - - -N_+ roughness 10AH
L L L L L L b T T 10°°L L L L L L L L L L o
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z(A) qA™

Figure 4.2: Scattering Length Density (N;) for °B4C omitting or not the interface roughness (left) and the
corresponding reflectivities (right).

Figure 4.2 shows also what happens to the reflectivity when a roughness of o = 10A is considered
at the air/'*B,C interface: intensity drops at high ¢. Note that the contribution given by the
absorption affects the entire ¢g-range while roughness has an influence only at high q.
The reflectivity profile can still be measured arbitrary in ToF or in monochromatic mode without
affecting the results (if we can assume constant imaginary scattering length density, meaning
there are no absorption resonances). We observe from Equation 1.76 that only the normal
component of the wave-vector k; | is affected by the potential, for both complex and real cases.
Moreover, excluding resonances, this potential does not depend on the neutron wavelength
(Equations 1.72 and 1.73), because b,ps does not depend on A. The reflectivity then only
depends on 6 and A through k;; = 4, so whatever method (ToF or monochromatic) is used to
get a value for the measured reflectivity the result is the same for same ¢, even if the material
is a strong absorber. Neutron reflectometry at grazing angle by using thermal neutrons gives
the same reflectivity profile as UCN (Ultra Cold Neutron) reflectometry at large angles if the
resulting k; | is kept the same for both techniques.
The continuity equation 1.83 in the region where the material is an absorber has to be generalized
as [8]:

OP(r,t) 2 4rh

5 TV J(rt) = =2 P(r, ) Im{V} — V() = ——=P(r, t)N™  (4.4)

OP(7 1)
ot

assuming stationarity: = 0. The probability for a certain number of neutrons to be
absorbed, A, is given by the integral over the entire volume of absorbing material, which in a
one-dimensional case, reduces to:

hkl/ V- J(z,t)d :—/ (z,t)Nf™ / Y.)2 N{™ dz (4.5)
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where d is the thickness of the absorbing layer and lem is the imaginary part of the scattering
length density of the absorbing medium.

Since we want to measure reflectivity of absorbers employed in neutron detectors; they are
generally thin layers deposited on holding substrates.

Let us consider a finite thickness as in [40], d, of absorbing material deposited on a substrate,
e.g. Silicon or Aluminium. Excluding resonances, the solutions of the Schrodinger equation can
be written as shown in Section 1.5.4, and we can focus only on the normal components of the
wave-functions:

U, =etihz 4 p emih1z if z<0
Y, =ty etihe? 4y gmikez if0<z<d (4.6)
P, = tgetihsz ifz>d

where we have called k,, | = k,, with n = 1,2, 3, the normal component of the wave-vectors in
the three regions defined by the potentials V,, (see Figure 4.3).

X

n=0
ks

—
=~
f—t

t

Figure 4.3: Reflection of an incident neutron beam from an ideally flat interface, ki, ko and k3 are the normal
component of the wave-vectors in the three regions.

By imposing conservation of energy at the interfaces, as already shown in Section 1.5.4 (Equation
1.80), we obtain:

1
ki = 5
k3 =k — 4N (4.7)

k2 = k2 — 4x N

where NéQ) and Nb(3) are the SLD (Scattering Length Density) of the absorbing layer and the
substrate respectively.
Consequently, by imposing the continuity of the wave-function and its derivative at the two
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boundaries (z = 0 and z = d), we obtain:

a123230
rp=ta+ry—1 Py = 27297
e > 1+ Brafasé (48)
fp= 12 by = o—ilka+ka)a (L B2g) @120
1 + Bi2P230 1 + Bi2P230

where we have defined the Fresnel transmission coefficients as a;; = %, the reflection coeffi-
1T R

ki—k; ;
clents (3;; = H—kj and § = eT2ik2d,

The reflection and transmission probabilities are given by:

| J| | J¢|
R=r T = (4.9)
| ;] | ]
with hk hk hk
= =M ey = g (1.10)

Outside the absorbing regions the Equations 1.84 are still valid. Referring to Figure 4.3 if the
first medium is air, the second is an absorber (V2 is complex) and the third is a substrate such
as Silicon (V3 is real); the measured reflectivity, the transmission inside the substrate and the
absorption in the layer are:

*
R=r-r

ks N
T - kf (t3 t3)

A=1-R /ngzt /|Yy

where Js is the current probability calculated for Y.

As example we take the same absorber as in Figure 4.2; in this case the °B4C is d = 100 nm
thick and it is deposited on Si (N, = 2.14 - 10~ 6 A- 2). In Figure 4.4, on the left we show
reflectivity, transmission and absorptlon, as calculated in Equation 4.11 as a function of g. On
the right we show the probability for a neutron, carrying a given ¢, to be absorbed at certain
depth in the layer, i.e. the quantity ——]Y ]2N””. We notice that absorption increases in

(4.11)

proximity of the critical edge (q.) that is, in this case about . = 0.01 A=,

4.3 Corrected efficiency for reflection

The neutron efficiency for a single layer of 1 um '©B4C has been measured as a function of the
neutron incidence angle  for a given neutron wavelength of 2.5 A on our neutron test beam line
CT2 at ILL.

The converter layer was mounted in a MWPC of about 100 em? operated at 1bar of CFy. After
calibration and Plateau measurement we chose 1300V as the working voltage. A neutron beam
of 2 x 3mm? was focused on the detector and a PHS was measured as a function of the incidence
angle. In Figure 4.5 the measured PHS for a single back-scattering layer is shown.

The calculation assumes no reflection. The increase in detection efficiency can be calculated
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Figure 4.4: Reflectivity, Transmission and Absorption from a d = 100nm '°B,C layer deposited on Si (left),
probability for a neutron to be absorbed in the layer as a function of z and ¢ (right).
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Figure 4.5: PHS and efficiency measured at 2.5 A for a 1 um '° B4C back-scattering layer operated in a MWPC.

according to Equation 3.70 in Section 3.6.1. The resulting measured and calculated neutron
detection efficiency is shown in Figure 4.5.

When we deal with detectors that involve converters at grazing angle, the formulae derived in
Chapter 3 for the detection efficiency have to be replaced by:

er(d,0,)) = (1— R(6,\) - (d, 0, \) (4.12)

where R is the neutron reflectivity that becomes significant at cold neutron wavelength or at
very small angle. In general for § > 2° neutron reflection can be neglected (R ~ 0) in the
thermal-cold neutron wavelength range. As we will discuss, there is a way to reduce the reflec-
tivity factor (R) at smaller than 2° angles, by acting on the layer surface roughness.

In Figure 4.6 we plot the calculated factors (1 — R(6, A)) according to the Equations 1.85 in Sec-
tion 1.5.4 in Chapter 1 given that ¢ = 47” sin(f). We take as example a 1 um °B,C layer, that we
can consider bulk, of Scattering Length Density N, = (1.6 — 1.114) - 1076 A=2 (p = 2.24¢g/cm?).
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Figure 4.6: Factor 1 — R for a 1 um °B4C layer (N, = 1.6 — 1.1114) as a function of 6 (left) and as a function
of neutron wavelength (right).

We notice that for application that involve cold neutron wavelength such as 25 A the detection
efficiency is limited to be at most 60% and not 1 if the detector employs 1° as converting angle.
In order to study experimentally the neutron reflectivity of thin-films neutron converters, two
sets of data have been recorded. The first set of data was taken using D17 [41] at ILL which
is a ToF reflectometer to preliminary quantify the actual reflectivity of the coatings. A second
experiment has been performed on SuperAdam [42] at ILL, which is a monochromatic reflec-
tometer (A = 4.4 A) in a more complete setup. The two experiments allowed to compare the
two techniques (ToF and monochromatic) in addition to give information on neutron converter
reflectivity. The comparison let us to verify the theoretical predictions in Section 1.5.4.

The coatings were fabricated in Linkoping University by the Thin Film Physics Division [37],
[43] by sputtering technique (PVD). The 1°B4C layers have been deposited either on several Al
alloys or on Si wafers for preliminary characterizations. Examples of those samples are shown
in Figure 4.7. The Si samples look shiny while the higher roughness of the Al alloy makes the
Al samples matte. Moreover, we had two different Al-alloys for the 1 um sample with different
layer roughness (see Figure 4.7).

Physical vapor deposition (PVD) is a technique for thin film synthesis under vacuum conditions,
where a solid or liquid deposition material is vaporized and its condensation on a substrate forms
a film. Chemical reactions are usually absent in the gas phase, due to the small probability for
collisions of the vapor species under the applied pressures. The usual physical mechanisms for
source atoms to enter the gas phase are high temperature evaporation or sputtering. °B4C
films were grown in high vacuum chambers by reactive magnetron sputter deposition.

To minimize the amount of impurities in the films it is necessary to have good vacuum conditions
in the deposition chamber. All films we discuss here are deposited at base pressures of 0.1 mPa
[43].

Ton beam analysis is used for determination of the concentration of specific elements in a sam-
ple. Thickness, compositional gradients and depth positions of different elements can also be
determined. Elastic recoil detection analysis (ERDA) was used. This technique is based on
elastic scattering of incoming ions with the target atoms. In ERDA the energy of the knocked
out target atom is detected. ERDA is good for depth profiling and analysis of elements with
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a mass smaller than the mass of the incoming heavy ions. In the present setup the relative
concentrations of element was measured at ~ 2% in ERDA [43],[37].

%)

at.
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Figure 4.8: °B,C film composition and a SEM image of a natp,C layer on Si. The x-axis correspond to about

Figure 4.7: Samples of Al and Si coated with different thicknesses of '°B4C layer [37].
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270 nm of sampling depth [37].

In Figure 4.8 the relative amount of elements in a typical '°B4C film is plotted as a function of
the layer depth. The conversion between the x-axis and the actual depth is given by:

d:x-Mr
p-Na
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where M, is the molar mass of the 1°B,C layer, p its density and N4 is the Avogadro’s number.
Referring to Figure 4.8 and using the Equation 4.13, we are sampling about 270 nm on the full
scale of x-axis.

According to Equation 1.73 and considering the composition given in Figure 4.8, the scattering
length density of such a layer is: Ny = >, bn; = (1.6 — 1.114) - 1076 A2 (p = 2.24g/cm?3). We
use as scattering length density for Si the standard value of Ny = 2.14 - 1076 A=2 and for Al
Ny =2.07-1076 A2,

The first experiment has been performed on the D17 instrument [41], a Time-of-Flight reflec-
tometer at ILL, on 1pum samples deposited on both Si and Al (see Figure 4.7). Reflectivity
profiles have been measured for three angles # = 0.5°,1°,2° in ToF-mode between A = 2A and
A = 25A. The resulting range in momentum transfer is from ¢ = 0.005A~! up to ¢ = 0.2A!
with a resolution of Ag = 0.05A~! in the worst case. The reflected intensity (and the direct
beam) in ToF can be measured without scanning in angle but just acquiring the neutron wave-
length spectrum at once. The reflectivity is calculated as the ratio between the reflected and
the direct wavelength spectra.

In ToF the background is uncorrelated with the instrument timing and it can be evaluated by
looking at a region of the detector where we are sure there is no reflection and checking that
it has no time structure. This background has been subtracted to the reflected and the direct
beam spectra.

No specular reflection has been observed on all the Al-samples, on the other hand Si has a
strong reflectivity and it is shown in Figure 4.9 as a function of ¢ (pink curve).
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Figure 4.9: Measured reflectivity for the 1 pum '°B4C sample on Si as a function of ¢; pink curve has been
obtained from a ToF measurement and cyan from monochromatic angular scan. Absorption was measured as well
from the v-ray yield.

We repeated the neutron reflectivity experiment by using the SuperAdam instrument [42] in
monochromatic mode at A = 4.4A. A scan in angle has been performed to get the reflectivity
profile in g. We measured in addition to the 1 ym samples, one extra sample of 100 nm deposited
on a S substrate.
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Not only neutron reflectivity has been measured but, neutron absorption has been measured as
well, thanks to the y-ray yield of '°B. We recall that in the 94% of the cases when a neutron
is captured by a '9B-atom a 478 KeV ~-ray is produced and emitted isotropically. In Figure
4.10 is shown a sketch of the experiment performed on SuperAdam. A Germanium detector was
placed close to the sample in order to maximize the solid angle without affecting the neutron
beam. Taking into account both the Ge-detector efficiency and the solid angle, we estimate the
whole efficiency for the 478 KeV ~-ray photo-peak detection to be around 5%. The Ge-detector
has been calibrated in energy by using a 2> Na source.

Ge-detector

y—ray
Incoming (478K8V)
neutron

beam

WA

Figure 4.10: Schematic of the experiment on SuperAdam.

For a given sample we record for each angle during the scan a spectrum for the Ge-detector and
a neutron detector image of the reflected neutrons knowing the actual normalization given by
the direct beam.

Each point of the absorption curve has been obtained by fitting the Ge-detector spectrum,
around the 478 KeV ~v-ray photo-peak, with a model that includes a linear background. The
latter is subtracted from the actual number of counts and it takes into account a Compton
background deriving from other v-ray energies.

For small g (small ), there is an overlap between the direct beam and the reflection images.
The raw image is projected over the z-axis and fitted. Reflected intensities have been fitted
using a double gaussian in order to decouple the reflected beam from the direct beam. Figure
4.11 shows an example of this fit for a given angle. The raw image of the detector shows the
two peaks: on the left, it is the reflected beam and, on the right, the direct beam through the
sample. The number of counts in the reflected peak is then obtained by the fitting parameters:
a the gaussian amplitude, m its center and its standard deviation o, through /27 ao.

At higher g, higher 0, the direct beam is far from the reflected beam on the detector. Usually
the background is not symmetric under the reflected peak but it is more intense on the side of
the direct beam. In order to subtract this contribution from the reflected intensity, it has been
fitted with a single gaussian and a linear background fit. The intensity is again obtained from
the fit parameters.

On a standard reflectivity measurement the angular scan starts from zero and rises up to one or
few degrees; since the sample length is not infinite there will be a certain point in the scan when
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Figure 4.11: Raw image of the SuperAdam detector (left), projeceted intensities over the z-axis and the double
gaussian fit (right).

the size of our beam coincides with the actual projected size of the sample, this is the so-called
over-illumination angle (0yyer). Therefore the raw intensity of the reflection rises until Oyyer
and then behaves as an absolute reflectivity profile. Hence a data correction has to be taken
into account in order to transform the intensity of the reflection into reflectivity. Moreover, on
SuperAdam the angles are known with an error of 0.2 mrad; thus a slight shift in the position
of the angle is accepted and also the quantity 0, is a free fitting parameter.

The model considered to fit the data is the one explained in in Section 4.2 where a °B,C layer
is placed on a Si substrate. This model is described in details in Appendix D.

The fitting routine is a standard reduced chi-square minimization that takes into account both
absorption and reflectivity profiles at the same time. The measurements contain about 150
points for each curve and Ooper, Oshifes 0B,C scattering length density (real and imaginary
parts), layer roughness o,., thickness, and Ge-detector efficiency are the free fitting parameters.
Figure 4.12 shows the reflectivity and absorption profiles for the 100 nm 'YB,C sample on Si.
In Table 4.1 the fitting parameters obtained are listed.

We suppose the fitting parameters to be independent of each other. We fix the complete set of
parameters as obtained by the chi-square minimization. We modify one parameter at once until
the chi-square increases by 1. We take this as the associated error in the parameter estimation.
Referring to Figure 4.9, we can observe that the reflectivity as measured in a ToF instrument
or using angular scan in monochromatic mode is the same apart from a background tail at
higher ¢ values. This is the experimental confirmation of what mentioned in Section 1.5.4, only
the normal component of the wave-vector is affected by the layer independent of what 6 and A
combination is used, and even in the case of strong absorbing layers.

No layer thickness value has been found for the thicker film because it can be considered as bulk.
Because of absorbtion not a single neutron can reach the substrate and can be reflected toward
the detector. The thinner layer thickness parameter is estimated to be (121 +2)nm thick with a
reduced x? of 1.2. The fitting routine on the 1 um sample ends up with a worse x? of about 20.
Referring to Figure 4.9, the absorption measured at low angles is higher than foreseen by the
model because of the presence of more converter material exposed to the beam and that is not
taken into account by the model used to fit the data. The presence of this additional 'B,4C, on
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Figure 4.12: Measured reflectivity for the 100nm '°B,C sample on Si as a function of q. Absorption was
measured from the -ray yield.

the substrate back face and edge, is due to the deposition method.

sample d(nm) | Opper(mrad) | Ospipe(mrad) | Ge eff.(%) | X2
1pum Si bulk 14.0+£0.1 0.22£0.02 | 4.91+0.04 | 20.7
100mnm Si | 121 £2 | 18.7£0.5 0.74+0.04 | 5.19£0.08 | 1.2
sample Ny(A=2) o-(A)
Lpum Si | ((2.48 +0.02) — (1.01 £0.02)i) - 107° | 38 + 3
100nm Si | ((2.50 £ 0.05) — (1.11 +0.02)i) - 106 | 45+ 9

Table 4.1: Parameters found by the model fitting routine.

Expected SLD is IV, (1.6 — 1.114) - 1076 A=2 while the results for both samples is about
Ny =(25-1.1i)-1076 A=2. Note the significant difference in the real part and the good agree-
ment for the imaginary part.

By neglecting minor contaminants in the sputtered layer, the imaginary part of the SLD is given
entirely by Y B while the real part is determined by '°B, 1! B and 12C (see Table 1.2). The imagi-
nary part of the fitted SLD corresponds to the calculated value based on the ERDA measurement
which implies that the B number density is in agreement and equals naopy = 1- 10% Cég with
an error of 6%.

Given that the scattering length of ''B and '2C are both equal to 6.65 fm, their ratio only
matters in the mass density. The sum of their densities is determined by the real part of the
SLD and the calculated density of '°B, itself determined by the imaginary part. Respecting the
error bars on the SLD given by the fit, this results in a restriction on the interval of the 1B
fraction and the mass density. They are listed in Table 4.2.

The measured ERDA values are outside the given intervals, and imply higher levels of non 9B
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p(g/cm3) %1OB %1lB+%120
[2.34,2.46] | [70,73.5] (30, 26.5]

Table 4.2: Ranges of density and composition compatible with the fitted SLD.

atoms. We do not explain the difference.

We only considered a uniform layer consisting of 1°B, "' B and '2C in our model. It is true that
the ERDA analysis, in Figure 4.8, shows a thin oxygen rich layer of about 20 nm at the surface
and some presence of hydrogen both on the few percent level. A priori such a thin layer should
give interference fringes in the reflectivity profile around ¢ = 0.016 A=! and ¢ = 0.047 A~! which
are totally absent in the data shown in Figure 4.9. This is why we did not include such an extra
thin layer in the model.

Values picked within these intervals and inspired by the ERDA measurement are shown in Table
4.3.

p(g/em?) | %1°B | %1B | %2C | others
ERDA 2.24 79 2.4 17 1.6
Reflectometry 2.40 71.5 2.5 26 0

Table 4.3: Density and composition of the sputtered layers.

The samples of 1 um deposited on Al have been also measured, but no specular reflection has
been observed while absorption is comparable to what was observed on the Si-sample.
Off-specular reflection is not observed in any sample (Si or Al), it is always below the back-
ground level.

In order to diminish the reflection effect in a detector, it is sufficient to have a rough surface
(> 100nm). This can be of importance if one wants to build a detector based on micro-strips
and solid converters. Operated at small angle, the absorber deposition on glass could not have
a large enough roughness to avoid significant reflection.

It has to be pointed out that an excessive roughness will also degrade the efficiency. When
the roughness becomes comparable to the fragments path lengths in the converter (~ 1 um for
0B,C) the surface can not be considered flat anymore. The theory of the efficiency for con-
verters under an angle was drawn assuming the layer to be flat. This flatness is essential for the
neutron to encounter a lot of 1B, and the conversion fragments to be close to the surface to
be able to escape. If the roughness starts to be comparable to the conversion fragments ranges,
this assumption does not work anymore. There is a drop in the expected efficiency.

We repeat, in Figure 4.13, the ToF measured reflectivities as a function of of the neutron wave-
length A (while in Figure 4.9 they are shown as a function of ¢). In Figure 4.13 we notice that if
we use a converter at 1° (red curve) about 30% or more of the neutrons are reflected, thus not
converted, for wavelengths larger than 20A.

According to Equation 4.12 we can calculate the corrected efficiency for reflection. The plot in
Figure 4.1 has to be modified as shown in Figure 4.14. We calculate the corrected efficiency, for
an energy threshold of 100 KeV, for a 1 um thick 'B,C single back-scattering layer for three
neutron wavelengths: 1.8 A, 10 A and 25 A. According to what we found from the fit and sum-
marized in Table 4.1, the layer roughness used is about 40 A and the scattering length density
is N = (2.5 — 1.14) - 1076 A=2,
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Figure 4.13: Measured reflectivity of 1 um '°B4C deposited on Si as a function of ) for 3 different angles.

We recall that, if the layer has a higher roughness, the effect of the reflection decreases. Alu-
minium is a suitable material to avoid neutron reflection instead of Silicon.
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Figure 4.14: Corrected and not corrected efficiency for reflection calculated for a single layer 1 um thick '°B,C
back-scattering layer at 1.8 A, 10A and 25A as a function of the neutron incidence angle. Energy threshold

applied: 100 KeV'.

We observed a Doppler effect on the 478 KeV ~-ray photo-peak due to the sample orientation.
When a neutron is captured by 9B, it is the “Li fragment that, in the 94% branching ratio,
goes in an excited state that emits the y-ray. If 7Li is emitted toward the substrate it is stopped
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within about 120 fs, to be compared with the 7Li* half life of t1/2 = 73 fs before it goes to its
ground state emitting the photon. A significant fraction of the 7 Li fragments will hence emit its
photon when it is at rest. In a thin layer, if 7Li is emitted toward the surface it travels in air for
a much longer time. Then the ~-ray is also emitted when it is in motion. In a thick converter
the volume to surface ratio is such that the fragment is almost always stopped, and a fraction
of the photons are emitted when stopped. Referring to Figure 4.15, in the case A, a thick block
of B4C rubber was placed in front of the Ge-detector. The spectrum measured is symmetric
in energy. In Figure 4.15, the peak at 511 KeV gives an indication of the Ge-detector energy
resolution. All the measurements have been normalized to the intensity of the 478 KeV ~-ray
photo-peak to compare the peak shape.

When one of our samples is exposed to the beam, case B or C, the layer is thin enough to assure
the fragments to always escape the layer. On average half of the times the "Li emits at rest
and half of the times when travels either away from (B) (red-shift) or toward (C) (blue-shift)
the Ge-detector. Consequently the 478 KeV ~-ray photo-peak results asymmetric due to the
Doppler shift.

15

_B4C rubber (A)

A B C ——1um BAC B)
——0.1um BAC B)
Ge-detector —0.1um B,C Inverted (C)
P — 1t

y—ray 3
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Figure 4.15: Setups used to measure the Doppler effect in the 478 KeV ~-ray energy (left). Ge-detector
spectrum: photo-peaks of 478 KeV and 511 KeV ~-rays (right).
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Chapter 5

Gamma-ray sensitivity of neutron
detectors based on solid converters

I want to thank Anton Khaplanov who taught me a lot about ~-rays. The work presented in
this Chapter makes reference to the work in [44] and in [45].
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5.1 Introduction

Any neutron detector is also a ~-ray detector. The aim of this Chapter is to individuate the
characteristics that differentiate neutrons and background non-neutron events, e.g. ~-rays. In
some cases it is possible to determine the origin of the electric signal, in other cases the two
signals show the same time structure and same charge yield; hence it is not possible to distinguish
them.

Different kinds of radiation can hit the detector and generate background, but ~-rays are the
most common in neutron facilities. It is really likely for a neutron to excite any nucleus with
the subsequent emission of y-rays. Thus, a ~-ray background is always present in neutron
facilities. Moreover at ILL, which is a reactor source, there is an important contribution that
comes directly from the core.
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Figure 5.1: 3He PHS (left) and '°B PHS (right).

In 3He-based neutron detectors an efficient neutron to y-ray discrimination can be easily done
by applying an energy threshold. Figure 5.1 shows two PHS, one for >He and one for °B.
The standard discrimination of y-ray and neutron events is by applying a threshold in the PHS.
When a neutron is captured by 3He, the two fragments ionize directly the gas. Apart from the
wall effect, they can always deposit their entire energy in the gas (770 KeV'), and even with the
wall effect, a minimum energy is always deposited, equal to the triton energy.

Generally ~-rays can interact either with the wall of the detector or directly with the gas. Every
time an electron is generated, by photoelectric absorption or Compton scattering, it ionizes the
gas and gives rise to a net charge. As it will be shown in more details in Section 5.3, ~y-rays
deposit, on average, a smaller amount of energy in the gas than neutron capture fragments. Thus
they appear at the lowest energies on the PHS. Of course there are interactions that give rise
to higher energy events, but those are less likely. In the >He PHS in Figure 5.1, we notice how
~-rays originates the low energy rising on the PHS and how those events are well distinguished
from neutron events. A simple amplitude threshold can be applied to discriminate against -
rays. Naturally, there are some events that mix up with neutron events but their contribution
for most applications can be neglected. The quantification of the misaddressed events using the
energy threshold method to discriminate against background for 3He and B will be discussed
in this chapter.
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B has in principle a better signal-to-noise ratio than 3He because its energy yield is larger
(2300 KeV). A YBFj-based detector would behave as an 3 He-based due to its conversion in the
gaseous phase. The resulting PHS would have a wider valley between neutron and background
events.

This is not the case for solid converters, e.g. 19B,C.

In Figure 5.1 a 1B PHS is also shown. The B does not show a clear difference in the signal
amplitude between a neutron event or a 7-ray. When a neutron is captured in solid °B it
generates the capture fragments inside the layer. In order to reach the gas volume they have
to travel toward the escaping surface, hence the energy deposition in the gas is a continuum
down to zero or the minimum detectable energy (LDD [4] or Epp). The rise at lower energy
is then a mixture of neutron and background events. It is possible to diminish the neutron
event contribution to the low energy part of the PHS. In Chapter 3 we notice that, given
the neutron wavelength, playing with the layer thickness can improve the neutron to ~-rays
energy separation, but this will affect the layer efficiency. Let us consider a Multi-Grid [23]
like detector. The layer thickness has to be optimized to improve the detector efficiency. A
very thin layer shows a better neutron to background separation, but several layers have to be
added in order to keep the detector efficiency constant. This will increase the material inside
the detector that can cause extra y-ray interactions. On the other hand, thicker layers have a
worse energy separation but the detector is more compact. For a single converter at grazing
angle, the efficiency is maximized, in back-scattering, when it is very thick. This translates into
no energy separation between neutrons and background on the PHS. Of course, one can still
apply an energy threshold to eliminate ~-ray events, but contrary to a 3He-based detector this
will now also lower the efficiency of the neutron detector. Hence, if one could find an efficient
method to address the y-ray discrimination, this would be of great interest. In this chapter we
explore this possibility.

5.2 The Multi-Grid detector

The Multi-Grid detector is a prototype study over the alternatives to 3 He for large area detectors
(> 30m?) for ToF instruments.

The Multi-Grid detector [23], [24], is a solid neutron converter based gaseous detector. Neutron
are converted by several 19B,C layers placed in cascade and alternated with gaseous detection
regions. Neutrons hit each converter at normal incidence. It contains 15 blades, i.e. 30 converter
layers. Each blade is a 0.5 mm Aluminium substrate coated on both sides with 1 um °B4C [37].
In order to get the two-dimensional event localization the Multi-Grid is segmented into grids.
Figure 5.2 shows a grid equipped with 15 blades and the full mounted detector composed by 96
grids stacked to form 6 independent modules of 16 grids each. A stack of 16 grids is a column;
6 columns were placed one after the other in order to cover about 0.15m? (see Figure 5.2).
Each grid acts as a cathode. They are insulated and read-out independently of each other. Each
grid contains 15 blades in order to form 15 x 4 = 60 voxels of 2 x 2 x 1¢e¢m? sides. Once the
grids are stacked, they form 60 rectangular shaped tubes. An anode wire is placed all along
them. A voxel is identified by the coincidence between a wire signal and a grid signal. This
detector allows the three-dimensional localization of the neutron event with the voxel size spatial
resolution.

Thanks to its 30 converter layers it shows an efficiency above 50% at 2.5A. The multi-layer
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neutron beam

Figure 5.2: A grid containing 15 blades coated with °B4C (left). The Multi-Grid detector [23] tested on IN6.

detector efficiency optimization was discussed in details in Chapter 3.

To reduce the number of read-out channels the wires were connected by resistors allowing a
charge division read-out. The grids were connected together row by row. The detector is
operated at atmospheric pressure. Ar/COy (90/10) was flushed continuously in the detector.
The resulting detector was installed on IN6 at ILL to be tested and compared with  He detectors.
The detector replaces 25 tubes of the standard compliance of IN6 [45].

A Nal scintillator was placed inside the chamber of the IN6 detector in order to measure the
v-ray background. The scintillator energy calibration was performed by using a 2> Na source as
explained in Chapter 1 where we discussed the photon interactions. IN6 is ToF instrument, a
chopper spectrometer more precisely, where a pulsed monochromatic neutron beam is obtained
by a sequence of choppers that allow to determine the Time-of-Flight of neutrons, i.e. their
energy. Neutrons arriving at the detector show a time structure. Those scattered elastically in
the sample form a distinct peak in the time spectrum, while those scattered inelastically arrive
earlier or later than the elastic peak depending on the energy transfer to or from the neutron. A
large y-ray background is also generated by the instrument itself by the surrounding equipment.
The background originating in the instrument also shows a time structure. Figure 5.3 shows, on
the left, the integral over all the photon energies of the Nal detector spectrum, recorded both
when the neutron beam is opened and when the IN6 beam is shut off.

While the v-ray background with the beam off is constant, we observe its time structure when
the beam is on. Any interaction of the neutron beam with the instrument materials generates
background. In Figure 5.3 we can distinguish when neutrons cross the collimators and the beam
stop.

On the right plot in Figure 5.3 is shown the same time spectrum as for the Nal scintillator but
for the Multi-Grid prototype for several bias voltage. The spectra have been normalized to the
elastic neutron peak. We notice that as we increase the bias voltage in the detector the y-ray
background becomes more and more important with respect to the neutron contribution. The
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Figure 5.3: A Nal spectrum of the y-ray background on IN6 at ILL temporized with the instrument timing
(left). The Multi-Grid spectrum for several bias voltages. Courtesy of A. Khaplanov.

background shows the same time structure as for the Nal scintillator. From this measurement
we understand that there exists an optimal operational voltage to get the best neutron to
background discrimination. The best signal-to-noise ratio is obtained by setting the bias voltage
to 900 V.

5.3 GEANT4 simulations of interactions

The energy threshold, applied on the PHS for a gaseous detector, is an efficient and simple
method to discriminate between neutrons and background events. We mainly focus here on
~-rays as the background principally present in a neutron facility. The energy threshold method
is efficient because of the low probability a ~-ray has to deposit its entire energy in the gas
volume whatever energy it carries. A detector can be mainly decoupled in its solid part and its
gas from the point of view of a photon.

Figure 5.4 shows the probability of interaction of photons with Al (p = 2.7g/cm?), Ar and
3He at room temperature and at two different pressures. The interaction probability is calcu-
lated from Equation 1.13 using the total attenuation coefficient considering Compton scattering,
photo-electric absorption and pair production. On the left plot the interaction probability is
plotted as a function of the photon energy and while the amount of material is fixed and vice
versa on the right plot. The material thicknesses have been chosen according to commonly used
in detectors and the photon energies according to widely employed sources, i.e. 24* Am and °Co.

The probability for a photon to interact with the solid is higher than the probability of inter-
action with the gaseous part, for light gases. If a ~-ray interacts with the solid, the generated
electron, either by Compton scattering or photo-electric effect, has to escape the solid in order to
deposit its energy in the gas and to give rise to an electric signal. Intuitively, it is really unlikely
an electron can deposit its entire energy in the gas, and it only happens if it was generated at
the very surface of the solid facing the gas volume. On the other hand, if a photon has less
chances to interact with the gas, it is also true that it can directly release its energy in the gas
to generate a signal.
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Figure 5.4: Probability of photon interaction with Al, Ar and *He as a function of the photon energy (left)
and of the traveled distance in matter (right).

Figure 5.5 shows the electron range in Al, Ar and 3He as a function of its energy. An electron
can carry the full photon energy or less, either if it was generated by photo-electric absorption
or by Compton scattering.

electron range (cm)

10 —Al i
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Figure 5.5: Electron range in Al, Ar and ®He as a function of its energy.

In a standard ®He tube or in the Multi-Grid detector [23] the gas volume makes at most a few
cm. Hence, if an electron carries a limited energy, e.g. 60 KeV, it will be stopped by the gas
in few cm, thus it is likely to deposit its entire energy. On the other hand, if it carries higher
energy, it can never deposit its full energy in the gas but will hit the wall of the vessel.

A simulation is needed to fully describe the physical process that gives rise to the low energy tail
on the PHS and allows to find the energy threshold to be suited. A GEANT4 [46] simulation
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has been developed. A volume of 2 x 2 x 1em3 is filled with Ar/Cos (90/10) at 1bar. The
volume is a voxel of the Multi-Grid detector [23]. The gas volume is surrounded by 1mm thick
Al and an Al-window of 1 mm is placed in front of the the detector entrance. Two 1 um °B,C
layers are at the front and a the bottom of the voxel.

A 2.5A neutron beam is simulated to be compared with spread photon beams. Four energies
have been simulated, 60 KeV, 662 KeV, 1332 KeV and 10 MeV, in order to evaluate a wide
energy range. These values have been chosen because the ~-ray sensitivity measurement has
been performed using y-ray sources. 60 KeV emission represents an 24! Am source, 662 KeV a
137C's source and 1332 KeV a %9Co source (see Table 5.2). The value 10 MeV has been chosen to
represent the Cd neutron induced emission, which is widely extended in energy up to 10 MeV'.
The energy deposited in the gas is recorded and the Figure 5.6 shows the corresponding PHS. In
the case of a neutron capture a 478 KeV ~-ray is also emitted and it can consequently deposit
its energy into the gas volume. The electron produced by this interaction always releases a small

fraction of its energy before hitting the detector wall. A peak at small energies is visible on the
PHS.
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Figure 5.6: GEANT4 simulation of several energies photons interacting with a Multi-Grid [23] Al-voxel filled
with Ar/Coz (90/10) at 1 bar.

As expected, only a small amount of the photon energy is deposited in the gas volume indepen-
dently of the its initial energy.

Since the wide energy spectrum photons only generates a low energy tail on the PHS, the energy
threshold method to discriminate against background remains a good method as well for solid
converter based neutron detector, e.g. '°B. Even if the 1B PHS is extended continuously down
to low energy, one can obtain a good «-ray rejection by losing only a few neutron events.

In the following sections the ~-ray sensitivity is quantified for the threshold method and al-
ternatives methods, e.g. signal shape analysis, have been investigated to try to improve the
discrimination quality.
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5.4 r~-ray sensitivity measurements

We present here several measurements on the y-ray sensitivity of both °B4C and 3He-based
neutron detectors. We define the detector sensitivity to ~-rays as its efficiency in counting
background events in precise conditions. E.g. one can be interested in comparing the neutron
detection efficiency with respect to the efficiency of measuring +-rays in the same conditions.
Since the background a detector is exposed can be high with respect to neutrons coming from
the main beam, a very low ~4-ray sensitivity is required; e.g. below 1076.

The neutron to background contribution has been decoupled in the PHS and in the Plateau
measurements in order to validate the simulations.

The absolute efficiency for neutrons and for v-rays has been measured for both a °B,C and
3 He-based neutron detector.

5.4.1 'YB,C-based detector PHS

The measurement of the actual contribution given by neutrons and by ~-rays to the PHS allows
to validate the GEANT4 simulations and prove the background event contribution mainly con-
cerns the low energy region of the PHS.

To decouple the neutron and the background contributions to the PHS one can measure the
detector output, screening either one or the other radiation. This measurement was performed
on CT2 at ILL with a 2.5A neutron beam and with an AmBe source. The 24! Am available (see
Table 5.2) has a too weak activity to perform a measurement in a reasonable time given the low
detector sensitivity. Thus we opt for the AmBe of 3.7 - 10° Bq used as vy-ray source. In case of
an AmBe source, the y-ray counts greatly exceed neutron counts.

The PHS was measured with the Multi-Grid detector [23] in one of its voxels. To obtain the
neutron contribution, the region of interest of the Multi-Grid was covered by a 5 cm lead shield
in order to screen the y-rays. To obtain the v-ray contribution, which is mostly given at 60 KeV
because of the 24! Am, the AmBe source was shielded with polyethylene and '°B4C sheets to
thermalize and stop neutrons. Since the background contribution is mainly given at low energy,
we operated the detector at high gain in order to rise low energy events above the threshold.
Moreover, the charge amplifier used has a limited dynamic range, hence high energy events are
saturated.

Figure 5.7 shows the measured PHS and the integral of the number of counts which cross a given
value of the threshold, both for neutrons and «-rays. The neutron spectrum is saturated because
of the neutron capture fragment higher energy yield. The long low energy tail of neutrons is
extended down to zero inside the background. ~-ray contribution is extended under the high
energy region of the spectrum.

The number of neutron counts as a function of the threshold is almost constant; in increasing
the detector gain there is no actual raise of the neutron events. If a threshold of 200 ch.n. or
100 ch.n. is chosen, there is not much to gain in neutron efficiency. On the other hand, the
behavior for background events is exponential. If a slightly different threshold is chosen there is
a huge counting difference. A trade-off has to be found to maximize the signal to noise ratio of
the detector.

The argument chosen is here arbitrary because the actual neutron and ~-ray flux is unknown.
We will quantify accurately the detector sensitivity in Section 5.4.3.

In Section 4.3 of Chapter 4, we used the 480 KeV ~-ray emitted by the '°B neutron capture
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Figure 5.7: PHS measured for neutrons and ~-rays with the Multi-Grid detector (left). The evolution of the
number of counts over a threshold as a function of the threshold (right).

reaction (see Table 1.69) to measure neutron absorption in the layer together with reflection.
Similarly, in order to decouple properly the two contributions to the PHS given by neutrons and
~-rays, we exploit again the emission of this 480 KeV photon. To measure the 480 KeV v-ray
we used a Nal scintillator. Its energy calibration can be obtained as explained in Chapter 1.
Every time a 480 KeV ~-ray is measured this is the signature that there was a neutron converted
in the 19B4C layer or in other B4C' (shielding, etc.).

Figure 5.8 shows the MWPC detector used and the setup of the experiment. The detector is
operated at atmospheric pressure of CFy. An Al-blade, coated with 1 um 9B,C, was placed in
a 20 x 8 cm?> MWPC. The converter layer is facing the anode plane. All the anodes are connected
together to a single charge amplifier. The bias voltage is applied through a decoupling capacitor
and it is 1000 V.

The wide spectrum v-ray background had to be shielded by a lead housing surrounding the Nal
detector. Since most of the neutron shielding at ILL is made out of Cd or '°B,4C sheets, the
contamination of our measurement involves as well the 480 KeV region. It was really crucial to
set up the shielding properly.

The MWPC and the Nal detectors were readout by the same data acquisition system and events
were assigned a timestamp. This makes possible to examine both singles and coincident spectra
in the same measurement. The total rate in the MWPC was 2.1 K H z (neutrons and background
v-rays) and the rate of the Nal with the gate around the 480 KeV photo-peak was 97 Hz. This
rate is mostly given by the environment. Because of the small fraction of solid angle covered,
only a few of those counts come from the MWPC. One coincidence is obtained by looking at
an event in the 480 KeV photo-peak by the Nal scintillator when the MWPC gives a signal
over the threshold set over the electronic noise level. The coincidence rate is 8.3 Hz. The gate
around the photo-peak was chosen to decrease the possibility to have a random coincidence with
a background photon of different energy from 480 KeV .

The 1YB,C detector was operated at a standard gain (HV = 1000V) and at a very high gain
in order to make it more sensitive to photons.

Selecting the 480 KeV peak in the Nal in coincidence with a signal in the MWPC allows to
identify true neutron conversion events, even those whose energies normally make them indis-
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Figure 5.8: Setup used to measure the '° B,C' PHS in coincidence with the emission of the '° B neutron capture
y-ray.
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Figure 5.9: '°B4C detector PHS (left) and Nal scintillator energy spectrum (right) with and without 480 KeV’
photon coincidence.

tinguishable from v-rays. These are shown in blue in Figure 5.9. The probability to detect a
480 KeV photon emitted from the boron layer is of course much smaller than one. However,
since we know that for large energies essentially only neutrons contribute to the spectrum, scal-
ing allows to match the coincident spectrum with the total spectrum. The best scaling factor
turns out to be 210. The difference then corresponds to the spectrum due to all non-neutron
events or neutrons converted in the 6% branching ratio of the '°B capture reaction. In Figure
5.9, the contribution given by the 6% branching ratio a-particle vanishes after coincidence.
The measurement was repeated at higher gain to increase the detector sensitivity to 7y-rays.
The neutron spectrum extends to much larger energies and only its lower part can be measured
without saturation of the amplifier in these conditions. The measurement was operated on the
neutron beam including or not a -ray source of high intensity, i.e. the AmBe source.

Figure 5.10 shows the results. Most of this difference spectrum vanishes when the AmBe source
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is removed, which confirms that it corresponds to the ~v-ray spectrum of Am: predominantly
60 KeV'.
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Figure 5.10: '°B4C detector PHS (lower energy tail) measured in coincidence with the 480 KeV photon with
and without an AmBe source.

We confirm the background energy spectrum mostly involves the low energy region.
The energy spectrum of neutron conversion fragments that reach the gas has no lower limit for
a solid film detector. Therefore any lower level threshold will reject some neutron events. A
minimum required threshold is determined by the end-point of the v-ray spectrum.

5.4.2 '9B,C-based detector Plateau

The fraction of neutrons rejected due to the overlap of the background and neutron spectra can
be estimated in a counting curve measurement. In order to measure the background and the
neutron components to the plateau, we have performed a set of measurements. The measurement
has been repeated in several configurations in order to be able to subtract the single components.
The plateau was measured on CT1 at ILL, with the MWPC containing a single 1°B4C layer
shown in Figure 5.8 and already used for the neutron to 480 KeV ~-ray coincidence in Section
5.4.1.

Figure 5.11 shows the complete setup used to perform the measurements. A neutron beam
(2.5A) was collimated through two B slits at 1.2m distance, to form a 5 x 3mm? footprint
on the detector. An AmBe source, used as y-ray source, was placed on the opposite window of
the MWPC. The neutrons emitted were shielded by a polyethylene and a B4C' sheet (B4C' 3 in
Figure 5.11). We can chose to add a second B4C' sheet (B4C' 1 in Figure 5.11) in order to stop
the neutron beam and then measure the background without affecting the setup unless for the
more v-rays produced by the sheet. We can consider those y-rays to be negligible because of
the solid angle at 1.2 m. Moreover, the measurement was repeated with the B4C sheet after the
second collimation slit and only a slight difference was observed at very high gain.

We performed measurements of the plateau in 5 different conditions. They are listed in Table
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Figure 5.11: Setup used to measure the '° B4C detector plateau.

Setup || beam | B4C 1 | B4C 3 | AmBe | Slit 1 | Slit 2
S1 X X X X
S2 X X X X b'e
S3 X X X
S4 X X X X X X
S5 X X X X X

Table 5.1: Setups used in the measurements (the x means that a specific element was used at the moment of
the measurement).

5.1. S1 is the measurement of the neutron and the background contributions. 52 is as S1
with the addition of the AmBe background. 53 allows to measure the background without
the beam. S5 is the background measurement with the beam on, and S4 with the additional
AmBe contribution. All parts of the setup produced background that has to be subtracted. The
collimation slits produce y-rays when exposed to neutrons. We list here the single contribution
to the counting curve:

Sl=n +S3+T Hysi1 + Vstit2 + YB4C3

(5.1)
55 = S3+T +vaun +vByC1
where n is the pure neutron count, I' the unknown background coming from the environment
due to the presence of the beam, e.g. g1 the 480 KeV ~-rays coming from the '9B-slit 1.
Moreover, S2 = S1 + YamBe, S4 = S5+ YamBe. Where vampe are the y-rays emitted by the
AmBe, mostly 60 KeV'.
The neutron beam was calibrated using the hexagonal detector according to the procedure in
Appendix E. The neutron counting at the detector position was (31850 + 20) Hz. Knowing
the neutron flux allows to normalize the counting curve to get the actual detection efficiency.
The expected theoretical efficiency for a 1 um layer hit at 90° in back-scattering with no energy
threshold (E7y, = 0) is 4.2% (red dashed curve in Figure 5.12).
Figure 5.12 shows the single measurements and the plateaux obtained by substraction. The
plateau obtained in S2 shows a higher ~-ray rising at high voltage with respect to S1.
The AmBe source contribution can be highlighted by subtracting either S2 — S1 or S4 — S5.
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Figure 5.12: Plateau measured in the several configuration listed in Table 5.1.

The neutron contribution can be obtained by:
S1—=55=252—54=n+Ysu2 + 7,03 — VBsC1 (5.2)

apart from the background produced by the second collimation slit (vs;2) and if we assume
vYB,c1 =~ YB,c3- As already mentioned we moved the B4C'1 sheet after the second collimation
slit and no appreciable difference is observed in the plateau.

We expect the pure neutron plateau to saturate to the theoretical efficiency.

Setting the high voltage at the point just before the rise of the y-rays detection (1500 V') results
in approximately 6% fewer neutron counts compared to the maximum of the plateau. Note
however, that a certain threshold level is required also to reject electronic noise. The loss of
6% compares to all neutron events where any finite part of the energy is deposited in the gas,
not to those events that can be detected over the electronic noise level. The equivalent energy
threshold of the noise level becomes smaller and smaller when the voltage and hence the gas
gain rises. The plateau should approach the theoretical efficiency at high voltage.

5.4.3 B,C and 3He-based detectors y-ray sensitivity

We quantify in this Section the actual sensitivity of both 1°B,C and 3He-based detectors to
~-rays. The measurements have been performed in a wide range of «-ray energy. The efficiency
to detect ~-rays of a detector can be measured by using calibrated sources. By knowing the
source activity and the solid angle subtended by the detector, the actual photon flux can be
calculated. The efficiency is the ratio between the number of detection events and the incoming
photon flux [47], [48].

Four ~-ray sources have been used and their activity, main photons emitted with their relative
intensity are listed in Table 5.2. Those four sources allow to explore the energy range from
x-rays up to 1 MeV. We can consider 24! Am, 37C's and °Co three distinguished energy ranges
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source photon energy (KeV) | intensity (%)
133 Bq 4 14.7
(A =1.85-10° Bq) 30.6 31
30.9 57
34.9 15.4
36 3
53 2
79 2.6
81 32.9
276 7
303 18
356 62
383 9
2 Am, 13.9 14.3
(A=3.5-10° Bq) 26 2.3
60 35.9
B7Cs 31 2
(A=2-10° Bq) 32 3.8
662 85
0Co 1173 99.85
(A =2.31-10* Bq) 1332 99.98

Table 5.2: ~-ray sources activity, main photon emitted and their relative intensity.

from low energy up to above 1 MeV; while 133 Ba shows a low-medium energy range emission.
We compare two detectors: the 1°ByC-based Multi-Grid [23] and the 3 He-based hexagonal de-
tector used in Appendix E to quantify the neutron flux. The latter is filled with 3 bar of > He and
1.5bar of C'Fy. Multi-Grid was filled with 1bar of C'Fy. The hexagonal detector is composed of
37 hexagonal tubes with a 7mm diameter arranged in a honeycomb formation.

Efficiencies or sensitivities to y-rays are defined as the probability for a photon incident on a
detector element (such as a tube) to result in an event confused with a neutron detection event.
Plateau measurements have been used for this since in order to measure a pulse height spectrum,
either the threshold needs to be set extremely low, or a high bias voltage needs to be used. At
a typical gas amplification used in neutron detection, the threshold cannot be set low enough
to study ~-ray signals due to electronic noise. Increasing the bias voltage results in a high gas
gain but in turn leads to poor energy resolution.

Each detector was exposed to the sources and the actual photon flux was determined by calcu-
lating the solid angle the detector was subtended [49], [50], [51].

The normalized neutron plateau at 2.5A for both detectors was measured for comparison. It
was determined by knowing the actual neutron flux (see Appendix E).Figure 5.13 shows the
results; where the efficiency is given per tube.

The disconnected points at the left ends of the curves are upper limits, sensitivity can be lower
than the plotted points, where no statistically significant counts could be detected over back-
ground.

The 33 Ba and 24! Am source can be considered as low energy sources, whereas 137C's and °°Co
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Figure 5.13: Plateau measurements with the Multi-Grid '°B detector (left) and a Multi-Tube ®He detector
(right) with neutrons (2.5A) and ~-ray sources. Detection efficiency per tube is shown. The nominal operating
voltages are 1600V and 1400 V' respectively.

as high energy sources. Note that (see Figure 5.13) the difference between low and high energy
photons is only visible at high gain for both detectors. As the bias voltage increases the count
rate due to the %°Co source exceeds that of 33 Ba since a larger number of interactions, primarily
in the solid elements of the detector, contributes with higher energy electrons.

In a realistic configuration where a gas detector is set up to detect neutrons, the energy thresh-
old should be set so that the signals from photons are rejected while those from neutrons are
not. No sharp cut-off for the highest pulse height resulting from a specific primary particle
energy exists due to the statistical nature of gas amplification and charge transport. The final
contamination due to y-ray signals will be due to those events where a ~-ray signal including
statistical fluctuation is over the threshold. This is most likely to be due to a low-energy ~-ray
(since the specific energy loss is then high), such as 60 KeV. At the first glance this fact is
encouraging since it is much easier to shield low-energy photons. Note however, that interac-
tions of high-energy photons as well as nuclear reactions, such as neutron capture or decay of
activated materials, often result in emission of z-rays and internal conversion electrons which
have just the energy that is most likely to contribute to background. It is therefore important
to carefully consider the external radiation environment as well as the secondary sources that
may exist in the immediate vicinity of the detectors.

The discrimination between neutron and photon signals presents a challenge in many types of
neutron detectors. A high level of discrimination can be reached with the conventional 3He
tube. Concerning the !B thin film detectors, we have found that the y-ray rejection need not
be lower in these detectors than in 2He tubes, if we allow for a small loss in neutron detection
efficiency. Less than < 1079 is easily reached: one needs to lower the efficiency only by about
0.5%.

5.4.4 Pulse shape analysis for neutron to v-ray discrimination

In this Section we want to investigate the possibility to achieve a greater neutron to -ray
discrimination than just a PHS threshold by also processing the signals shapes.
While several methods have been developed in order to discriminate between neutrons and ~-
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rays for neutron scintillators [52], [53]; it is not the case for neutron gaseous detectors. In a
scintillator the time structure of the light output follows two completely different behaviors for
neutrons and for «-rays. The technique works well by virtue of the fact that for gamma initiated
scintillations there is much more fast decay constant light output than slower decay constant
light output as compared to the same relative intensities in light output from neutron induced
scintillations [53].

In a gaseous detector the main difference between neutron and ~-ray signals is the space charge
density created. While a neutron originates heavy particles which ionize the gas, a y-ray produces
a light electron. The way a particle or an electron ionizes the gas is different for two reasons: the
electron generally carries less energy than the particles and its energy loss behaves differently.
However, the tracks in gas, for electrons and capture fragments, can be both oriented randomly;
this makes it difficult to find a discrimination criterion that is valid for the multiplicity of cases
that can occur.

To study the shape of the output signals we use the same MWPC used previously and shown in
Figure 5.8. We operate the detector at a high gain in order to have an intense ~-rays sensitivity:
ie. 1750V (see Figure 5.12). This voltage corresponds to a region of limited proportionality
of the gas amplification which is in between the proportional and Geiger detector operational
modes. For such a reason in Figures 5.15, 5.16, 5.17 and in Figures 5.18, 5.19 and 5.20 in the
PHS we can not recognize the energy carried by the fragments.

Since we do not know a priori the signal time structure, two amplifiers have been chosen to
perform the analysis: a fast one with 3ns integration time and a slower one of 1 us.

We place a 5cm lead shield before the detector in order to decrease the ~-ray background
originated from the collimation slits. We record 20000 signal traces each time. The signal
processing was then done off-line.

We use in three different configurations, listed in Table 5.4.4: with and without the neutron
beam and with and without the additional background originated by the AmBe source.

5cm I\ead B,C3
heutron beam | |
| JII
Bslit1  19BSlit2  MWPC

Figure 5.14: Setup used to perform the signal shape analysis.

We can assume that S1 is a measurement of mostly neutrons, S2 of mostly the y-rays from the
AmBe source and S3 of both contributions.

The off-line analysis was performed by looking at the signal structure in terms of charge yield
and time-over-threshold (TOT). For what concerns the 1 us amplifier, the signal amplitude is
proportional to the charge created in the gas volume because its integration time is longer than
the physical charge collection in the detector. On the other hand, for the 3ns amplifier the
charge is given by the integral of the signal over time. The time-over-threshold is the time a
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Setup || beam | Lead | B4,C 3 | AmBe | Slit 1 | Slit 2
S1 X X X X
S2 X X X X X
S3 X X X X X X

Table 5.3: Setups used in the measurements (the x means that a specific element was used at the moment of
the measurement).

signal stays above a given threshold. The latter was set at the lowest value possible according
to the amplifiers noise level (3 mV for both).

In each figure that follows, is shown a charge spectrum on the top-left corner, a TOT spectrum
on the top-right corner. A charge versus TOT is shown in each figure in the bottom plots: one
scattered and one of intensity normalized to the total number of events.

Figures 5.15, 5.16 and 5.17 show the signal analysis for the three sets of measurements for the
slow amplifier.
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Figure 5.15: Measurement of S1 (beam only) - amplifier 1 us.

By comparing Figure 5.15 with Figures 5.16 and 5.17; we note that in the correlation plot TOT-
PH the ~-ray contribution is mixed with the neutron one as it is in the PHS. The low TOT
events for neutrons and v-rays (below 1.5 us) are just as indistinguishable.

We repeat the analysis for the fast amplifier. Figures 5.18, 5.19 and 5.20 show the signal analysis
for the three sets of measurements for the fast amplifier.

In Figures 5.18 the contribution is mostly given by neutrons. In the TOT spectrum we notice
two peaks corresponding to the a-particle and the 7 Li-fragment as it is in the PHS.
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Figure 5.16: Measurement of S2 (AmBe source only) - amplifier 1 us.
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Figure 5.17: Measurement of S3 (beam and AmBe source) - amplifier 1 us.
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Figure 5.19: Measurement of S2 (AmBe source only) - amplifier 3 ns.
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Figure 5.20: Measurement of S3 (beam and AmBe source) - amplifier 3 ns.

There is no physical difference in the signal shape using the TOT that can be exploited to
discriminate against background. The amplitude discrimination remains the best way to reduce
~-ray sensitivity of neutron detectors based on a solid converter.
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Chapter 6

The Multi-Blade prototype

I have to thank my group head, Bruno Guérard, who pushed me a lot for the prototype construc-
tion and believed in the success of this prototype concept. I also want to thank Jean-Claude
Buffet and Sylvain Cuccaro for their important suggestions and the work that made possible
the construction of the Multi-Blade prototype.
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6.1 Detectors for reflectometry and Rainbow

Because of its favorable properties,  He has been the main actor in neutron detection for years.
Nowadays its shortage pushes many researchers to investigate alternative ways to efficiently
detect neutrons. For large area detectors, i.e. ToF spectrometers, several squared meters in
size, it is crucial to find an >He replacement. At ILL efforts have been made to develop the
Multi-Grid [23]. This is a large area neutron detector that exploits up to 30 1°B,C-layers in a
cascade configuration; its optimization has already been explained in details in Chapter 3. On
the other hand, there are several neutron instruments that can work with small detector size.
A neutron reflectometer, such as Figaro at ILL needs a detector surface of 400 x 250 mm?. For
these applications a limited amount of 3 He is required and its shortage is not the main issue to
be addressed.

Neutron scattering science is still growing its instruments’ power and together with that the
neutron flux a detector must tolerate is increasing. The peak brightness at ESS, the new Euro-
pean Spallation Source, will be higher than that of any of the short pulse sources, and will be
more than one order of magnitude higher than that of the World’s leading continuous source.
The time-integrated brightness at ESS will also be one to two orders of magnitude larger than
is the case at today’s leading pulsed sources [54], [55].

The Multi-Blade concept wants to address the counting rate capability of 3 He-based detectors
for high flux applications. We want to develop a detector suitable for neutron reflectometry
instruments.

The main goal in neutron reflectometry instruments is to achieve a high angular resolution at
high counting rates.

A neutron detector for a reflectometry instrument is in general compact in size and the spatial
resolution required is of the order of 1 mm in order to achieve the needed angular resolution.
Figure 6.1 shows a reflectometry instrument schematic. Neutron reflection by a sample is mea-
sured as a function of the momentum transfer ¢, as shown in Section 1.5.4, the value of ¢ can
be obtained from Equation 1.88 (¢ = 4Zsin(0)). If 0 is kept fixed the reflectometer works in
ToF-mode and the neutron beam is chopped to get the ToF information that leads to A. If, on
the other hand, the neutron beam is monochromatic and 6 is scanned, the reflectometer works in
monochromatic-mode. A detector for a reflectometer is characterized by a non-uniform spatial
resolution. Referring to Figure 6.1, a high spatial resolution is only needed for the y direction.
This is true because for a large number of applications only the specular reflection is needed and
the other coordinate (z) is generally integrated over.

A PSD (Position Sensitive Detector) is necessary when not only specular reflection occurs but
one wants to quantify more sample features, e.g. off-specular reflection arising from the presence
of in-plane structures. It is more important to know the actual position of the reflected intensity
on the detector to determine 0 for off-specular studies.

In order to give the specifications of a neutron reflectometer we list some features of Figaro at
ILL. The neutron wavelength range explored is between 1A and 30A. The sample to detector
distance can be varied between 1.2m and 2.9m. The white beam flux before the instrument
was recorded as 1.4 - 101 neutrons/cm?s; the flux on the sample using the widest chopper pair
with collimation slits openings of 0.8 x 40 mm? and 0.4 x 30 mm? gives a neutron count rate of
4-10* neutrons/cm?s on a sample area of 40cm?. The Figaro detector is a PSD of 400 x 250 mm?
constructed from a single block of aluminium, with 64 square (7mm side), 25¢m long channels.
Each tube is filled with 8 bars of 2He and 2 bars of CFj and contains a 15 um Stablohm wire
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Figure 6.1: A neutron reflectometry instrument schematic.

of 250 mm active length, which detects neutrons by charge division. The vertical position reso-
lution is 2mm and the horizontal position resolution is 8 mm [56].

In a 3He-based detector the counting rate is limited by the space charge effect, as the ions
created by each avalanche need more time, compared to electrons, to be evacuated. At high
rate they tend to accumulate and consequently they decrease the actual electric field in the
gas volume, and as a result the detector loses efficiency. If Figure 6.1 represents the Figaro’s
detector, the 3 He-tubes are placed vertically along ¥ in order to split the reflected intensity over
several tubes.

Morever, 2He detectors of this type are limited in spatial resolution for two main reasons. The
first is that 3He-based detectors are gaseous detectors which exploit anode wires for read-out;
in one direction wires can not be mounted with a mm spacing because this causes mechanical
issues, on the other direction, along the wire, the spatial resolution that can be achieved by a
charge division read-out is limited at about 2mm on a 30cm wire length, i.e. ~ 0.7%. The sec-
ond reason limiting the spatial resolution is the gas pressure that can be reached. To reduce the
particle traces, and thereby increase the spatial resolution, those detectors are operated at high
gas pressure, resulting in mechanical constraints. The higher the gas pressure, the more severe
are the mechanical problems arising in the detector vessel conception. There is a reasonable
limit in the resolution the can be reached with this technique, around 1 mm [57].

In many areas of soft and hard matter research science, the amount of material to investigate is
rather limited. Partly because the fabrication of larger samples is too expensive or not feasible,
yet, partly because the interesting features depend on the size. The development of a neutron
reflectometer optimized for small samples is under study [58]. There is a great deal of interest
in expanding the technique of neutron reflectometry beyond static structural measurements of
layered structures to kinetic studies [59]. The time resolution for kinetic studies is limited by
the available neutron flux.

For both working modes (monochromatic and ToF) a reflectometer is operated, the actual neu-
tron flux reaching the sample is a small fraction of the incoming neutron beam. For monochro-
matic instruments, this limitation arises from the monochromators used to get a neutron beam
of a defined energy. For instruments which use the ToF technique the flux is limited by the
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choppers. E.g. the reflectometer D17 [41] at ILL has a transmission of only 1072 at about 2A
if a wavelength resolution AX/\ of 1% is needed.
The resolution in momentum transfer ¢ is related to the neutron wavelength A and the angular

resolution in 6: 9 2 2
Agq AN Af
/1) = (=2 — 1
< q ) < A > +( 0 > o

In ToF, A\ is determined by the chopper settings and time resolution, and in a monochromatic
approach, by the monochromator resolution. When only considering specular reflection the an-
gular resolution Af is determined by collimation and beam divergence.

In [59] and [14] a new instrument layout is presented: Rainbow. This instrument would involve
a prism refraction to deduce the wavelength in place of choppers thus providing a large gain in
useful neutron flux. Hence, it open the possibility of sub-second kinetic studies. In this new
approach, as we will discuss, Af in Equation 6.1 is now determined also by the detector spatial
resolution and its distance to the sample.

By using the reflectometer D17 [41] at ILL, the actual measurement time of 1 s is only possible
by loosening the g-resolution of the instrument: between 4% (at about 20 A) and 10% (at about
2 A). The advantage of using a prism would be to measure faster and without the cost in reso-
lution. The technique would be of equal value for experiments with sample areas much smaller
than can be practically measured at present.

Figure 6.2 shows a schematic of Rainbow. A white and continuous neutron beam is collimated
before the sample. A standard distance used between the collimation slits is about D = 3m.
The prism is placed after the sample and is calibrated by passing the direct beam through the
prism alone to measure the deflection of the beam due to refraction. The deflected angle ¢
by which a certain neutron wavelength is refracted depends only on the prism angle o and the
scattering length density of the prism material. It is given by Snells law: ¢ = arccos (n cos (@)).
Where n is refractive index in Equation 1.81 which depends on the neutron wavelength A and
« is the angle of the beam to the prism surface.

With a sample in the direct beam, the prism and the detector need to be rotated such that the
sample reflection strikes the center of the prism and is refracted. The intensity of the refracted
spectrum is measured as a function of the deflection. For specular reflection, not only the in-
coming beam is well collimated but also the reflected beam before refraction. It then reaches
the prism surface and each wavelength is refracted at unique angle .

In a practical situation, we should consider a spread in the incoming angle from the collimation,
the imperfect flatness of the prism surface, and the resolution of the detector.

In [14] it has been demonstrated that the detector spatial resolution, in one direction, has to be
of about 0.3mm to reach AN/ = 5% resolution at 2 A.

On the actual D17 instrument [41] one can implement the "rainbow” principle. Its detector
spatial resolution is Ax = 2mm. In order to get a sufficiently high angular resolution for the
reflected beam, the detector is positioned as far as possible from the sample, i.e. about 3m.
Due to practical limits in He detector resolution and collimation, a resolution of AN/\ < 5%
at short wavelengths is probably not practical. Therefore, the development of an area detector
with Az = 0.2mm required in one dimension only (the other dimension can be summed) is
crucial [59].

Although 2He shortage affects scientific research; this is not the main issue for neutron reflec-
tometry applications. A promising alternative, to accomplish the high spatial resolution and the
high count rate capability, is to exploit solid '° B-films employed in a proportional gas chamber.
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collimation slits
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Figure 6.2: Schematic of the reflectometer Rainbow [14] involving a prism to deduce the neutron wavelength
by refractive encoding.

The challenge with this technique is to attain a suitable detection efficiency which is about 63%
for the Figaro detector at 2.5A. This can be achieved by operating the °B conversion layer
at grazing angle relative to the incoming neutron direction. The Multi-Blade design is based
on this operational principle and it is conceived to be modular in order to be adaptable to
different applications. A prototype has been developed at ILL and the results obtained on our
monochromatic test beam line are presented here. A significant concern in a modular design
is the uniformity of detector response. Several effects might contribute to degrade the unifor-
mity and they have to be taken into account in the detector concept: overlap between different
substrates, coating uniformity, substrate flatness, parallax errors, etc.

6.2 The Multi-Blade concept

The Multi-Blade concept was already introduced at ILL in 2005 [60] and a first prototype was
realized in 2012 [61]. Its design is conceived to be modular in order to be versatile to be applied
in many applications on several instruments. The Multi-Blade exploits solid '° B-films employed
as a neutron converter in a proportional gas chamber as in [23]. The challenge with this tech-
nique is to attain a suitable detection efficiency. This latter can be achieved by operating the
0B conversion layer at grazing angle relative to the incoming neutrons direction. Moreover the
inclined geometry leads to a gain in spatial resolution and as well in counting rate capability
compared to 3He detectors.

Figures 6.3 and 6.4 show the Multi-Blade detector schematic, it is made up of several identical
units called cassettes. Each cassette acts as an independent MWPC (Multi Wire Proportional
Chamber) which holds both the neutron converter and the read-out system. The fully assem-
bled detector is composed of several cassettes inclined toward the sample position. The angle
subtended by each cassette looking at the sample position is kept constant in order to maintain
the spatial resolution and the efficiency as uniform as possible.

The cassettes must be arranged taking into account an overlap between them in order to avoid
dead space over the whole detector surface. Moreover, once the instrument geometry changes
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the cassette arrangement in the detector should also change; if the sample-detector distance
changes, the cassettes inclination should change too, if we want to avoid dead spaces.

cassette----- 3 L

Top View

'._',_.—_ £y

ro——
Incoming  gample
neutron

beam

Figure 6.3: The Multi-Blade detector sketch (top view).

Figure 6.4: Several cassettes arranged in a cylindrical configuration around the sample position.

Each cassette should contain one or more neutron converters, e.g. '9B4C layers, and the read-
out system that has to assure the two-dimensional identification of the neutron event. Figure
6.5 shows the cross-section of the cassette concept for three different configurations.

In the A and B solutions, in each cassette a single converter layer is facing each read-out system.
The read-out is a wire plane and a strip plane placed orthogonally. The space between the
strips and the converter is filled with stopping gas at atmospheric pressure to ensure the gas
multiplication. The converter layer as well is polarized and together with the strip plane acts
as a cathode; the wire plane, on the other hand, acts as an anode plane.
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In the C configuration a single wire plane performs the two-dimensional read-out through charge
division on resistive wires. A single read-out system is facing two converter layers. The space
between the two converters is filled with stopping gas. The two converter layers act as cathodes.

Top View — 1 layer Top View -2 layers TapViews2 layers

resolution

resolution}

¢ resolution :

Figure 6.5: Cross-section of one cassette. Three options are shown: A, a single converter layer; B and C, with
two converters.

Referring to configurations A and B, the identification of the position of a neutron event is the
coincidence of wire and strip hits. The spatial resolution given by the strips does not depend on
the inclination of the cassette. The spatial resolution given by the wire plane increases as the
angle with the incoming neutron direction decreases. E.g. if the resolution is given by the wire
pitch, the actual resolution is improved by a factor about 10 at 6 = 5° (1/sin(f = 5°) ~ 10).
Moreover, the actual neutron flux over the detector would be divided by the same factor in-
creasing its counting rate capability; the same flux is shared by several wires.

While the spatial resolution is improved by inclination in both options A and B in Figure 6.5, all
the advantage of working at grazing angle is lost in the C configuration. In [27] can be found the
actual implementation of such a detector. In options A and B the charge generated by neutron
capture fragments in the gas gives a signal on the facing wires and strips. In the solution C, for
a given incoming neutron direction there will be two regions on the converters where neutrons
are converted. The smaller the angle at which we operate the detector, the larger is the dis-
tance between those two regions. The uncertainty on the conversion point is then given by this
distance which is much bigger than the wire pitch. On the other hand, option C has half the
number of read-out channels as compared to A and B. However, for us, high spatial resolution
is crucial.

We decided to concentrate on the implementation of the option A and B.

In Chapter 4 we showed how the solid converter layer efficiency increases as a function of its
inclination and how much neutron reflection affects that efficiency. From reflectivity measure-
ments we learnt for a common used neutron wavelength range, e.g. from 1A to 30A, that all
the effects due to neutron reflection from '°B4C' are negligible down to grazing angles of § = 2°.
Therefore reflectivity is negligible for any kind of holding substrate that results into different
converter roughness. As a result we decided to operate the Multi-Blade at either § = 10° or
f = 5° in order to maximize the detection efficiency without any reflection concerns and keeping
the mechanics simple.

Figure 6.6 shows the detection efficiency for °B,C layers (p = 2.24 g/ecm?) calculated according
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to the model developed in Chapter 3 and neglecting neutron reflection. An energy threshold
of 100 KeV is applied. We considered two possible configurations: options A and B in Figure
6.5, with one converter or two. On the left we show the neutron detection efficiency, at 2.5A,
as a function of the converter layer thickness for the solutions A and B. While the efficiency
shows a maximum for the two layer option, it is saturated over 3 um for the single layer. The
single converter option can attain a maximum efficiency of 28% at 10° and 44% at 5° (2.5A)
to be compared with the double-layer efficiency of 37% and 54% respectively. The addition of
the second layer, at & = 5° leads to an increase of the efficiency of about 10% with respect to
the solution A. The advantage of having only one converter is that the coating can be of any
thickness above 3 ym and the efficiency is not affected, while for the two layer option its thick-
ness should be well calibrated. Moreover, in the two layer configuration the substrate choice is
also crucial because it should be kept as thin as possible to avoid neutron scattering and this
leads to possible mechanical issues. On the solution A, the substrate choice can be more flexible
because it has not to be crossed by neutrons.

On the right in Figure 6.6 we show the efficiency as a function of the neutron wavelength for
the the single layer of thickness 3 um (configuration A). The Figaro’s detector efficiency [56]
efficiency is also plotted, it is a 3He-based detector made up of 6.9 mm tubes filled at 8 bars.
In the plots shown the detector gas vessel Aluminium window is also taken into account as a
neutron loss. For the Figaro’s detector we used a 5 mm thick window, and, since the Multi-Blade
detector will be operated at atmospheric pressure, we used a 2mm window. >He-based detec-
tors’ efficiency can be increased by increasing the 3 He pressure in the vessel; on the other hand,
for a solid converter based detector the gas acts only as a stopping means, hence its pressure can
be kept at atmospheric values. Consequently the gas vessel construction has less constraints.
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Figure 6.6: '°BsC layers (p = 2.24g/em?®) detection efficiency at 2.5A as a function of the layer thickness
for the options A and B for three inclinations (left), efficiency as a function of the neutron wavelength for three
inclinations of a single 3mum layer (right). An energy threshold of 100 KeV is applied. The efficiency of the
Figaro’s detector is shown as well (6.9 mm tubes filled with 8 bars of ®He).

In each of the solutions proposed for the cassette concept, see Figure 6.5, the read-out system
has to be crossed by neutrons before reaching the converter. The mechanical challenge in the
read-out system construction is to minimize the amount of material on the neutron path to
avoid scattering that can cause misaddressed events in the detector.
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Figure 6.7 shows four cassettes. They have to overlap to avoid dead spaces and the event loss,
due to the zone where we switch the cassette, should be minimized. At the cassette edge electric
field distortions and structure holding materials can cause a loss in the efficiency and conse-
quently deteriorate the detector uniformity.

In the prototype realization all these problems have been taken into account, their solutions will
be explained in the next Section.

cassette Top View

switohing point
o
overlap

neutron beam

Figure 6.7: Four cassettes disposed one after the other. Their overlap and the switching region between one
and an other is an important aspect to be studied.

6.3 Multi-Blade version V1

6.3.1 Mechanical study

The prototype was conceived to clarify the advantages and disadvantages of the options A and
B shown in Figure 6.5.

The detector works as a standard MWPC operated at atmospheric pressure stopping gas such
as Ar/COy (90/10) or C'Fy.

Since we want to avoid neutrons to be scattered before reaching the converter layer, we need to
minimize the amount of matter that has to be crossed by neutrons: the read-out system and
the cassette window.

Figure 6.8 shows a cassette drawing. An Aluminium substrate of thickness 0.5 mm is coated on
both sides by a '°B,C-layer, i.e. a blade. One layer will work as a back-scattering layer and the
second as a transmission layer. The converter is surrounded symmetrically by two polyimide
PCBs. Each of them holds a cathode strip plane and a anode wire plane. The converter layer
substrate is grounded and it acts as a cathode plane. Therefore a half cassette is a complete
MWPC containing one neutron converter layer and a two-dimensional read-out system.

The entire structure is supported by an Aluminium U-shaped holder. The latter shape was
conceived to remove any material that can scatter the incoming neutrons. Moreover, each holder
presents two gas inlets in order to supply the stopping gas directly inside the gap between the
converter and the PCBs. The exhausted gas will flow out from the frontal opening of the cassette
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Figure 6.8: Exploded and assembled view of a cassette.

inside the gas vessel.

Figure 6.9: Detail of a cassette: the two polyimide PCBs surrounding the coated blade.

Figure 6.9 shows the detail of an assembled cassette. The polyimide PCBs have to be crossed
before neutrons can be converted, hence, in order to reduce the amount of material that can
induce neutron scattering, and thus misaddressed detected events, those PCBs are as thin as
possible according to the mechanical constraints in their inner active region. The strips are
deposited on the polyimide and the anode wires are stretched orthogonally over the strip plane.
The copper strips are 0.8 mm wide and spaced by 0.2 mm; tungsten wires are 15 um thick and
they are spaced by 2.5mm. The final electric signal is obtained by gas amplification on the
anode wires placed in the gas volume. In order to decrease the number of read-out channels,
anode wires and cathode strips are grouped by resistive chain for charge division read-out. Each
full cassette has then 4 anode outputs and 4 cathodes outputs making 4 charge division read-out
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chains. The resistors are placed on the PCBs surface.

The polyimide PCBs are 60 um thick in the inner region: 25 pm is the polyimide thickness and
35 um is the copper strips thickness.

The sensitive area of each cassette is 10 x 9 cm? but, since it will be oriented at 10 ° with respect
to the incoming neutron direction, the actual sensitive area offered to the sample is given by
(10em - sin(10°)) x 9em = 1.7 x 9em?. As a result, the actual wire pitch, at 10°, is improved
down to 0.43mm.

The detector will be installed to have the better resolution in the direction of the reflectometry
instrument collimation slits; i.e. the cassettes, which can be mounted either horizontally or
vertically, will be oriented with the wires parallel to the instrument slits.

Figure 6.10 shows a drawing of 8 cassettes stacked one after the other and placed in the gas
vessel.

As already mentioned, the main issue to be addressed in the final detector is the uniformity,
as soon as it is made of several units, their arrangement is crucial to get a uniform response in
efficiency. A misalignment in one of the modules can give rise to a drop in the efficiency or dead
zones.

The cassettes have to be arranged in order to overlap to avoid dead zones. For this reason this
detector is suitable for fixed geometry reflectometry instruments, where the distance between
sample and detector is kept constant and the arrangement does not change.

Figure 6.10: A 8-cassettes Multi-Blade in its gas vessel.

The final prototype will be mounted in a gas vessel, see Figure 6.10, together with the gas
distribution unit which splits the inlet in the several cassettes, and the electronic connections.
Since the gas is flushed cost effective materials can be used because their outgassing is not an
issue.

The presented prototype allows to study both the single layer and the double converter solutions.
Its realization, advantages and mechanical issues, will be explained in the following Section.

6.3.2 Mechanics

The first prototype (V1) consists of four cassettes operated at 10°. Given the cassette active
region size, the prototype active area, considering their overlap is about 6 x 9 cm?.
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Figure 6.11 shows a polyimide PCB. The latter is composed by a stack of three layers: two
thick PCBs where in the middle is fixed a 25 ym polyimide foil. The inner part is soft and the
external part serves as a holder. 86 copper strips are deposited on the surface of the thin region
(see Figure 6.12).

39 anode wires (37 active wires and 2 guard wires) are mounted and soldered on pads at 2mm
distance from the cathode plane. Both for anodes and for cathodes a resistive chain is soldered on
the rigid PCB. The total resistance is 6 K€ for the anode chain and 8 K2 for the cathode chain.
At the wire plane edge a guard wire was installed to compensate the electric field distortion,
hence this wire will not produce any signal.

Figure 6.11: A polyimide PCBs where anode wires are mounted orthogonal to the cathode strips.

The total gap between the converter and the cathode plane, i.e. half cassette width, will be about
4 mm, thus any deformation of either the substrate or the strip plane will produce a variation in
the local electric field produced between the anode plane and cathodes. Consequently where the
cathode is closer to the wire plane the detector will manifest a higher gain. This effect mainly
degrades the uniformity over the cassette surface. The overall uniformity on the whole detector
surface is then degraded by the single cassette uniformity and their arrangement in the space:
overlap and switching from one to another.

It is crucial to control the flatness of both the substrate and the PCB. The first manufactured
PCB was composed of a thin polyimide held on three sides by the rigid PCB. The provider was
not able to assure the polyimide flatness with this design. We changed the PCB design in order
to be able to pull on both sides and restore its flatness. The polyimide is held by only two of
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Figure 6.12: Detail of a polyimide PCBs: resistors for charge division link the wire pads where anodes are
soldered.

its sides (see Figure 6.11). The PCB is held by a tool (see Figure 6.11) that allows to stretch
the foil before being mounted on the Aluminium holder. This tool allows also to mount wires
on the PCB keeping the system under tension. The 15 um tungsten wires are mounted on the
PCB under a tension of 35 g. Once wiring is over, the PCB can be installed on the holder.
Figure 6.13 shows the Aluminium holder where the double side coated substrate with °B4C
[37] is inserted. In order to keep the wire tension, the PCB, without removing the stretching
tool, can be placed on the holder. The holder and the PCBs present four different fixation screw
shifted by 0.25mm from each other. The PCB can be screwed on the holder according to its
actual size after stretching. This ensures the right tension on the wires and the flatness of the
cathode plane.

As for the read-out plane, the converter holding substrate must be flat too. After sputtering,
between the Al-substrate and the 'YB,C coating, a significant residual stress remains due to
the difference in the thermal expansion coefficient of Al (~ 23.5-10751/K) and B4C (~
5.6 -10791/K). When they are cooled down to room temperature the Al contracts more than
10B,C. Experiential evidences of that have been observed: on single side coated substrates, the
un-coated side is shorter than the coated side, resulting into a bending of the blade. When a
double-side coated blade has to be inserted into the holder (see Figure 6.13) the constraints on
the sides makes the blade bend and unstable. On both sides two PCBs have to be installed
resulting into two identical and symmetrical MWPC.

We wanted to study both option A and B with this prototype but due to the blade mechanical
issue we convert the prototype in a single layer detector.

In order to keep the substrate with the converter flat enough to ensure a uniform electric field,
we mounted it on an Aluminium lid placed where a PCB was removed (see Figure 6.14). We
used a 3 um thickness '°B4C coating instead. The gap between the wires and the converter
was increased up to 6 mm, while the gap between the wires and the strips is about 2mm. The
MWPC is asymmetric. Figure 6.14 shows the four cassettes equipped with the read-out systems
and the converters.

The version V1 of the Multi-Blade detector allowed only to study the single layer configuration
A, as mechanical issues had made impossible the initial configuration B realization.

The number of read-out channels per cassette were reduced from 8 to 4: 2 anode and 2 cathode
outputs.

Four cassettes were stacked at 10° with respect to the beam and parallel to each other. Figure
6.15 shows the detail of the four cassettes stacked from two points of view. We define as the x-
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Figure 6.14: Four cassettes assembled. The read-out PCB is installed on the Aluminium holder.

coordinate where the wire pitch is projected at 10°. The y-coordinate is defined by the direction
orthogonal to the strips orientation.

The four cassettes were then installed in the gas vessel, see Figure 6.16. Each cassette is supplied
by two inlets to let the gas to flow directly inside them. The entrance window of the detector is
the one on the right in Figure 6.16.

The front-end electronics of the prototype is connected outside the gas vessel and consists of a
decoupling circuit and charge amplifiers. A schematic of the whole front-end electronic chain is
shown in Figure 6.17. Both wires and strips are connected in the same way by their resistive
chain, the AC signal is decoupled by two capacitors at both ends from the DC component used
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Figure 6.16: The four cassette assembly in the gas vessel. Each cassette is supplied by two gas inlets. The
detector entrance window is the one on the right.

to polarize the wires at the HV and the strips to the ground potential.

The charge is amplified by charge amplifiers. We used inverting amplifiers of 6 V/pC and 1 us
shaping time for anodes and non-inverting amplifiers of 32V /pC and 2 us shaping time for
cathodes.

Each chain ends into two signal outputs that can be either summed to get the energy information
(PHS) or subtracted and divided to get the positional information.
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Figure 6.17: The Multi-Blade front-end electronics schematic.

Polyimide layers characterization

Transmission measurements on the polyimide layers used in the Multi-Blade prototype have
been performed on CT1 (2.5A neutron beam) at ILL. The neutron beam was collimated and, as
shown in Appendix E, it was calibrated to (122020+80)Hz. The polyimide samples were placed
after the collimation slit in front of a a two-dimensional  He-based detector (BIDIM) placed
at distance D. The detector has an efficiency for 2.5A neutrons of 70%, a spatial resolution of
2 x 2mm? and 26 x 26 cm? active area. A single polyimide layer is composed of a stack of 25 um
thick polyimide and 35 um thick copper strips.

We place different number of layers in front of the BIDIM in order to simulate the increase of
thickness to be crossed by neutrons due to the inclination. An inclination of 10° corresponds to
about 6 layers and 5° to about 12 layers.

We repeat the measurement for two distances between detector and sample: D = 3c¢m and
D = 23 cm. Diffraction from the samples is not isotropic because of the sample structure itself.
Figure 6.18 shows three measurements on a 12 layer sample for the two distances normalized to
the incoming neutron flux (the color scale is in Hz). The cross arising at D = 23 cm is due to
the diffraction through extended fibers which is the polyimide molecule. Those fibers are placed
crossed in the layer manufacturing process.
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Figure 6.18: Scattered neutrons (2.5A) by 12 polyimide layers on the BIDIM detector (26 x 26 cm? active area)
at 23 cm distance (left and center) and at 3cm distance. The polyimide layers are rotated by 45° between the
left and center plots. The color scale is in Hz.
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We calculate the scattered beam by the layers, for the two distances, as the ratio of the counting
rate on the whole detector surface over the incoming neutron flux. The result as a function of
number of layer is shown in Figure 6.19. At D = 3 cm the detector surface covers a solid angle
of 0.398 - 47 sr, and at D = 23 cm of 0.078 - 47 sr.
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Figure 6.19: Percentage of neutrons (2.5A) scattered by polyimide as a function of number of layers. At 3cm
distance the detector covers 39.8% of the full solid angle, at 23 cm 7.8%.

At 10° (that equals about 6 layers) we expect to diffuse at most about 0‘?:;758 ~ 7.5% (at 2.5A)
of the beam assuming the same scattering in 47 sr.

6.3.3 Results
Operational voltage

A counting curve was measured in order to set the right bias voltage to be applied to polarize
the prototype. Each cassette output was connected to get the energy information and then
to measure the PHS. Given the electronic noise, a 25 mV threshold was used for the anode
amplifiers; for the cathode amplifiers we used 100 mV. Figure 6.20 shows a PHS for both strips
and wires, compared with a PHS calculated according to Section 3.6 at 1000 V.

The working voltage chosen through the counting curve is 1000 V.

Gain

The Multi-Blade prototype is operated in proportional mode, its gain has been measured on CT2
at ILL. The neutron flux of (15280 4 20)neutrons/s (2.5A) was quantified using the Hexagonal
detector (see Appendix E).

The prototype was polarized at 1000 V. Its 3 um °B4C converter layer was exposed to the beam
orthogonally and ®; = (904 £ 2)neutrons/s were counted. It results into a ¢ = (5.92 £ 4)%
detection efficiency. The current flowing through the detector was measured and it is about
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Figure 6.20: PHS measured on strips and wires at 1000 V and calculated PHS (left). The Multi-Blade detector
plateau (right).

Lprop. = 180 pA.

The detector operational voltage was set to 100 V. The measurement of the current output was
repeated operating the detector in ionization mode, resulting into I, = 3.1 pA.

The average charge created for a detected neutron both proportional and ionization modes are:

I TOp. Iion.
Qurop. = pq>dp =199 fC/neutron, Qion. = o, = 3.4 fC/neutron (6.2)

This results into a gain of about G = 58 at 1000 V.

Efficiency

Detection efficiency of the Multi-Blade prototype V1 has been measured on CT2 at ILL by using
a collimated and calibrated neutron beam of wavelength 2.5A.

The neutron beam was calibrated using an 3 He-based detector. The procedure is explained in
details in the Appendix E. After the calibration, the neutron flux the Multi-Blade was exposed
to is (15280 =+ 20) neutrons/s over an area of 2 x 7mm?.

The efficiency was measured for the following bias voltages 950V, 1000V and 1050V. The
efficiency was measured on the four cassettes under the angle of 10° and then averaged. The

results are listed in Table 6.1.

HV(V) | e(at 2.5A) | Threshold (KeV) | calculated e(at 2.5 A)
950 | (24.8+02)% 180 24.6%
1000 | (26.2+0.2) % 120 26.3%
1050 (27.5+0.2) % 90 27.3%

Table 6.1: Multi-Blade detection efficiency at 2.5A for three bias voltages and calculated efficiency for a given
threshold.

The result is in a good agreement with what can be calculated from the theory (Chapter 3) by
using an energy threshold of 180 KeV', 120 KeV and 90 KeV for the three voltages from 950 V/
to 1050 V' respectively.
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Uniformity

The main issue in the Multi-Blade design is the uniformity over its active surface. The cassettes
overlap to avoid dead zones, and, in the switching between one cassette to another, a loss in
efficiency can occur. There are mainly two reasons that cause the efficiency drop: at the cassette
edge the electric field is not uniform and there is some material that scatters neutron on the way
to the next cassette. In order to reduce the dead zone at the cassette edge, i.e. any material that
can cause scattering, each cassette is cropped (see Figure 6.15) to be parallel to the incoming
neutron direction.

Moreover, when a neutron is converted at the cassette edge, it produces a fragment that half
of the time travels toward outside of the cassette and half time inward. We expect not to have
generated charge for about 50% of the events. In addition to that the electric field at the edge
may not be uniform and the guard wire contributes to enlarge the dead zone because it does
not generate charge amplification.

We scan with a collimated neutron beam and we register a PHS over the whole prototype surface
by using a 1 mm step for the z-direction and a 10mm step for the y-direction. We integrate
the PHS for each position and we obtain a local counting. We normalize it to 1 on the average
efficiency. Figure 6.21 shows the relative efficiency scan over the whole detector. The scan along
the cassettes in the position y = 40 mm is also shown.
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Figure 6.21: Relative efficiency scan over the whole detector surface.

Each cassette shows a quite uniform response along its strips (y-direction); the maximum effi-
ciency relative variation is below 2%. On the other hand, in the gap between two cassettes the
efficiency drops about 50% in a region which is 2 mm wide.

Spatial resolution

When we want to calculate a detector spatial resolution one should be careful as to which
definition has to be adopted in order to give a meaningful result. If the detector response is a
continuous function or discrete the problem should be tackled in a different way.

The spatial resolution is defined as the ability to distinguish between two events as a function
of their distance. We have a continuous detector response if a large amount of events that occur
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at a certain position on the detector will generate a continuous distribution in space. A widely
used criterion is to define the spatial resolution as the FWHM (Full Width Half Maximum) of
a distribution of those events. In the particular case the events distribution in space ends up
to be gaussian the FWHM is equivalent to 2.35 - o, with ¢ its standard deviation. In 88% of
the cases, for two neutrons hitting the detector at a distance of a FWHM (see Figure 6.22), we
will identify them on ”the right side”. We will identify them with 12% probability to be on the
wrong side.

$ 12% 4
1 2

Figure 6.22: Two neutrons hitting a detector at a FWHM distance. We identify them with 12% probability to
be on the wrong side.

When the detector response can be considered continuous, the spatial resolution as the FWHM
represents a suitable definition. This happens when the pixel size is much smaller than the
resolution. On the other hand it is not possible to define the spatial resolution as a parameter
of a distribution if the events are discretely distributed over a few pixels. That is when the
granularity of the detector is comparable with the spatial resolution.

As example, let’s imagine a detector read-out system made up of strips. Imagine that their
width is a few mm. A gas volume faces the strip plane. If the ionizing particle ranges in gas is
order of a few cm, the induced charge on the strips results in a continuous distribution over the
strips with charge centroid in the center of the resulting gaussian distribution.

On the contrary, if the particle ranges in the gas were much shorter, ~ 1 mm, the strip response
would be not any more gaussian, but almost an individual strip will participate to the induction
process.

We consider a MWPC of wires spaced by a few mm and particle tracks comparable to the wire
pitch. The detector response to a single event is not continuous. As most of the charge is
originated in the multiplication region thanks to the avalanche process close to the wire, each
wire acts as an independent detector. Each wire acts as a electromagnetic lens focusing the
charge for a certain detector segment. Thus, the detector is segmented and, thus, discrete. If
the primary charge is only generated in the influence cell of a single wire, only this wire will
generate a signal; on the other hand, if a ionization process covers two segments two wires will be
involved. In this case the spatial resolution is not given by the wire pitch because there can be
situations where two wires reacts to the single event. Moreover, spatial resolution is neither two
wire pitch because there are cases when only one wire reacts. In fact, by putting forward that
the detector has a two wire pitch resolution we were asking to be able to discriminate between
events with a precision of 100%. That is not incongruent with out FWHM resolution definition
to get a 88% precision.

We should reformulate the spatial resolution definition for a more general case.
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In order to do that, one can refer to the Shannon information theory [62]. If we consider two
streams of neutrons hitting the detector in two different positions we will get, according to
its resolution, two resulting response distributions that can either be completely separate, can
overlap partially or can be indistinguishable. The resolution definition is based on the probability
to correctly assign an event to its real neutron original stream, i.e. to the right distribution.
This problem can be treated as a lossy communication channel. In a binary communication
channel the bit 0 or 1 can be sent and, in presence of noise, it can be received correctly or
flipped.

That is the same as determining the probability to assign a neutron that belonged to one of two
distributions to the right one.

We define as the mutual information I(X;Y') the information that the receiver get in a noisy
channel, i.e. the detection process when 1 bit of information was sent. X is the received message
if Y was sent. If the mutual information is 1, no loss in the channel is present.

In the detector case four possibilities are possible: a 0 was sent and 0 is received, a 0 was sent
and a 1 is received, and similar for a 1 is sent.

The mutual information is operationally defined as:

1 1

vy L p(zly)
I(X;Y) = 2;};19(:6@) log, T(p(el0) + p(e1)) (6.3)

where p(x|y) is the conditional probability to send y and get x.

I represents the information we have obtained from a single neutron impact about the point
source from which it originates. By resolution we can then understand the distance between two
neutron hits needed in order to reach a given threshold of information I.

We can define, in the case of a symmetric distribution, as a the probability to make the right
reception of the message; i.e. we send 0 and we get 0 or we send 1 and we get 1. This probability
is naturally symmetric for the neutron labels 0 or 1. The resulting probability 1 —a would be the
probability to make the wrong reception; i.e. to assign a neutron to the wrong stream. In the
gaussian continuous case, at one FWHM distance, those probabilities correspond to a = 88%
and 1 —a = 12%. Hence, if we calculate the mutual information for this case we get 0.47 bits of
information. Therefore, the probability of 88% to make the right reception corresponds to an
information of 0.47 bits (in the symmetric and continuous case).

As a result, a way to define the resolution which is independent from any spatial distribution
is to calculate the mutual information and asking to get a minimum threshold value of 0.47
bits. This definition is suitable as well for discrete response, when the detector granularity is
comparable to the resolution we want to calculate as for the continuous case where it will become
the FWHM definition if the distribution is gaussian. As a matter of fact, a scan over several
neutron streams has to be performed to determine the lowest mutual information obtained.
Going back to the MWPC example, in the case the detector response involves either one or two
wires according to the particle track position, the mutual information will be higher for higher
spacing between distributions because their overlap is smaller.

The value to take as the detector resolution is the one that gives the spacing to achieve a mutual
information of at least 0.47 bits.

Spatial resolution: x The version V1 of the Multi-Blade prototype is operated at 10° between
the neutron incoming direction and the detector converter layer. We recall that the wire plane
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is projected on the neutron incoming direction. An improvement by a factor sin(10°) ~ 0.17 is
achieved on the horizontal spatial resolution with respect to an orthogonal incidence. E.g. if the
spatial resolution, before projection, were a wire pitch (in our prototype 2.5 mm) this results in
an actual resolution of about 0.45 mm.

In Figure 6.23 is shown the charge division response of the wire plane by using either a diffuse
beam or a collimated beam down to 1mm footprint (2.54).
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Figure 6.23: Diffuse beam wire response in charge division (left), collimated neutron beam response as a function
of the beam position (right).

The charge division method is able to identify each wire anode position; when a collimated
beam is in one position we can either get a single wire reacting or two. This effect is due to
the fact that the wire plane splits the gas volume into almost independent cells, thus the charge
generated by primary ionization in one cell makes its associated wire react. In our case, since
we are using a mixture of Ar/Coy (90/10) at atmospheric pressure the °B neutron capture
reaction fragment ranges make a few mm. Therefore, if the track is contained in one single wire
cell, only a single wire reacts; on the other hand if the track travels across two cells we get a
two wire response. Since the wire plane is read-out in charge division, if two wires react, the
hit will be identified to be in between the two wires, corresponding to the charge centroid. The
response distribution, for a given hitting position, will have tails corresponding to these events.
Figure 6.23 shows the resulting distribution as the neutron beam moves along the detector. One
can wonder now in what is the actual spatial resolution in this situation. In order to quantify it
is necessary to apply the informational-theoretical approach explained above.

We calculate the mutual information between the distribution in Figure 6.23 for all the possible
combinations and we will take as resolution the worse result at an information threshold level
of 0.47 bits.

Figure 6.24 shows the mutual information as a function of the distance of the neutron distribution
response of our detector. We notice that in the worst case we end up with 3.4mm; which
translates into a spatial resolution of 0.6 mm at 10°.

Note that the spatial resolution lies in between a single wire pitch (2.5mm) and two; because
we are asking the detector to be able to discriminate between two neutrons that hit the detector
at one resolution distance with a confidence level of 88%.
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Figure 6.24: Mutual information as a function of the distance between the response distributions of the neutron
detector. The horizontal line defines an information of 0.47 bits that corresponds to a 3.4 mm spatial resolution
(before projection) in the worse case.

Spatial resolution: y As already mentioned, particles tracks in gas make few mm. Since the
cathodes read-out strips are 0.8 mm wide and they are spaced by 0.2mm and the read-out is
performed by a charge division chain, there are several strips that are involved in the induction
process per each event. The charge division makes the charge centroid along the y-direction in
the detector.

For the cathodes the response can be considered continuous and the FWHM method is suitable.
Figure 6.25 shows the strip response as a function of the position of the collimated beam hitting
the detector. By performing a gaussian fit we obtain a spatial resolution (FWHM) for the
vertical direction y of about 4.4 mm.

Images

To validate the results we want to generate an image with our prototype. In order to do that we
acquire both anode and cathode signals and we reconstruct an event using their time coincidence.
Figure 6.26 shows an image reconstructed with the Multi-Blade obtained by placing a Cd mask
in order to get a pattern. The mask consists of 80 holes of 1 mm size spaced by 5mm along z
and by 1cm along y.

The number of bins on the image is set to be equal to the number of wires (37) for the x-direction
and is 256 bins for the y-direction.

Due to the neutron beam divergence the spots on the image appear much wider than the detector
resolution.

In the reconstructed image we observe the intensity that drops at the cassettes edges.
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Figure 6.25: Fine beam neutron scan along the strip cathodes. The spatial resolution is given by the FWHM
and corresponds to 4.4 mm.
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Figure 6.26: The Cd mask (left) used to generate the image on the right.

6.4 Multi-Blade version V2

6.4.1 Mechanical study

We learned from the Multi-Blade version V1 that the single layer configuration (option A)
presents less mechanical constraints. Moreover, the substrate holding the converter has not to
be crossed by neutrons that makes its manufacture easier.

The converter layer can be thick because the efficiency is saturated above 3 um; the substrate
can be thick also because it has not to be crossed by neutrons to hit a second converter. Hence,
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the substrate can be an integrated part of the cassette holder, the converter layer can be directly
deposited over its surface. The read-out system used is the same as in version V1. Neutrons
have still to cross the PCBs before being converted. Figure 6.27 shows a cassette and a stack of
them conceived for the single layer option.

Figure 6.27: A cassette conceived to hold one converter layer (left) and a stack of several cassette (right).

The cassettes are oriented at 5° with respect to the incoming neutron direction. The sensitive
area of each cassette is 10 x 9 cm? but, the actual sensitive area offered to the sample is given by
(10em -sin(5°)) x 9em = 0.9 x 9em?. As a result, the actual projected wire pitch is improved
down to 0.22mm.

6.4.2 Mechanics

The second prototype (V2) consists also of four cassettes but we operate them at 5°. At this
inclination the expected efficiency at 2.5A is about 43% if we employ the sputtered coating of
the version V1 [37]. The cassettes are the ones shown in Figure 6.27, conceived to study the
single converter layer option. A rigid substrate is directly coated with the converter material.
The cassette width in the version V1 was about 12 mm, in the version V2 we reduce their actual
size to 6 mm. Consequently the MWPC gap, between the converter and the cathodes, is 4 mm.
With respect to the version V1 the wire plane is closer to the converter.

The prototype active area, considering the cassette overlap, is about 3.2 x 9 em?.

The read-out PCBs are those used in the version V1.

Figure 6.28 shows a cassette substrate both coated and un-coated.

Since the efficiency is saturated as the thickness of the layer exceeds 3 um, we study the possi-
bility to use different converters. We can deposit a painting containing '°B grains and make a
coating a few hundreds of microns thick. A thick layer also functions as an integrated collimator.
Any neutron that comes from the sides of the detector has less probability to be detected and is
more likely absorbed in the outer layers. Hence, only neutrons which impinge the detector from
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Figure 6.28: A cassette V2 coated and un-coated with '°B painting.

the front have a serious chance to generate a signal. Neutron background is then decreased.
The uniformity of the coating, even in the single layer configuration, is an important aspect to
guarantee the converter flatness. The latter has to ensure the precision of the neutron incidence
angle, in fact if it varies slightly the efficiency changes widely. Furthermore, a deviation from
the converter flatness also induces the variation of the electric field and then the local gain of
the detector changes.

The roughness of the converter should be below the neutron capture fragment ranges, which is
of the order of a few um for 19B. In fact, the gain in efficiency due to an inclination comes from
the fact that the neutron path travels close to the surface. If the surface is irregular (on the
wm scale or more), that can be seen as equivalent for a neutron to hit a surface perpendicularly,
there is not much gain in efficiency. It is crucial that the size of our grains, in the painting, is
less than the particles ranges, i.e. their size should be below the micron scale for 1°B.

The conductivity of the painting can be an issue. If the resistivity is too large the charge evac-
uation is not guaranteed and consequently the actual electric field is affected. We mix a glue
with B grains of sizes < 10um, the layer resistivity was measured to be about 50 M) - m and
we make a 0.5 mm layer. As the grain size is not smaller than the fragment ranges we know
that there can be an efficiency issue. We did not have access to a finer-grained '° B powder: our
grinding technique resulted in ~ 10 ym grain size. We used this powder.

Figure 6.29 shows two PHS: one is taken with a 3 um thick °B,C layer [37] and the other with
the 9B painting both installed in a MWPC. Both at normal incidence and with a 2.5A neutron
beam. The variation in gain on the two spectra is due to the difference in the gas gap between
the wire plane and the converter, since the painting is a few mm closer to the wires than the
sputtered layer.

The painting efficiency is 1.5% lower than the sputtered coating.

In order to investigate if the resistivity of the painting is not to large to avoid the evacuation
of the charges, we place the painting layer on a very intense beam of 560 K Hz and we measure
the counting rate as a function of time. There are no losses after several hours. The resistivity
of the '°B painting seems to be acceptable.

The painting is suitable for single layer application supposed that we can control the flatness of
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Figure 6.29: Comparison between the PHS of the sputtered coated layers [37] and the '°B painting.

the layer and to use smaller grains. We do not guarantee the sputtered layers efficiency under
an angle because of the size of the grains we used in the painting.

The converter painting was not optimized, hence we expect some problems due to its not perfect
regularity. This effect will be more evident at the edge of each cassette where the flatness affect
to a greater extent the electric field glitches.

We mount the prototype using the painting. Four cassettes were assembled. Figure 6.30 and
6.31 show the cassettes and the installation in the gas vessel for testing.

The electronics used is the same as in the version V1 of the Multi-Blade.

Figure 6.30: Four fully assembled cassettes for the Multi-Blade version V2.
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Figure 6.31: The four cassettes installed at 5° with respect to the detector window being installed in the gas
vessel.

6.4.3 Results
Operational voltage

The measure of the counting curve gives the bias voltage of 800 V.

The operational voltage is lower than the one used for the first prototype because the gap between
anodes and cathodes was reduced in the new design. For this reason the PHS is degraded also
because the maximum path in Ar/CO; of an a-particle makes almost 9mm it is more likely in
the version V2 to hit the opposite cathode before depositing its entire energy in the gas volume.

Efficiency

Detection efficiency of the Multi-Blade prototype V2 has been measured on CT2 at ILL by using
a collimated and calibrated neutron beam of wavelength 2.5Ausing the procedure explained in
details in the Appendix E.

The neutron flux used is (12010 + 20) neutrons/s over an area of 2 x 6 mm?.

The efficiency was measured for the operational voltage 800 V. The efficiency was measured on
the four cassettes under the angle of 5° and then averaged. The results is:

e (at 2.5A) = (8.32£0.05) % (6.4)

The expected efficiency for a sputtered layer of which the roughness is widely below the pum scale
is about 43% (at 2.5A). Having an angle only increases the efficiency by a few percent because
of the grains size. The surface irregularity makes the inclination effect vanish. Neutrons only
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Figure 6.32: PHS measured on wires at 800 V' (left). The Multi-Blade detector plateau (right).

impinge almost perpendicular on the microscopic grain structure.

At 5° neutron reflection by the surface is negligible. Hence, by using a sputtered layer or, if one
can better control the painting flatness and have smaller grain size, there should be no reason
not to get the calculated efficiency.

Uniformity

In the version V2 of the Multi-Blade the mechanics is more compact in order to avoid dead zones
in the overlap between the cassettes. It has been discussed that the two issues which degrade
the uniformity are those dead zones and the electric field at each cassette edge.

Even though the mechanics design is more efficient in the version V2, the electric field issue
remains.

Moreover, the coating done by the painting was slightly irregular mostly at the edges of each
cassette. This diminishes the precision by which we switch between one and the following.
A large amount of converter material at the edge will absorb most of the neutrons without
generating any signal.

Figure 6.33 shows the relative efficiency scan over the detector surface. Compared with the
version V1 uniformity is worse. The gap between the converter and the wire plane is 2mm,
hence any irregularity on the layer surface will affect the local gain of the detector. Even along
each cassette (y-direction) the gain varies by about 10% while in the sputtered version it only
varied of about 2%.

Moreover, now looking at the z-direction, at the cassettes edge the efficiency now drops more
than 50%. This is due to the amount of converter at the edge that does not generate signal but
only absorbs neutrons.

The version V2 is in principle more compact and if the coating would be precise the uniformity
was expected to be better than in the version V1.
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Figure 6.33: Relative efficiency scan over the whole detector surface.

Spatial resolution

The spatial resolution was calculated as already shown for the Multi-Blade version V1. By using
a very collimated beam, of about 0.2 x 10 mm?, we scan one cassette and a half of the detector.
Each step is 0.9 mm along the xz-direction. The cassette 1 is from x = 0mm to x = 10 mm, the
cassette 2 starts at © = 10 mm. Figure 6.34 shows the reconstructed image and its projection
on the x-direction obtained by adding together all the images taken in the scan.

For each step either a wire or two are firing. A the switching point between the two cassette we
observe the drops in the counts.

Spatial resolution: x We quantify the spatial resolution along the z-direction in the same
way as for the version V1.

We scan the detector surface to obtain the events distribution to calculate the mutual information
which is shown in Figure 6.35. We use the threshold of 0.47bits which corresponds to the
standard FWHM resolution definition and we obtain a value of 3.16 mm.

This value is slightly better of the one found for the version V1 because in the version V2 the
gap between wires and converter is diminished. It is the first part of the ionization path, on
average, that gives more signal and it is closer to the fragment emission point, this improves the
spatial resolution.

Since the detector is inclined at 5° the actual spatial resolution is given by the projection:
3.16 mm - sin(5°) = 0.275 mm.

Spatial resolution: y The spatial resolution given by the strips is also enhanced thanks to
the narrower gas gap.

Figure 6.36 shows a scan performed along y. The spatial resolution is given by the FWHM and
is 4mm.
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Figure 6.34: An image and its projection on the x axis taken with the prototype. Each slit is 0.2 mm x 10 mm
large and it is spaced by 0.9 mm.

Dead time

The intrinsic dead time of a detector is due to its physical characteristics; here we measure the
entire dead time from the detector to the end of the whole electronic chain. It is the detector
plus electronics dead time we measure.
Neutrons arrive at the detector according to an exponential distribution assuming the process
to be Poissonian. A way to measure dead time is to record the difference in the arrival time
between two successive neutrons on the detector; in principle their distribution should follow an
exponential:
1 _

f(t)=—e b (6.5)
where the time 7 represents the average time is in between two events; v = 1/7 is the counting
rate.
In practice the detector is characterized by a dead time ¢p which is the minimum time interval
that separates two correctly recorded events. As a result the distribution measured with the
detector should move away from the theoretical behavior near and below tp. Moreover, if the
detector is ideally non-paralyzable, the distribution has to show a sharp cutoff at ¢tp because
the probability of measuring an event between ¢t = 0 and ¢t = ¢p is zero.
In a paralyzable case the passage is smoother.
Figure 6.37 shows the measured times between neutrons on the detector. The two anode outputs
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Figure 6.35: Mutual information as a function of the distance between the response distributions of the neutron
detector. The horizontal line defines an information of 0.47 bits that corresponds to a 3.16 mm spatial resolution
(before projection) in the worse case.
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Figure 6.36: Fine beam neutron scan along y. The spatial resolution is given by the FWHM and corresponds
to 4mm.

of a single cassette where added and the resulting signal discriminated. The time between every
couple of discriminated events was recorded for 7' = 300 s.

The measurement was performed by using two kind of amplifiers. One is the standard Multi-
Blade amplifier of 1 us shaping time and the second is a fast amplifier with 3 ns shaping time.
The fits in Figure 6.37 represent the theoretical behavior.
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Figure 6.37: Time distribution of neutron events recorded with the Multi-Blade, the fit shows the theoretical
behavior. Two anode amplifiers have been used.

The value for 7, for both the measured distributions, was obtained by the calculation of the
maximum likelihood estimator for the exponential distribution. It is:

S 2. milti = ts) (6.6)

Zj nj
where t; is the minimum time for which we consider the measured distribution to behave as
expected. We can assume that a time g exists above which the measured distribution follows
the exponential behavior. We assume ts = 7 us.
By knowing 7 and the measurement duration 7' = 300 s, the total number of neutrons that have
generated a signal in the detector but, due to dead time, have not all been recorded, is given by:

T
Ng=— 6.7
0= (6.7)
If we integrate instead the measured distribution we obtain the number of events recorded N,,.
The dead time is simply given by:

_NO_Nm _%‘Nm 2
Bl e (6.8)

tp

For the 1us amplifier we obtain tp = (1.58 £ 0.08) - 10 %s, the fast amplifier gives tp =
(1.54+0.1) - 1076 s.

Images

Figure 6.38 shows an image reconstructed with the Multi-Blade version V2 obtained by placing
the Cd mask with holes in front of the detector. We repeat the mask consists of 80 holes of
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1 mm size spaced by 5 mm along x and by 1cm along y.
The number of bins on the image is set to equal the number of wires (37) for the x-direction

and is 256 bins for the y-direction.
Due to the neutron beam divergence the spots on the image appear much wider than the detector

resolution.

Figure 6.38: The Cd mask (left) used to generate the image on the right.

In the reconstructed image we observe the intensity that drops according to the cassettes edges.
We observe that any deviation of an hole position on the mask is perfectly reproduced on the

image.
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Conclusions

Although 2He has been the main actor in thermal neutron detection, the World is now expe-
riencing a shortage of 3He. The main issue to be addressed for large area neutron detectors
(several square meters) is to find an alternative technology to detect neutrons because this rare
isotope of Helium is not available anymore in large quantities. This is not the main concern for
small area detectors (~ 1m?) where the main effort is focused on the performances. There is
a great interest in expanding the detector performances because for instance > He detectors are
limited in spatial resolution and counting rate capability.

The detectors developed and implemented at ILL are based on '"B layers used as neutron
converter in a gas proportional chamber. In particular we used ' B4C-layers deposited by mag-
netron sputtering technique on holding substrates.

The Multi-Grid is a large area detector that has been developed at ILL to face the > He shortage
problem. It employs up to 30 °B4C-layers in a cascade configuration.

The concept of the Multi-Blade was introduced at ILL in 2005 but it has never been implemented
until 2012. The Multi-Blade prototype is a small size detector for application in neutron reflec-
tometry instruments based on single 'Y B,C layers. The goal of the Multi-Blade is to go beyond
the limits of 3 He-based detectors in terms of spatial resolution (which is about 1mm for 3He
gaseous detectors) and counting rate capability.

For both applications there are several aspects that we investigated in order to validate this
alternative technology.

Although the physical process behind the neutron conversion through solid converter is well
known, the theoretical modeling for these new detectors can open further developments. We
elaborated analytical expressions and equations to help the detector design.

In a neutron facility a detector is always exposed to other kinds of radiation that we consider
as a background to be suppressed. The detection of a background event (mostly ~-rays) can
give rise to misaddressed events in a neutron detector. Generally the y-ray background can
be a few orders of magnitude more intense than the neutron signal. This has been proved by
the measurement of the typical background in a Multi-Grid prototype detector installed on the
time-of-flight spectrometer IN6 at ILL. The low y-ray sensitivity of a neutron detector is then a
key feature and it must be determined to validate the '°B technology. While for 3 He detectors
there is a clear energy separation between neutron and -ray events, this is not the case for solid
converter based detectors. The neutron Pulse Height Spectrum (PHS) for a B detector is
extended in a continuum down to zero energy. In addition to that a 'Y B-based detector should
in principle show a higher sensitivity to -rays because of the larger amount of material it is
composed of with respect to a standard 3He detector.

We quantified the y-ray sensitivity of '°B and 3He detectors by using a set of calibrated y-ray
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sources. For 1°B-based detectors we confirm that the energy spectrum given by v-rays mostly
involves the low energy region of the spectrum. A suitable vy-ray rejection, below 1076, can
be achieved by using a discrimination on the energy level. The method consists of an energy
threshold, as is the case for 2He detectors. We demonstrated that a limited efficiency price of
only about 0.5% has to be paid in neutron detection if a strong v-ray rejection is necessary,
below 1076,

However, contrary to >He detectors, there is no clear separation between the neutron Pulse
Height Spectrum (PHS) and the «-ray PHS. Therefore, we investigate another method to sep-
arate neutron from photon events trying to improve the discrimination; but since it turned out
that there is no physical difference in the signal shape using the Time Over Threshold method
(TOT), this can not be exploited to discriminate against background. The amplitude discrimi-
nation remains the best and simpler way to reduce y-ray sensitivity of neutron detectors based
on a solid converter.

The Multi-Grid detector appears a promising replacement of 2 He-based large area detectors.
We can conclude that such detectors’ 4-ray sensitivity is comparable to that of 3He detectors.

In a multi-layer detector the arrangement of those layers is crucial to optimize the performances.
We studied solid converter films based detectors from the theoretical point of view. With the
magnetron sputtering deposition method both sides of a substrate are coated with the same
thickness of converter. The suite of equations we developed demonstrates that this method is
also suited to make optimized blades. In fact, for a single blade the same converter thickness for
both sides of a substrate has to be chosen in order to maximize the efficiency. We demonstrated
this result to be valid in the case the optimization is done for a single neutron wavelength and in
the more general case when we deal with a distribution of wavelengths. If the absorption of the
substrate is not negligible we also calculated the deviation from an ideal transparent substrate.
We showed that also in a multi-layer detector all the blades have to hold two layers of the
same thickness in order to maximize the detection efficiency. The demonstration is valid for a
single neutron wavelength and for whichever distribution of wavelengths. On the other hand,
the thicknesses of different blades can be distinct and they can be optimized. The optimization
procedure to be implemented has been developed for both the monochromatic case and for the
case of a distribution of wavelengths.

The blade-by-blade optimization in the case of a multi-layer detector for a single neutron wave-
length can achieve a few percent more efficiency over the best detector with identical blades but
this can lead to several blades less in the detector. In the case of a distribution of wavelengths,
the optimization does not give important improvements in the overall efficiency compared with
a monochromatic optimization done for the barycenter of that distribution. On the other hand,
the optimization of the efficiency for a neutron wavelength distribution is often more balanced
between short and long wavelengths than the barycenter optimization.

Since the y-ray discrimination is an important feature of a neutron detector and it is strictly
related to its PHS shape, we calculated the PHS analytical expression based on very simple as-
sumptions and we showed it is in a good agreement with measurements. Thanks to this model,
we understood the overall shape of the PHS which can be an important tool if one wants to
improve the ~y-ray to neutron discrimination in neutron detectors.

In a solid converter-based detector both the PHS shape, for «-ray sensitivity, and the efficiency
have to be taken into account in its optimization. Both of them are influenced by the choice of
the layer thicknesses.
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Theoretical modeling was a useful tool to develop the Multi-Blade detector of which we con-
structed two prototypes in order to demonstrate its feasibility. The Multi-Blade employs °B4C
layers operated at grazing angle with respect to the neutron incoming direction. The read-out
is performed by a standard gas amplification process implemented by a plane of wires. There
are at least three advantages in operating the detector at grazing angle. The detection efficiency
increases, the spatial resolution and the counting rate capability are improved. Thanks to the
inclination the detector active surface is projected over the incoming neutron beam. The effec-
tive wire pitch is then smaller than the pitch of the finest possible wire mounting and the same
local neutron flux is shared among several wires.

In order to get a suitable detection efficiency, compared with >He, the converter layers must be
operated at an angle of 10° or below. By approaching lower and lower angles, neutrons can be
reflected by the barrier potential of the converter surface and are then lost for detection. We
studied the reflection process by strongly absorbent surfaces and we developed a model that we
have compared with our experiments carried out at ILL. This model indicates that even for a
strong neutron absorber, the reflectivity measurement does not depend on the technique used.
A monochromatic scan over the angle or a Time of Flight (ToF) measurement lead to the same
result. This is confirmed by experiments.

The theoretical equations derived to optimize the solid converter-based detectors have been
corrected for neutron reflection for '°B,C in the neutron wavelength range from 1 to 30 A.
Above 2° there is no need to correct for neutron reflection even if the layer is smooth at the nm
scale. We observed that a too small converter roughness drastically increases neutron reflection
below 2°. A suitable roughness can help to diminish neutron reflection. Since the ranges of the
neutron capture fragments in °B,C are about a few pm, the layer irregularity should never
exceed the pum scale. A larger roughness cancels the gain in efficiency in operating the layer at
grazing angle. Our theoretical model about neutron reflection on strong absorbers allowed us
to fit the measured profiles that led to the determination of the scattering length density of the
used 1°B,C layers, it is about (2.5 — 1.14) - 1076 A=2,

We studied two approaches to be used in the Multi-Blade implementation: either with one or
with two converters. The latter has more technical issues that makes its realization more difficult.
The single layer detector is finally the choice to make to keep the mechanics reasonably simple.
The extra advantage of having only one converter is that the coating can be of any thickness
above 3 um without affecting the efficiency, while for the two layer option its thickness should
be chosen carefully. Moreover, in the two layer configuration the substrate choice is also crucial
because it should be kept as thin as possible to avoid neutron scattering and this leads to
mechanical issues. In a single-layer detector it can be integrated in the holding structure.

We conceived a detector to be modular in order to be versatile: it is composed of modules
called cassettes. We operated the two Multi-Blade prototypes at either § = 10° and § = 5°. In
each of the solutions proposed for the cassette concept the read-out system has to be crossed
by neutrons before reaching the converter. The mechanical challenge in the read-out system
construction is to minimize the amount of material on the neutron path to avoid scattering that
can cause misaddressed events in the detector. The choice fell on polyimide substrates; they
induce a few percent scattering of the incoming neutrons. It can be eventually replaced with
more suitable materials.

The detector is operated at atmospheric pressure. This makes it suitable to be operated in
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vacuum. Moreover, cost effective materials can be used inside the detector because outgassing
is not an issue.

Since the detector is modular the main issue is its uniformity. In the presented prototype we
got a 50% drop in efficiency in the overlap region between cassettes.

The presented Multi-Blade showed a very high spatial resolution, it was measured to be about
0.3 mm in one direction and about 4 mm in the other one.

We measured the neutron detection efficiency for both prototypes at 2.5A neutron wavelength.
The first prototype has an efficiency of about 28% employing sputtered '°B,C-layers inclined
at 10°. This result is in a perfect agreement with the expected efficiency we can calculate by
using our theoretical model we developed for solid neutron converters. Since the efficiency, in
the single layer option does not depend on the converter thickness above 3 pm, in the second
prototype we investigated a different deposition method: a 9B glue-based painting. This thick
painted layer functions also as an integrated collimator inside the detector. The resistivity of the
0B painting is larger than the sputtered '°B4C-layers but it seems to be acceptable and does
not cause issues to the charge evacuation. We measured the efficiency of the second prototype
operated at 5° and we only got about 8%. The coarse granularity of the painting makes the
inclination effect vanish. The expected efficiency for a sputtered layer of which the roughness is
widely below the um scale is about 43% (at 2.5A). There is no reason not to get the calculated
efficiency.

We measured the detector dead time, including the read-out electronics, to be about 1.5 us.
The single layer option represents a good candidate to go beyond the performances of He
detectors. Further studies need to address the uniformity problems. If a simple coating technique
is found, e.g. painting containing grains of a suitable size that assures a uniform layer, the Multi-
Blade could be a cost-effective and high performance alternative. Its production in series is easy
to be implemented.

We have reached a profound insight in the principles of solid converters in neutron detection by
successfully confronting our theoretical investigations with experiment.

We investigated several technological aspects of 1°B-based detectors by prototyping the Multi-
Blade idea. Some explored avenues are very promising while others indicate technological diffi-
culties which need to be resolved. Nevertheless, the results are sufficiently encouraging to foresee
a relatively simple construction.

172



Appendix A

The stopping power law

A.1 Classical derivation

Consider a heavy particle with charge ze, mass M and velocity v passing through a medium and
suppose there is an atomic electron at some distance b from the particle trajectory (see Figure
A.1). We assume that the electron is free and at rest, and that it only moves slightly during the
interaction so that the position where the electric field acts in the collision can be considered
constant.

.('D

-,
\\\
~

. _" Y.
ze, M *

Figure A.1: Collision of a heavy particle with an atomic electron.

Let’s calculate the energy gained by the electron by finding the momentum impulse it receives
from the collision with the heavy particle:

dt d
Ap—/th—@/EJ_de’—@/EJ_x (A.1)
dx v

where E| is the normal component of the electric field to the particle trajectory. By using the
Gauss’ law on a infinitely long cylinder of radius b and centered on the particle trajectory:

2
B(EL) = /ngbdx —drze @— /Eldx == (A:2)
hence: ; )
2
Ap:e/EJ_:E: =¢ (A.3)
v bv
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The energy gained by the electron results to be:

(Ap)? 22%e4
AE(b) = o, moRe (A.4)

If we consider n the number density of electrons, the energy lost to all the electrons located at
a distance between b and b+ db in a thickness dx is:

2224 4r22et  db
ﬁne (2mbdbdzx) = %ne? dx (A.5)

—dE(b) = AE(b)nedV =
The total energy loss in dx is obtained by integration over db of the Equation A.5 in the interval
[bmin, bmaz)- It has to be pointed out that if we integrate between 0 and +oo this is contrary
to our original assumptions. E.g. collisions at very large b would not take place over a short
period of time, thus the impulse calculation in Equation A.1 would not be valid. On the other
hand, for b = 0, Equation A.4 gives an infinite energy transfer. Thus:

4 2.4
dE  4rnz’e I <bmax> (A.6)

dz mev? brmin

To estimate by, and byq, we should advance some physical arguments. The maximum en-
ergy transferable, classically, is in a head-on collision where the electron obtains an energy of

2me(20). If we take relativity into account this becomes 2v*mv?, where v = (1 — 32)~1/2 and
f = . From Equation A.4 we find:
2z2%¢4 ze?
— s = 2v"mev’ = bmin = — (A.7)
mebs . v YMeV

For b,,4., we should recall that the electrons are not free but bound to atoms with some orbital
frequency v. In order for the electron to absorb energy, the perturbation caused by the passing
particle must take place in a time short compared to the period 7 = % of the bound electron,
otherwise the perturbation is adiabatic and no energy is transferred. The typical interaction

time is t ~ %, which relativistically becomes t’ = % = %, thus:
b 1 v
vy v v

Where v should be considered as the mean frequency averaged over all bound states because
there are several bound electron states with different frequencies.
Finally, by substituting A.7 and A.8 in Equation A.6, we obtain:

dE  4rnz%et (72mv3>
= e ymu-

dr — mev? ze2y

(A.9)

This is the Bohr’s classical formula and it gives a reasonable description of the energy loss for
very heavy particles.
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A.2 The Bethe-Bloch formula

The correct quantum-mechanical calculation leads to the Bethe-Bloch formula:

dE 9 9 Z 22 2mey 0o Winae 9 C
= 2rNar;mec pZ@ In — 7 ) 28— 6 — 22 (A.10)
where:
Te classical electron radius p absorbing material density
Me electron mass z  charge of the incident particle
Ny Avogadro’s number B = wv/c incoming particle velocity
I mean excitation potential voo=(1-p6%)712
Z atomic number of absorbing material 0  density correction
A atomic weight of absorbing material C  shell correction
Wiar max energy transferred in a single collision

The maximum energy transfer is that produced by a head-on collision; for an incident particle

of mass M:

2.2
Wmaz = 2m662/6 7 (All)

14 2mey 14 292 + 7

The mean excitation potential [ is directly related to the average orbital frequency v.

The quantities § and C are correction at high and low energies respectively. The density factor,
0, arises from the fact that the electric field of the incoming particle also tends to polarize the
atoms along its path. The shell correction, C, accounts the effect which arise when the velocity of
the incident particle is comparable, or smaller, than the orbital velocity of the bound electrons.
A qualitative behavior of the Bethe-Bloch formula is shown in Figure 1.3 as a function of both
particle energy F and track length x, respectively. The point where fl—f has a minimum in energy
is known as minimum ionizing.
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Appendix B

Connection with Formulae in [4]

The relations between the formulae in [4] and the expression used in Chapter 3, Section 3.2 are
the following:

e the particle ranges R are denoted by L;
e the branching ratios of the B reaction (expressed by F},) are F} = 0.94 and F» = 0.06;
e the thickness of the layer is d = Dp.

Hence, the relation between the expressions 3.12, 3.14, 3.16 and the formulae in [4] is:

er(dy) = 0.94 - ep(RIY, RIY) +0.06 - e (RS, RS?)

B.1
— S1(Dp, L1,0.94) + Sy (Dp, Ly, 0.94) + Sy(Dp, L1,0.06) + Sy(Dp, Lo, 0.06) (B

Valid for both equations (18a) (Dr < L;) and (18b) (D > L;) in Section 4.2 of [4]. In the case
of the back-scattering mode, equations (25a) and (25b) in [4], we consider one layer of converter
and we replace ep(dr) into epg(dps) in the expression B.1.

In a different way, for both equations (18a) and (18b), we can also write:

Fp cET = Sp<DF, Ly, Fp) + Sp(DFa LQ,Fp) (BQ)
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Appendix C

Connection with Formulae in [26]

The relations between the formulae in [26] and the expression used in Chapter 3, Section 3.6 are
the following:

e the macroscopic cross-section (X) is expressed in terms of mean free path ¥ = %;
e the variable u is denoted by its cosine u = cos(f);

The formulae (4) in [26] corresponds to the Equation 3.64, except for a factor %, where [ = %
The formulae (3) in [26] corresponds to the Equation 3.66.
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Appendix D

Highly absorbing layer neutron
reflection model

The model used to fit the reflectivity profile for a strong neutron absorber, such as 'YB,C, is the
one shown in the Equations 4.11 in Chapter 4. R and A are the reflectivity and the absorption
of an absorbing layer deposited on a substrate. These quantities depend on g by g = 47” sin(6).
In order to fit the reflectivity and absorption profiles we calculate the reduced chi-square:
1 N

= ar 2 |(Rcas.(an) = Relan))” + (Ameas. (4n) = Aclan))? (D.1)
n=1
where N is the number of points in each set of measurements and p is the number of parameters
we used in the fit. In our specific case they are p = 8: Opper, Osnift, 0 B,C scattering length
density (real and imaginary parts), layer roughness o,., layer thickness d, Ge-detector efficiency
eae and an overall normalization M.
Before the sample the neutron beam is collimated by two slits. Even if the beam divergence is
known it is not easy to calculate the exact beam footprint at the sample position. In addition
to that, the beam can be not uniform, even after collimation, and the samples do not have
sharp edges. O, corrects for these effects in the horizontal direction. However, the remaining
effect in the vertical direction will introduce a modification of the normalization. This is why
we introduce the normalization factor M. Generally it has values close to 1.
To model the layer roughness we used the Equation 1.87 applied to the Fresnel coefficients
(Equation 4.8) in the case of absorption.
In Equation D.1, Reqs. and Aqeqs. are the measured raw curves; R. and A, are the reflectivity
and the absorption as a function of ¢ predicted by our theoretical model after applying the
instrumental corrections.
The overillumination correction is a factor I,,., that has to be applied to the data to consider
the finite extension of the sample. This correction is Iy, = 1 for all the 6 for which the sample
projection is larger than the beam size (the full beam hits the sample), and it is less than 1
for the values of 6 for which the sample projection is smaller (only a part of the beam hits the
sample). This function has also to be smoothed using a smoothing filter (a 3 points moving
average filter) to include the non uniform beam intensity and the instrumental resolution. It is:

B 785135‘3;) if 0 < Ooper
Loer = (D.2)
1 otherwise
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The misalignment of the instrument is included in the angle 6,;7;. This affects the actual value
for the angle used to calculate the reflectivity and absorption:

0.=0+ Hshz’ft (D.3)
The values for the profiles once applied the instrumental corrections can be calculated by:
Rc =M - Iover . R(ec)a Ac =M- EGe - Iover : A(ec) (D4)

We recall the quantities R and A depend on the fitting parameter d, the layer scattering length
density, the reflection angle 6. and the layer roughness o,.
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Appendix E

Neutron flux measurement

It is commonly useful to know the actual neutron flux of a beam line, e.g. CT1 at ILL. By
knowing the neutron flux, for example, the efficiency of a prototype can be estimated. In order
to perform an accurate neutron flux measurement, the so-called Hexagonal detector is used. The
latter, shown in Figure E.1, is a multi-tube 3 He-based gaseous detector composed of 37 7mm-
diameter tubes. Each of them acts as a proportional chamber; the drift voltage is common to
the 37 hexagonal shaped tubes and they are read-out individually. Thus, the neutron detected
in each tube can be quantified.

Figure E.1: Hexagonal ® He-tubular detector used to measure the actual neutron flux (the red arrow shows the
neutron beam direction and the number are the channel number of each tube, some tubes are connected together).

We start by setting each channel (tube) threshold above the noise level; it is not problematic to
have some gain difference between the channels, because further adjustment can be done later
by software.

The beam is collimated at a size which is smaller than the single tube diameter. By counting
the detected neutrons per tube, we scan the detector in order to find the position where the
central seven tubes are aligned on the neutron trajectory (see Figure E.1). The additional tubes
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on the two sides allow to help in the alignment.

Once alignment is over, we record a PHS for each tube in a given time 7" which is long enough
to get a small statistic error (relative errors below 1% can be archived in few minutes).

We repeat the measure in the same conditions but without the beam in order to quantify the
background that has to be subtracted from the measurement with the beam on.

In Figure E.2, on the left, is shown the seven ?He-PHS relative to the central tubes and the
dashed line represent the threshold, added by software, used to calibrate the detector efficiency.
Hence, we integrate, from the threshold to the end, the PHS and we obtain the counting per
tube that has to be divided by the measurement time 7" to get the counting rate. We cumulate
the rates of the seven central tubes in order to get the plot shown in Figure E.2 on the right.
This represents the number of neutron detected per second in a detector made up of 1, 2, ...,
N tubes.
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Figure E.2: Hexagonal detector PHS (left) and neutron cumulative flux across the 7 central tubes of the detector
(right).

One can now imagine to arrange an infinite number of 3He-tubes on the beam path, ideally
each neutron is counted, if it is not lost before by scattering out of the beam direction.
Therefore, by performing a fit of the plot in Figure E.2, the asymptotic value gives the actual
neutron flux at the neutron wavelength it was measured.
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