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Abstract

The Lloyd’s mirror as described by Humphrey Lloyd 
in 1831 is a simple but powerful instrument in optical 
studies. Today’s foremost applications are the optical 
inspection of flat surfaces and as a tool in underwater 
acoustics.This thesis discusses and investigates the 
feasibility of an implementation of Lloyd’s mirror 
with very-cold neutrons. 

Due to current open questions in physics as for 
example the apparent incompatibility of general 
relativity and quantum mechanics, the phenomenon 
of dark energy and dark matter, and matter antimat-
ter asymmetry, novel experimental insights into yet 
unexplored parameter spaces are needed. Lloyd’s 
mirror realized with matter wave especially very-cold 
neutrons could offer such new insights as proposed 
in Pokotilovski (2011) and in Pokotilovski (2013). 

In this thesis the quantum mechanical behavior of 
neutrons that transverse a region in front of a mirror 
is studied theoretically to infer the requirements of 
an experimental realization. It is concluded with a 
simulation of the expected interferogram to estimate 
the required measurement time. In accordance with 
the theoretical studies, the results of an experimental 
realization of the required beam preparation section 
at the very-cold neutron beam at the PF2 at the In-
stitut Laue-Langevin are presented. Finally, a spatial 
detection mechanism using boron-based CR39 imag-
ing plates adapted to the needs of this experiment is 
demonstrated.

Kurzfassung

Lloyd’s Spiegel wie er von Humphrey Lloyd 1831 
beschrieben wurde ist ein vielseitiges optisches 
Instrument. Heutzutage findet es vor allem in den 
Gebieten der Unterwasserakustik und der optischen 
Oberflächenanalyse Verwendung. In dieser Arbeit 
wird die Machbarkeit einer Umsetzung von Lloyd’s 
Spiegel mit sehr kalten Neutronen untersucht. 

Aufgrund offener Fragen wie z.B. der scheinbaren 
Inkompatibilität von Allgemeiner Relativitätsthe-
orie und Quantenmechanik, dem Phänomen der 
Dunklen Materie und der Dunklen Energie, und der 
Antimaterie-Materie Asymmetrie, werden neuartige 
Experimente benötigt, die Einblick geben in bisher 
nicht untersuchte Parameterbereiche. Eine Um-
setzung von Lloyd’s Spiegel mit sehr kalten Neu-
tronen könnte einen solchen Einblick eröffnen, wie 
in Pokotilovski (2011) und in Pokotilovski (2013) 
vorgeschlagen. 

In dieser Arbeit wird das quantenmechanische Ver-
halten von Neutronen untersucht, die eine Region 
mit einem vertikal ausgerichteten Spiegel durch-
queren, um Bedingungen einer experimentellen 
Umsetzung abzuleiten. Darauf aufbauend wird eine 
Simulation des erwarteten Interferogram vorgestellt, 
um die benötigte Messzeit abzuschätzen. In Über- 
einstimmung mit den theoretischen Überlegungen 
wird ein Neutronenoptik Aufbau, wie er am Institut 
Laue-Langevin umgesetzt wurde und welcher den 
Neutronenstrahl für das Interferometer aufbereitet, 
vorgestellt. Abschließend werden Entwicklungen 
einer ortsaufgelösten Detektion von Neutronen 
mithilfe von Bor-beschichteten CR39 Plättchen 
präsentiert, wie sie für dieses Experiment benötigt 
werden.
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Kurzfassung

Lloyd’s Spiegel wie er von Humphrey Lloyd 1831 beschrieben wurde ist ein vielseitiges

optisches Instrument. Heutzutage findet es vor allem in den Gebieten der Unterwas-

serakustik und der optischen Oberflächenanalyse Verwendung. In dieser Arbeit wird die

Machbarkeit einer Umsetzung von Lloyd’s Spiegel mit sehr kalten Neutronen untersucht.

Aufgrund offener Fragen wie z.B. der scheinbaren Inkompatibilität von Allgemeiner Re-

lativitätstheorie und Quantenmechanik, dem Phänomen der Dunklen Materie und der

Dunklen Energie, und der Antimaterie-Materie Asymmetrie, werden neuartige Experi-

mente benötigt, die Einblick geben in bisher nicht untersuchte Parameterbereiche. Eine

Umsetzung von Lloyd’s Spiegel mit sehr kalten Neutronen könnte einen solchen Einblick

eröffnen, wie in Pokotilovski (2011) und in Pokotilovski (2013b) vorgeschlagen. In dieser

Arbeit wird das quantenmechanische Verhalten von Neutronen untersucht, die eine Regi-

on mit einem vertikal ausgerichteten Spiegel durchqueren, um Bedingungen einer experi-

mentellen Umsetzung abzuleiten. Darauf aufbauend wird eine Simulation des erwarteten

Interferogram vorgestellt, um die benötigte Messzeit abzuschätzen. In Übereinstimmung

mit den theoretischen Überlegungen wird ein Neutronenoptik Aufbau, wie er am Institut

Laue-Langevin umgesetzt wurde und welcher den Neutronenstrahl für das Interferome-

ter aufbereitet, vorgestellt. Abschließend werden Entwicklungen einer ortsaufgelösten

Detektion von Neutronen mithilfe von Bor-beschichteten CR39 Plättchen präsentiert,

wie sie für dieses Experiment benötigt werden.
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Abstract

The Lloyd’s mirror as described by Humphrey Lloyd in 1831 is a simple but powerful

instrument in optical studies. Today’s foremost applications are the optical inspection

of flat surfaces and as a tool in underwater acoustics. This thesis discusses and invest-

igates the feasibility of an implementation of Lloyd’s mirror with very-cold neutrons.

Due to current open questions in physics as for example the apparent incompatibil-

ity of general relativity and quantum mechanics, the phenomenon of dark energy and

dark matter, and matter antimatter asymmetry, novel experimental insights into yet

unexplored parameter spaces are needed. Lloyd’s mirror realized with matter wave es-

pecially very-cold neutrons could offer such new insights as proposed in Pokotilovski

(2011) and in Pokotilovski (2013b). In this thesis the quantum mechanical behavior of

neutrons that transverse a region in front of a mirror is studied theoretically to infer

the requirements of an experimental realization. It is concluded with a simulation of

the expected interferogram to estimate the required measurement time. In accordance

with the theoretical studies, the results of an experimental realization of the required

beam preparation section at the very-cold neutron beam at the PF2 at the Institut

Laue-Langevin are presented. Finally, a spatial detection mechanism using boron-based

CR39 imaging plates adapted to the needs of this experiment is demonstrated.
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1. Introduction

Matter wave diffraction phenomena are at the heart of experimental physics and the

theoretical development of quantum mechanics. One of the most prominent examples is

the diffraction of a wave at a double-slit setup and the resulting pattern on a viewing

screen. The observable interference pattern due to the superposition of a wave origin-

ating from each slit was realized experimentally with a variety of different waves, i.e.

sound-waves, water-waves, electromagnetic-waves and matter waves. For classical waves

this is expected but in the case of particles diffraction it has been a matter of controversy

leading to the development of quantum mechanics with the Schrödinger-equation at its

center

ĤΨ(�r, t) =
�
i

∂

∂t
Ψ(�r, t). (1.1)

Here Ĥ is the hermitian Hamiltonian and Ψ(�r, t) is the wave function which solves

this equation. Up until now quantum mechanics is in agreement with all experimental

tests and is therefore an excellent and preferable tool1 to investigate nature to highest

accuracy. Quantum mechanics on the dynamical side is joined on the kinematical side

by the Standard Model of particle physics. There the three known elementary forces,

i.e. weak, strong, and the electromagnetic force, are unified to describe the kinematics of

the known elementary particles. Despite the robustness of quantum mechanics and the

Standard Model of particle physics they fail to incorporate the fourth known force —

gravity. Gravity is successfully modeled with general relativity as a geometry property

of space-time. It can account for even the smallest effects from the macroscopic to

the astronomic scale. General relativity and its central equations, the Einstein field

equations, have been introduced in Einstein (1916). They connect an energy density to

the curvature of space-time

Gµν + Λgµν =
8πG

c4
Tµν . (1.2)

1Experimental results that deviate from quantum mechanical predictions and that are not caused by
an experimental error, would either hint at a breakdown of the axioms of quantum mechanics or at
a not yet considered novel fundamental effect.
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Here Gµν = Rµν − 1
2
Rgµν denotes the Einstein tensor, Tµν denotes the stress-energy

tensor, gµν is the metric tensor, Rµν is the Ricci tensor, R is the Ricci scalar, G is New-

tons gravitational constant, and finally Λ denotes the cosmological constant. Again,

the validity of the theory has been checked rigorously for astronomical and macroscopic

scales. While both theories asymptotically pass over to classical dynamics and kinemat-

ics, no connecting fundamental theory is known. Several candidates for an encompassing

theory are currently developed but lack experimental backing. This is even true in light

of still unexplained phenomena that seem to imply a failure of each of the two theories.

For example, there are cases in cosmology and astronomy where observations hint at

the phenomena of dark matter and dark energy, but also the question of the observed

matter/antimatter asymmetry in the Universe. The latter does not agree with the be-

havior expected from the Standard Model of particle physics where each elementary

particle obtains a corresponding antiparticle with the same quantum numbers but inver-

ted charge. As the majority of processes in the Standard Model of particle physics are

symmetric under Charge-Parity conjugation, only a slight imbalance of the abundance

of matter and antimatter is expected. Either the Standard Model of particle physics

does have additional CP-symmetry breaking processes or the initial condition of the

universe did favor matter over antimatter.2. While CP-symmetry breaking processes are

at least present in the Standard Model of particle physics, the first two observations i.e.

dark matter and dark energy do not even fit in the framework all together. Thus, either

to resolve the strong CP problem or to explain the dark-sector there is the possibility of

novel particles and interactions that up until now elude experimental observations.

In the following chapter 2, three open questions in physics are presented that persist

to this day and do motivate additional experimental and theoretical endeavors. On the

experimental side, experiments investigating novel physical effects can offer new insights

to our understanding of nature, but also experiments examining a well-known effect in

a new context can contribute valuable insights.

Thesis Outline In this thesis the feasibility of an implementation of Lloyd’s mirror

with matter waves i.e. very-cold neutrons is investigated. Lloyd’s mirror consists of a

vertical mirror on which parts of an incoming beam are reflected back onto the unreflec-

ted part producing an interference pattern. Opposed to the well-known implementation

using photons, the implementation with neutrons as proposed in Pokotilovski (2011) and

2This argument, that the asymmetry is due to initial conditions while the baryon number is conserved,
is not compatible with a model of the universe which includes an inflation period after the Big Bang.
This is argued in Dolgov, 1992. Thank you, Prof. Snow for pointing this out.
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in Pokotilovski (2013b) has the potential to cover a not yet investigated parameter space

on the intersection of linearized-gravity and quantum mechanics. Due to the particular-

ity of a massive mirror in the setup, candidates for physics beyond the Standard Model

of particle physics can be probed. In chapter 2 section 2.4 the relevant hypothetical

scenarios beyond the Standard Model of particle physics are shortly introduced.

The overall outline of the thesis is as follows. Part I shortly introduces some funda-

mental concepts which are needed for the following argumentation. In the subsequent

chapter 2 current open questions in the field of physics are summarized and in chapter 3

properties of the neutron and the concept of very-cold neutrons are introduced. Part II

of this thesis introduces concepts in diffraction theory and the application to Lloyd’s

mirror. After chapter 4, where Lloyd’s mirror is put into an historical context, the

concept itself is theoretically described in chapter 5. There, the solution of Lloyd’s

mirror in the framework of diffraction theory is given and the phase shifts for several ex-

ternal effects are presented. Chapter 6 applies the theoretical deliberations to calculate

requirements for parameters of a realistic neutron beam. Part III selectively presents

some experimental realizations connected to Lloyd’s mirror. In chapter 7 the realization

of a setup is presented which satisfies the required characteristics of an incoming beam.

Chapter 8 concludes the experimental section by presenting the enhanced procedure

of spatial neutron detection using boron-based CR39 imaging plates. Finally, part IV

advises on future developments in chapter 9 and concludes this thesis in chapter 10.
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2. Selected Open Questions in Physics

This chapter discusses open questions in physics that greatly motivate the implementa-

tion of novel experiments throughout all disciplines of physics.

Questions arise whenever experiments give observations conflicting with a well estab-

lished theoretical model. Currently this is the case for observations on the astronomical

length scale and beyond, compared to the microscopical length scale and below and the

corresponding established theoretical models.

The three open questions which are relevant in this thesis center around the phenomena

of dark matter, dark energy, and the matter/antimatter asymmetry. They are presented

briefly in the following sections.

2.1. Dark Matter

The Standard Model of particle physics together with Newton’s gravity does accurately

model1 nature up to macroscopic length scales2. It covers the known particles as shown in

figure 2.1 and joins the weak, strong, and electromagnetic force into a potent framework.

The success of this model stands in contrast to astronomical observations that indicate

the existence of massive objects that do not or that interact only weakly with the known

constituents of the Standard Model of particle physics, as extensively reviewed in Patrig-

nani (2016). The postulation3 of dark matter hinges on several observations with galaxy

rotational curves, the observation of the bullet cluster, and fluctuations in the microwave

background being the most prominent examples. It has to be emphasized that despite

1Currently a few observations that challenge the Standard Model of particle physics exist. For example
the observation of a non-zero mass of neutrinos which is accounted for by artificially adding a
corresponding term as is discussed in Patrignani (2016). Despite this the Standard Model of particle
physics offers unpreceded predictive power and no contradicting observations are known.

2Here macroscopic length scale are specified to correspond to scales of everyday life and below astro-
nomical scales at which effects of general relativity become emerge.

3Alternatively, to postulating particles that only interact with the Standard Model of particle physics
via gravity, gravity itself can be tuned as it is done in the so called Modified Newtonian Gravity.
As stated in Patrignani (2016) this can explain some but not all observations contributed to dark
matter while being a classical model.
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indirect gravitational observation no direct detection of a dark matter particle has been

discovered to date.

Figure 2.1.: Constituents of the Standard Model of particle physics. Values taken from Patrig-
nani (2016). Decimal places of masses are provided up to the uncertainty of the observation.
The boson row is divided between particles which interact via the electroweak interaction and
the strong interaction in the case of gluons. The darker boxes correspond to particles that can
be found in “stable” states at standard conditions.

Galaxy Rotational Curves The distance dependency of the rotational velocity of stars

in a galaxy does not fit the prediction if only the luminous mass is taken into account.

Assuming Newtonian gravity the rotational velocity scales with the square root of the

mass M(r). Here M(r) is the mass that is enclosed by an orbit within the galaxy with

radius r measured to the galactic center. Thus, the rotational velocity is given as

v(r) ∝
√
M(r)/r. (2.1)

If the present matter density is proportional to the density of stars one would expect

a significant drop-off of v(r) at the edge of the galaxy. This is not observed. On

the contrary v(r) stays rather constant, which implies a non-observable or dark matter

density extending beyond the galaxy‘s edge. This argument is taken from Patrignani

(2016).
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2.1. Dark Matter

Bullet Cluster 1E 0657–558 In Clowe, Bradač and Gonzalez (2006) a gravitational

weak-lensing analysis of two galaxy clusters that collided and passed through each other

is presented. The mass distribution and the X-ray emitting plasma density is measured

independently. The first by gravitational lensing and the second by conventional as-

tronomical means. Intriguingly, the interacting plasma that is the dominant baryonic

contribution4 to these clusters did decelerate and aggregate significantly shifted from

the mass density centroid. It is concluded that most of the mass in these clusters is not

visible and dominantly interacts via gravity.

Microwave Background Studying the fluctuations of the microwave background5 as

measured for example by Planck-Collaboration et al. (2015) provides an estimate of the

cold non-baryonic matter density parameter of the universe to be

Ωch
2 = 0.1187± 0.0022, (2.2)

which is significantly bigger than the baryonic matter density parameter of Ωbh
2 =

0.02226±0.00023. Here, H0 = (67.81±0.92) kms−1Mpc−1 is the Hubble constant which

gives h = H0/(100 kms−1Mpc−1) = 0.6781 ± 0.0092, as stated in Planck-Collaboration

et al. (2015). Both quantities are a result of a fit which is based on a model of the

baryogenesis in the early stages of the universe. See Planck-Collaboration et al. (2015)

for the analysis and figure 2.2 for the derived overall energy budget of the universe.

Local Dark Matter Density The current estimate for the local dark matter density

is highly model dependent. For a homogeneous distribution along the galactic disc the

dark matter density at the position of the solar system is given6 in Patrignani (2016) as

ρlocalDM ≈ (0.47± 0.28)GeV/cm3. (2.3)

The local dark matter density is discussed in Read (2014) in more detail.

4This is true even for highly uncertain stellar masses as is argued in Clowe, Bradač and Gonzalez
(2006).

5See section 2.2 for further details.
6The derivation in Patrignani (2016) is based on Catena and Ullio (2010).
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Dark Matter

25.8%

Baryonic Matter
4.84%

Dark Energy

69.2%

Figure 2.2.: Energy budget of the universe as given in Patrignani (2016). Used are the values
for the TT+lowP+lensing dataset analysis. TT stands for the temperature power spectrum,
lowP stands for low l-likelihood, thus only multipoles up to l = 29 are considered, and lensing
stands for a correction of weak gravitational lensing by the foreground. The graphic does not
add exactly to 100% because contributions like Ωγ for photons, Ων for neutrinos, and Ωl for
leptons are neglected. For example, Ωγ +Ων ≈ 0.11.

2.2. Dark Energy

The observation of the movement of extra-galactic objects has shown that the universe

is expanding in Hubble (1929) and later that this expansion is accelerating in Riess et

al. (1998). This accelerated expansion is surprising, as one would expect a deceleration

for a matter-dominated universe. Something seems to apply a negative pressure acting

against the attraction by the gravity of matter. Thus, observations justify and even

require the addition of the cosmological constant in the Einstein field equations which

are shown in equation (1.2). Instead of writing the constant on the left hand side of the

equation, one can also move it to the right hand side — the mass/energy side. There it

then can be interpreted as a kind of vacuum energy applying a constant pressure

Rµν −
1

2
Rgµν =

8πG

c4
(Tµν + Tvac, µν) , (2.4)

where Tvac, µν = Λc4

8πG
gµν . Einstein did famously introduce this mathematically allowed

cosmological constant in his equations in Einstein (1916) in order to arrive at a static

solution. Due to the observation of accelerated expansion this constant does now have

a central relevance in modeling the evolution of the universe using general relativity.
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2.2. Dark Energy

An important observation is the in section 2.1 summarized measurement of the Cosmic

Microwave Background, which supports and extends the analysis of extra-galactic ob-

jects and was first reported in Penzias and Wilson (1965). The microwave background is

an almost isotropic photon radiation with a blackbody spectrum around T = (2.72548±
0.00057)K, as stated in Fixsen (2009). Intriguingly, its characteristics and most import-

antly its isotropy fluctuations match a radiation that is expected from an epoch at a

redshift7z ≈ 1100 in which protons and helium cores combine with electrons out of a

plasma. While hydrogen and helium form the first atoms, the cross-section with photons

is reduced and photons consequently begin to propagate freely without scattering. Thus,

the cmb can be interpreted as an afterglow of a much denser epoch of the universe than

today. When the cmb is decomposed in angular harmonic components one can ana-

lyze the relative magnitude of different multipoles l. The resulting oscillations of the

magnitude of individual components over l are formed by the acoustic characteristics of

the dense photon-baryon plasma and thus the dominating interactions and particles in

that epoch. A comprehensive overview is provided in Patrignani (2016). Extractable

results8, among others, are the approximate flatness of the curvature of the universe,

the fact that besides baryonic particles, also a substantial part of the overall universe

energy budget is bound to dark matter; the fact that dark energy is the main contri-

bution to the overall energy budget; and that thermalization in the universe covers a

super-Hubble volume9, as stated in Patrignani (2016). The most recent cmb survey is

presented in Planck-Collaboration et al. (2015). The measured overall energy content of

the universe is provided in figure 2.2. The fraction of dark energy of the energy budget

of the universe is determined in Planck-Collaboration et al. (2015) to be

ΩΛ =
ρDE

ρc
= 0.692± 0.007 (2.5)

where ρc =
3H2

0

8πG
= 8.5 · 10−27 kg/cm3 is the critical density, H0 is the Hubble constant,

G is the gravitational constant, and ρDE = Λc2

8πG
is the dark energy density as given

7This corresponds roughly to an age of the universe of τ = 400 000 a, as stated in Patrignani (2016).
8The currently most successful model which combine these and other results is the ΛCDM which
among others is based on general relativity, initial conditions for cosmic inflation, a flat universe,
cold dark matter, and a cosmological constant as indicated by state of the art observations, as stated
in Patrignani (2016).

9The Hubble volume is defined as the sphere given by the radius rH = c/H0. Points outside of this
region recede faster than the speed of light from the observer in the middle due to the expansion of
the universe. A volume bigger than the Hubble volume is called a super Hubble volume.
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in Patrignani (2016). The dark energy density of the vacuum which will be used later

is thus given as

ρDE = ρcΩΛhc = (3.3± 0.03) keV/cm3 (2.6)

where h is the Planck constant and c is the speed of light.

2.3. Matter/Antimatter Asymmetry

Figure 2.1 shows all elementary particles currently known. Particles inside the dashed

enclosure have a antiparticle equivalent under charge conjugation. For example, for an

electron this results in the positron which carries an electric charge of q = +1 e and a

magnetic moment of µe+ = −µe. This was first discovered in Anderson (1933). For the

up quark a charge conjugation results in the antiup quark which has an electric charge

of qe− = −2/3 e and the corresponding anti-color. Almost all known physical processes

are symmetric under combined charge and parity transformation10 and thus do not favor

matter or antimatter, as stated in Patrignani (2016).

Surprisingly, almost all matter that surrounds us seems to be constituted by matter

particles. Note that while evidence for large scale antimatter domains does not exist,

the question is still discussed as for example in Grobov and Rubin (2015)11.

Thus, missing large scale antimatter observations indicate that the universe is consti-

tuted primarily by matter. This is in contrast to only a small number of CP-symmetry

violating processes and to their low probability. The strong interaction, despite theoret-

ical able to break CP-symmetry, does seem to conserve CP-symmetry. This fact is called

the strong CP problem. An efficient process that prefers matter over antimatter that

did elude detection up until now could explain why matter dominates in our universe.

2.4. Hypothetical Scenarios

The arguments presented in section 2.1, section 2.2, and section 2.3 pose fundamental

questions regarding the current understanding of nature. To resolve these issues one can

introduce additional fields and particles.

10CP-symmetry is not conserved in rare weak processes in the quark sector as summarized in Patrignani
(2016). Note that CP-symmetry violation is not known to be present in the strong, electromagnetic,
and gravitational sector, as stated in Patrignani (2016).

11In Grobov and Rubin (2015) a theoretical model is proposed that is compatible with current obser-
vations and allows for large scale antimatter domains.
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2.4. Hypothetical Scenarios

The Chameleon Field To address the question of dark energy in Khoury and Weltman

(2004) a scalar field, the chameleon, can be introduced. In Khoury and Weltman (2004)

it is argued that in order to still satisfy experimental equivalence principle tests, the

field may have a dependency on the local matter density and thus vanish in the vicinity

of an experimental apparatus. In particular the mass mcham of the field is dependent on

the local density and will increase with growing density, effectively screening the field

to massive objects. One simple possible effective potential of the field is given by the

Ratra-Peebles potential, as stated in Joyce et al. (2014) and in Ivanov, Höllwieser et al.

(2013) defined as

U(φ) = Λscale +
Λ4+n

scale

φn
(2.7)

where φ(x, y, z) is the chameleon field, n the Ratra-Peebles index, and Λscale ≈ 2.24meV

the dark energy scale12. The mass for this particular implementation is given as

m2
cham = n(n+ 1)

Λ4+n
scale

φn+2
min

(2.8)

and the minimum of the chameleon field as

φmin = Λscale

(
nMplΛ

3
scale

βρ

) 1
n+1

∝ ρ−
1

n+1 → m2
cham ∝ ρ

n+2
n+1 (2.9)

with the local density ρ, the Planck mass Mpl, and the coupling constant β. While in

the vicinity of a high density the field is massive and thus very short-range (screened) in

empty space it will be very light and can act on cosmological scales. Note that several

recent experiments restrict the possible parameter space for n and β as for example most

recently in Jaffe et al. (2017). This is further discussed in section 5.6.4.1.

Gravitational Torsion In the general theory of relativity the gravitational “force” is a

consequence of the curvature of spacetime by the energy density. In a similar fashion

it could be argued that the quantity spin could have an effect on spacetime, namely

gravitational torsion. The Einstein-Cartan-Sciama-Kibble theory does include torsion

into general relativity, as stated in Cartan (1922). Conveniently, the Ricci scalar can

be expressed as R = R + K2 where K is the contorsion tensor, as stated in Ivanov and

Wellenzohen (2016).

12Note that this is a phenomenological estimation. More generally Λscale could take another value but
is restricted amongst others by Adelberger et al. (2007) to a mass scale coinciding with the scale for
dark energy, as stated in Jaffe et al. (2017).
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In Poplawski (2011) it is argued that torsion could be connected to questions regarding

inflation, dark energy, and even matter/antimatter asymmetry. The connection to dark

energy is given in Ivanov and Wellenzohen (2016) as

ptors = −ΛCM
2
PL (2.10)

by using the hypothetical chameleon field. Here MPL is the Plank mass, ΛC the cosmo-

logical constant, and ptors the torsion pressure which can be identified as the torsion or

dark energy density ρtors = −ptors.

The Axion The axion is a hypothetical, light, weakly coupling, electrical neutral, and

spin-less particle which can be introduced to address the strong CP problem and was first

introduced in Peccei and Quinn (1977). It offers a mechanism to cancel theoretically ex-

pected CP-symmetry violating processes mediated by the strong interaction as discussed

in Afach et al. (2015). It is based on the introduction of the Peccei-Quinn symmetry

and features a strict relationship between mass max and the scale of the Peccei-Quinn

symmetry breaking fax by

max =
fπmπ

fax

√
z

z + 1
(2.11)

with the ratio z = mu/md = 0.56, mπ the pion mass, and fπ = 92MeV, as stated

in Patrignani (2016). Additionally, the axion could be a constituent of dark matter

due to their very weak cooling, as stated in Patrignani (2016). The mass range which

is favored by theoretical considerations is given as 10−12 < max < 106 as presented

in Pokotilovski (2011). For fax � vweak where vweak = 247GeV is the electroweak

symmetry breaking scale, the axion model is not yet excluded, as stated in Patrignani

(2016). Nevertheless, constraints from astronomic observations as presented in Berenji,

Gaskins and Meyer (2016) exclude the mass range for the axion to be

max < 7.9 · 10−2 eV. (2.12)

These and other limits restrict the possible mass range tightly and lead to models of

axion-like particles for which the mass-scale dependency in equation (2.11) is relaxed, as

stated in Patrignani (2016) and in Aprile et al. (2014). Thus, experiments are required to
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2.4. Hypothetical Scenarios

exclude a bigger parameters space of coupling constants as for example the pseudo-scalar

coupling between axion and fermion

gs, ax, f =
Cfmf

fax
(2.13)

and axion masses as would be necessary for the original proposed model, as stated

in Patrignani (2016). Here Cf is a model dependent factor and mf is the mass of the

fermion.
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3. The Neutron

3.1. Neutron Characteristics

The neutron is a composite particle, which is one of the main building blocks of ordinary

matter in the observable universe. It is in general the not-stable ground state of |udd〉
which can be stabilized if bound to protons via the strong force in an atomic core. The

current accepted value for the mean lifetime of the free neutron is τn = (880.2 ± 1.1) s

as given in Patrignani (2016), which opens a reasonably wide time window to study the

free neutron.

The name historically originates from its electric neutrality. It was discovered that

atoms have an electrically positive charged heavy core and an equally negatively charged

light exterior as presented in Rutherford (1920). Accounting for the known proton

mass mp = 938.27 MeV
c2

an almost equal mass could not be associated with a known

particle. This was resolved with J. Chadwicks discovery of a neutral particle with a mass

comparable to the proton Chadwick (1932) which was named neutron. The neutron can

Quantity Value/Info

Spin s = 1/2
Mean lifetime τn = (880.2± 1.1) s
Mass mn = (939.5654133± 0.0000058) MeV

c2

Magnetic moment µn = (−1.91304273± 0.00000045)µN

Electric charge |q| < 1.1 · 10−21 qe. Consistent with zero, as
stated in Baumann et al. (1988).

Electric dipole moment |de| < 3.0 · 10−26 qe · cm. Consistent with
zero, as stated in Harris et al. (1999).

Electric polarizability αn = (11.8 ± 1.1) · 10−4 fm3. The electric

dipole moment is given as �D = 4παNε0 �E.

Table 3.1.: Neutron characteristic properties as given in Patrignani (2016). If the source is
deviating, it is stated.

interact by several mechanisms described in the Standard Model of particle physics i.e.
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3. The Neutron

with its spin s = 1/2 via the electromagnetic interaction, by its quark-structure via the

strong or weak interaction, and by its mass mn ≈ 939.565 MeV
c2

via gravity. The currently

accepted characteristic properties are given in Patrignani (2016) and are summarized in

table 3.1.

3.2. Neutron Energy Range

Figure 3.1.: Neutron energies and thermal
characterization. The very-cold neutron energy
range is specified in Eder et al. (1989).

Typically, neutrons are produced in a nuc-

lear fission reactor as for example at Insti-

tut Laue-Langevin in Grenoble, France, or

a spallation neutron source as for example

at Paul Scherrer Institut near Zurich,

Switzerland, in practical quantities. Neut-

rons arising from a fission reaction are

called fission neutrons, they have kinetic

energies of the order of Ekin = 2 ·106 eV =

2MeV and a |�v| = 107 m/s, as stated

in Dianoux (2003).

A reactor’s basic principle rests on moder-

ating fission neutrons down to thermal en-

ergies by scattering at a moderator as for

example hydrogen. The energy spectrum

of these thermal neutrons is a Maxwell-

Boltzmann spectrum with a mean energy

of Ē ≈ 20 · 10−3 eV = 20meV. For

most experiments lower energies are de-

sired in order to enlarge the cross-section

with matter and to make use of emerging

optical properties of the neutron. Neutrons with lower energies than thermal neutrons

are called sub-thermal neutrons and can be selectively produced by using a low tem-

perature moderator. An example is Deuterium at T = 25K. It is used at the Institut

Laue-Langevin to enhance the flux of neutrons with a wavelength of λ = 0.2 nm and an

energy Ekin = 20meV as described in Laue-Langevin (2008).

By selecting only the low-energy part of one of the thermal distributions a very-cold

neutron beam can be created. The energy range of very-cold neutrons is a matter
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of definition. A sensible range is given by Eder et al. (1989) as the energy range for

which standard optical components can be used as opposed to crystal optics for thermal

neutrons and total reflecting optics for ultra-cold neutron. The full energy range of

commonly used neutrons is shown in table 3.2. Figure 3.1 gives an overview of accessible

neutron energies and the thermal nomenclature.

Fission

Neutrons

Thermal

Neutrons

D2@25K

Neutrons

Very-Cold

Neutrons

Ultra-Cold

Neutrons

Ekin 2MeV 56meV 0.9meV (1 → 10−3)meV < 100 neV

|�v| 103 km/s 3.3 km/s 1.3 km/s (400 → 8)m/s 4.3m/s

Source: Dianoux Laue-Langevin Eder et al. Golub et al.,

1991

λ 4 · 10−4 nm 0.12 nm 0.3 nm (1 → 50) nm 92 nm

Table 3.2.: Thermal neutron scale for frequently used energy regions. Note that the energy
of thermal neutrons are commonly set to be vterm = 2200 km/s as it is used as a standard
parameter in cross-section measurements. See Dianoux (2003) for additional information.

In this thesis very-cold neutrons are of special importance due to their optical properties.

The following chapter will provide an insight in the production of sub-thermal neutrons.

3.3. Very-Cold Neutrons

Neutrons with a kinetic energy Ekin < Vopt smaller than the optical potential of a surface,

totally reflect under every incident angle. This is called total reflection and defines the

upper bound of the energy range for ultra-cold neutrons, as stated in Golub, Lamoureaux

and Richardson (1991). Table A.6 summarizes the neutron optical potential for some

frequently used materials. For the materials used in this thesis, the potential has values

of the order of Vopt ∼ 100 neV. Some neutron optical characteristics of the used materials

are summarized in table A.5.

As the kinetic energy of very-cold neutrons is generally higher than the optical potential,

they totally reflect only for angles below the critical angle αcrit. It is given as

αcrit = arctan



((

Ekin

Vopt

)2

− 1

)−1/2

, (3.1)
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3. The Neutron

is discussed in more detail in section 5.1, and is applied in section 6.2.1. Experiments

with very-cold neutrons frequently have setups with extensions well over several meters,

thus their gravitational drop has to be accounted for in experimental realizations. The

gravitational drop is given as

∆x =
g

2

(
L

v

)2

, (3.2)

where g is Earth’s local acceleration and acts in x-direction, v is the velocity component

in either y or z-direction, and L is the flight path. See figure 3.2 for the gravitational

Figure 3.2.: Vertical displacement for a given flight path of neutrons of different energies due
to gravitation.

drop ∆x for different energies. For a typical very-cold neutron setup, neutrons fall on

the order of a few millimeter. Therefore, for sufficiently long setups the alignment has

to compensate accordingly.
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Figure 3.3.: Schematic depiction of the guide
that connects the cold source with the tur-
bine at the PF2 instrument at the ILL. The
graphic follows the similar graphical representa-
tion of the Instrument Layout in Laue-Langevin
(2008).

Institut Laue-Langevin The Institut

Laue-Langevin1 is built around a high flux

reactor where neutrons are extracted by

neutron guide tubes into several experi-

mental zones. The reactor core is made up

by a single uranium fuel element contained

in a heavy water moderator. Neutrons

that thermalize at the moderator have a

mean wavelength of λ = 1.2 Å as stated

in Laue-Langevin (2008) and thus fall in

the category of thermal neutrons. For

shifted spectra additional moderator re-

gions are present around the fuel element,

as for example two vessels which contain

liquid D2. They are called the vertical

and horizontal cold source. The neutrons

thermalized at these sources have a mean

wavelength around λ = 3 Å, as stated

in Laue-Langevin (2008). From the ver-

tical cold source a curved neutron beam

guide extends to the upper most level of

the reactor building, namely “Level D” as

shown in figure 3.3. There, the beam guide

leads to the turbine which converts the

spectrum of roughly half of the beam fur-

ther down as presented in Steyerl (1975).

The other half of the beam with an area of A = (34 × 70)mm2 bypasses the turbine

wheel in a slightly curved guide, exiting the turbine vessel again and guiding the beam

to the very-cold neutron cabin. The combination of the turbine and the four ultra-cold

neutron beams and the very-cold neutron beam form the PF2 instrument.

1Institut Laue-Langevin is abbreviated in the following with simply ILL.
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3. The Neutron

Quantity Value

Coating Ni
Length l = 12.8m

Curvature r = 13m
Size A = (70× 70)mm2

Wavelength (2 < λ < 40) nm
Speed (10 < v < 200)m/s

Table 3.3.: Characteristic quantities of the vertical neutron beam guide leading to level D
taken from Laue-Langevin (2008).
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Figure 3.4.: PF2 UCN-Turbine, VCN-Cabin
and VCN-Beam. See table 3.4 for the numer-
ical values of the defined quantities.

Very-Cold Neutron Port at the PF2

The scheme of the very-cold neutron

cabin at the PF2 is shown in fig-

ure 3.4 and its characteristics are given

in table 3.4. The longitudinal axis of the

cabin has a slight angle relative to the

neutron beam of α = 18.2◦ which enters

the cabin at a height of 1020mm. At the

front of the cabin a fixed table is used for

the pre-setup components as for example

a chopper and, most importantly a neut-

ron super-mirror to deflect the beam to

be aligned with the cabin.

The cabin is thermally insulated from the

climatized experimental area on level D

which also provides basic isolation from

air vibrations and electromagnetic radi-

ation. Directly left of the cabin the ex-

perimental platforms for ultra-cold neut-

ron based experiments are set up. If these

employ strong magnetic fields or electro-

magnetic switching mechanisms, electro-

magnetic fluctuations will still be measur-

able in the cabin. The very-cold neutron-

beam port supplies central equipment to

measurements, as for example a spatially

resolving wire chamber detector, namely

the BiDim-26, and basic alignment equip-

ment. The BiDim-26 is the main detector

used in chapter 7 and its parameters are given in appendix A.4 in table A.3 and table 3.4.

A particular challenge at this beam port is the high spatial dependency of the wavelength

spectrum. This is measured and discussed in Oda et al. (2017). Figure 3.5 shows an

image taken from Oda et al. (2017) that depicts the wavelength spectrum at different

positions in the beam. More in-depth information regarding this beam port is given in

chapter 7.
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3. The Neutron

Name Value Information

A (70× 34)mm Beam size at the entrance port of the cabin,
as stated in Laue-Langevin (2008).

α 18.2 ◦ Geltenbort (2013, priv. comm.)
l1 775mm First platform length is lPre = 650mm and

the distance between table top and this plat-
form is 125mm.

l2 3600mm Length of the table top plate.
l3 3255mm Remaining free space in the cabin.
l1 + l2 + l3 7630mm Geltenbort (2013, priv. comm.)
lB 2090mm Geltenbort (2013, priv. comm.)
hB 690mm Geltenbort (2013, priv. comm.)
A (265× 265)mm Active area of the BiDim-26 detector.

See Manzin (2011)
ζBiDim26 (2× 2)mm Pixel size of the BiDim-26 detector.

See Manzin (2011).
dConv.,BiDim26 3 cm Conversion gap of the BiDim-26 de-

tector. The gas used is 500mbar(3He) +
1.5 bar(CF4). See Manzin (2011).

dWin.,BiDim26 4mm Window thickness o the BiDim-26 detector.
See Manzin (2011).

TOff(10Hz) (3.69± 0.01)ms Measured during beam-time 3–14–320 in
2013. The measurement was performed
using a laser diode and a fast photo diode.
The uncertainty stated is the statistical
uncertainty.

TOff(20Hz) (1.852± 0.009)ms
TOff(30Hz) (1.238± 0.0001)ms

Table 3.4.: PF2 dimension table. See figure 3.4 for a graphical representation.
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measurable maximum wavelength was approximately 10 nm. The
chopper disk was coated with gadolinium oxide ( Gd O2 3) as a
neutron absorber. The pulse time width was 2.7 ms. To select one
neutron spin eigenstate before and after the spin manipulations by
RSFs, we used m¼4, Fe/SiGe super-mirrors as the polarizer and
analyzer. The m-value of a super-mirror denotes that its critical
momentum transfer upon reflection is m times higher than a Ni
mirror only for neutrons in the spin-up state. The super-mirror
multilayer was coated on a silicon wafer using ion beam sputtering
technique in the Research Reactor Institute, Kyoto University [34].
We used a circular, time-sensitive area detector. The detector
consisted of a 5″ position-sensitive photomultiplier and a 6Li-en-
riched glass scintillator with a thickness of 0.2 mm [35].

3.1. Resonance spin flippers for a pulsed neutron beam

We used two RSFs, each consisting of orthogonal static and

oscillating magnetic fields. The transition between neutron spin
states occurs when the magnitude of the static magnetic field, Bz,
satisfies the resonance condition:

μ ω| | = ( )B2 , 2zn

where μ| |n is the absolute value of the neutron magnetic moment, ℏ
is the reduced Planck's constant and ω is the angular frequency of
the oscillating field. The time evolution of such a two-level spin
system in a RF filed is known as Rabi oscillation, and the prob-
ability of a spin flip is given by [36].

Θ= ( )
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where Br is the amplitude of oscillating field, ℓis the length of the
RF interaction region. The angular frequency, ωz is defined as
μ| |B /zn . When P¼1 and =P 1/2, they are called π-flip and π/2-flip,
respectively. With the π/2-flip condition, an incident neutron
forms a coherent superposition state of spin-up and spin-down
with a certain phase.

In a resonance spin flip process, a neutron loses energy ω, for
the spin-up to spin-down flip, while a neutron gains energy ω, for
the spin-down to spin-up flip. On resonance, A in Eq. (4) is unity
and we have Θ= ( ( ))P vsin2

r . By changing the amplitude of the
oscillating field to satisfy the following equation, it is possible to
use the RSF as a π/2 flipper for a pulsed white beam [37,38].

Θ π μ π( ) = ⟺ | | = ( )v
B t

t4 4
,

5ia
r

n r

where tia is the arrival time at each RSF (i¼1,2). Fig. 4 shows a
schematic diagram of the RF amplifier system. A function gen-
erator with two channels was used to produce the time-modu-
lated sinusoidal function ( ω( ) ×t tcos 1/i ). The RSF1 and RSF2
shared the same trigger signal to lock their relative phase of the RF
fields.

3.2. MIEZE condition

In the simple MIEZE instrument, both RSFs were operated as
π/2-flippers and we obtained coherent states in the spin-up ei-
genstate with an energy difference of ω ω( − )2 1 at the detector as
shown Fig. 3 (b). The MIEZE signal is observed as a function of the
phase difference between two energy states [39]. The neutron
intensity at the detector position is modulated by

ϕ∝ +
( )I

1 cos
2

, 6

where ϕ is the phase difference between the coherent spin-up
states with different energies.

With no change in the neutron velocity, the phase difference at
a time point td is given by

ϕ ω ω
ω ω ω( ) = − ( − ) − + −

( )t t
v
L

v
L , 7d 2 1 d

1
12

2 1
2d

where ω1 and ω2 are the frequencies of RSF1 and RSF2, respec-
tively. In order to cancel out dispersive velocity-dependent phase
differences, the following condition is required

ω ω ω= ( − ) ( )L L . 81 12 2 1 2d

This is called the MIEZE condition. In this experiment, the fre-
quencies of RSF1 and RSF2 were set to ω π =/2 50 kHz1 and

Fig. 2. Referential measurement data of the primary VCN beam for the TOF-MIEZE
experiment. (a) Two-dimensional relative intensity map of the primary VCN beam
integrated over the whole wavelength range, up to 12 nm. We divided the illu-
minated area into left, right, bottom, and top sides denoted by A, B, 1, and 2, re-
spectively. (b) Wavelength spectra in each region of the detector plane as labeled in
(a).

T. Oda et al. / Nuclear Instruments and Methods in Physics Research A 860 (2017) 35–41 37

Figure 3.5.: Subfigure (a) shows the cross-section of the very-cold neutron beam after an flight
path of L = 750mm between chopper and detector. The dashed yellow rectangles depict
regions of interest to calculate wavelength spectra. Subfigure (b) shows wavelength spectra
for different extraction positions at the very-cold neutron beam at the PF2. Both images are
taken from Oda et al. (2017).
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4. Introduction

This section provides a brief summary of historical wave optics and the introduction of

the Lloyd‘s interferometer by H. Lloyd.

4.1. A Brief Overview of Interferometry

Optics between 1700 and 1800 was dominated by a debate about the ‘nature’ of light,

where the question was if light is made out of corpuscle or undulations (solid particles

vs. waves). Despite extensive diffraction experiments the consequence of interference

was not clear and both sides had prominent supporters with a variety of arguments1.

Figure 4.1.: Depiction of the interference pattern and schematic setup of the double-slit ex-
periment and seen interference pattern by Young (1807).

The most famous experiment that shifted the debate in favor to an undulation theory is

the double-slit experiment by Young (1807) for which the interference pattern is shown in

figure 4.1. Despite this and additional experiments by A. Fresnel, the counter argument

that the appeared interference might be explained by the interaction of light with the

1Examples of prominent supporters of the corpuscle theory of light: Isaac Newton, Siméon Denis
Poisson, Examples of prominent supporters of the undulation theory of light are Thomas Young,
Augustin Jean Fresnel, Humphrey Lloyd, James Clerk Maxwell (See Born and Wolf (1970), Wiki-
pedia (2017), Young (1807) and Lloyd (1831) for more details)

29



4. Introduction

edges of the slit or the glass, needed to be refuted as is argued in Born and Wolf (1970)

and Lloyd (1831).

To strengthen the understanding of the undulatory theory, in Lloyd (1831) an inter-

ferometer is proposed where a reflected beam interferes with a direct beam as shown

in figure 4.2. The implementation with light verified, that interference is not due to

structure in the entrance slit.

Figure 4.2.: Original schematic depiction of Lloyd’s mirror taken from Lloyd (1831). On the
left line is a candle that is masked by a thin slit at position A. From P a mirror surface
perpendicular to the picture plane extends to point O. A wave will propagate from A to O by
direct path or by reflecting at the mirror. The interference pattern at the imaging plane on the
right side (plane through O and M) is determined by the ratio of the distance between B and
O and the distance between A and B. To simplify the calculation A′, that acts as reflected
source is, added. Finally, the green arrows depict the reflected beam a and the red arrows
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In order to describe the intensity pattern H. Lloyd calculated the intensity to be

I = A2 = a2 + 2aa′ cos 2π

(
δ′ − δ

λ

)
+ a′2 (4.1)

where δ′ − δ is the transverse path difference between reflected beam and direct beam,

a is the intensity in the direct beam, and a′ the intensity in the reflected beam.

With the formulation of Maxwell’s equations of electrodynamics the wave-theory of light

received a framework which accurately described diffraction effects with light (Born and

Wolf, 1970). The argument between corpuscle or undulations was finally settled by Ein-

stein (1905), by showing that wave properties and particle properties are simultaneously

needed to explain the photoelectric effect. Thus, joining both sides of the argument

by proposing the wave-particle duality of light which was extended to massive particles

as proposed in de Broglie (1924). The wave-particle duality today is a corner stone of
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quantum mechanics and appears in a wide variety of systems as for example matter wave

diffraction. This closes the discussion to the mentioned experiments at the beginning.

4.2. Motivation of this Thesis

Lloyd’s mirror for light is frequently used as a tool to investigate planar surfaces as

is discussed in Langenbeck (2014). The main prospects of Lloyd’s mirror with very-

cold neutrons, are possible tests of physics beyond the Standard Model. For example,

chameleon fields, axions, symmetrons and gravitational torsion are proposed areas of

interest. See Pokotilovski (2013b), Pokotilovski (2013a), Pokotilovski (2011) and Ivanov

(2016, priv. comm.) for more details. In section 5.6 the phase shifts due to different

hypothetical scenarios in Lloyd’s mirror are discussed and measurement scenarios are

analyzed. For certain scenarios, for example the chameleon field, the size of the intro-

duced phase shift can be rather large, depending on the exact value of the parameters of

the model. The interferometer could offer a general tool to investigate physics beyond

the Standard Model as it can combine gravitational effects, quantum mechanical effects

and an intriguing comparison between neutrons and a massive macroscopic mirror. This

demands a rigorous analysis of the feasibility of specific measurement schemes. Further,

the realization of Lloyd’s mirror with neutrons would be a novelty on its own and thus

it is difficult to predict what possible applications may arise.

In regard to hypothetical models in Foot, Lew and Volkas (1992) a fitting motivation for

experiments for or against charge quantization in the Standard Model of particle physics

and its extensions is given:

This type of naturalness puzzle suggests that it is more likely for nature to

have chosen an extension of the standard model which guarantees charge

quantization, rather than opting for dequantization. However, we should

be circumspect in treating theoretical prejudices such as this as inviolate

principles; only experiment can provide the ultimate answer. Foot, Lew and

Volkas (1992)

If theoretical deliberations seem to make an experiment obsolete, one has to remember

that only an experiment can supply the ultimate test of nature. This thought can be

applied to many situations and in this particular instance to the case of Lloyd’s Mirror.

As already noted, Lloyd’s mirror is a free space diffraction experiment. Interpreting an

interference pattern can be particularly hard, if different phase shifts need to be dis-

entangled. An example is the famous cow-experiment by Cowley (1995). There the
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phase shift due to gravity was probed by slightly rotating a single-crystal silicon inter-

ferometer. Accompanying the phase shift due to gravity is a shift due to the bending of

the interferometer which needed to be measured simultaneous by using x-ray diffraction.

In general and depending on the effect under investigation the setup has to be adapted

for the specific situation to disentangle different effects. In some cases the effect can be

turned on and off or even reversed and one can realize a Null experiment i.e. an experi-

ment where the default outcome is no phase shift. Thus, the concrete sensitivity to an

effect is dependent on the question whatever systematic effects can be disentangled or

suppressed. In the case of Lloyd’s Mirror a similar situation as in the cow-experiment

is to be expected if different interferograms are to be compared. The reason are several

significant phase shifts, which are presented in section 5.6. If on the other hand only a

small part of the interferogram is probed for an tunable shift the situation simplifies sig-

nificantly. For such measurements, section 5.6 presents phase-shift magnitudes and their

expected sensitivity. A concrete measurement scenario and its constraints are discussed

in section 6.1. Finally, a simulation and experimental work is presented in section 6.3

and chapter 7. Most importantly, the theoretical foundations of Lloyd’s mirror are dis-

cussed in the following chapter and several important solutions that are needed for the

analysis are introduced.
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5.1. Interactions of the Neutron

In chapter 3 the basic properties and interactions of the neutron are briefly summarized.

For neutron optical experiments especially interactions mediated by the strong force

between a neutron and nuclear cores is of importance. This kind of interactions lead to

effects analogous to light optics and thus not only to functional similar components, such

as beam splitters, mirrors, and prisms, but also analogous quantum-mechanical experi-

ments as single-slit diffraction by Shull (1969), double-slit diffraction by Anton Zeilinger

et al. (1988) or experiments in classical optics such as focusing setups by Kumakhov

and Sharov (1992) and Eskildsen et al. (1998). The general topic of neutron optics is

covered broadly in A. G. Klein and S. A. Werner (1983), Sears (1982) and Bergmann

and Schäfer (1992).

For the following discussion, force-free matter wave propagation and propagation in a

medium, diffraction at an object and nuclear reactions with matter are of relevance and

will be briefly discussed.

Figure 5.1.: Surface interaction geo-
metry. A neutron incident under the
angle θin on a solid non-magnetic sur-
face.

Nuclear Interaction The interaction of a neut-

ron with an atom core is to first order based on

the strong force and can be described by the in-

teraction with a Fermi pseudo potential, as stated

in Helmut Rauch and Samuel A. Werner (2015).

For a homogeneous surface the interaction can be

well approximated by the mean over point-like in-

teractions at atomic sites, if the wavelength of the

neutron is much bigger than the inter-atomic dis-

tance da ∼ fm. See for example Golub, Lamour-

eaux and Richardson (1991). This is the case for

thermal and low-energy neutrons and leads to the
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concept of the neutron optical potential. Thus, many results of regular optics can be

be applied in the case of non-magnetic interactions with a neutron. See Helmut Rauch

and Samuel A. Werner (2015) for a complete in-depth description. The neutron optical

potential is defined by

Vopt =
2π

m
�2bcN̂ (5.1)

where bc is the coherent scattering length and N̂ is the number density. The index of

refraction for a neutron in a medium follows as

n = 1− λ2N̂

2π

√
b2c −

(σT

2λ

)2

+ i
σT N̂λ

4π
(5.2)

where σT = σabs + σincoh is the total cross-section, σabs the absorption cross-section, and

σincoh the incoherent scattering cross-section. If a neutron transverses a medium, the

absorbed fraction will be given by the Beer–Lambert law

A = 1− e−dN̂σT (5.3)

with the transversed distance d. If the neutron hits the surface of a material under an

angle θin as shown in figure 5.1, the reflectivity of a thick substrate is stated in Dianoux

(2003) to be

R =

(
q −

√
q2 − q2c

q +
√

q2 − q2c

)2

(5.4)

with the wave vector transfer q = 2kin sin (θin), the critical wave vector transfer qc =√
(16πbcN̂), kin the incoming wave vector, and θin the angle of the incoming wave

measured to the surface.

Electromagnetic Interaction The neutron has a fractional-spin of s = 1/2 and thus

can interact electromagnetically. The potential is stated in Helmut Rauch and Samuel

A. Werner (2015) as

Vmag = −µ�σ · �B(�r) (5.5)

where �σ is the Pauli spin operator, µ is the magnetic moment, and �B(�r) is the mag-

netic field. For magnetic materials this leads to a polarization dependency of scatter-

ing quantities and for a present inhomogeneous magnetic field this leads to a force as
�F = µ∇(�σ · �B(�r)). In the following, the spin interaction will only sparsely be discussed
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5.2. Matter Wave Dynamics

as the focus is on quantum dynamical phenomena without magnetic or electric fields

present and on propagation in non-magnetic materials.

5.2. Matter Wave Dynamics

As shown first by H. Rauch, Treimer and Bonse (1974), neutrons will exhibit matter

wave behavior in a single-silicon crystal interferometer with macroscopic dimensions by

the splitting of amplitude of the wave function. This is also true for wavefront splitting

interferometers as mentioned in the introduction of section 5.1.

In force-free space a simple non-trivial solution to the Schrödinger equation are plane

waves

ΨP = Ψ0e
i�k�x+ϕ+iωt (5.6)

and spherical waves

ΨS = Ψ0
eik·r+ϕ+iωt

r
. (5.7)

ΨP evolves in �k direction with a specific wavenumber k = |�k|. Ψ0 is the amplitude at

the origin, r is the radial distance to the origin, while �x is a point in space, ω is the

frequency with which the wave evolves in time and ϕ is an arbitrary phase. This is not

sufficient to describe the propagation of a particle in space as neither wave is localized

and thus both are not normalizable. This is solved by using the concept of a wave

packet which is a weighed superposition of plane waves, as is used in Helmut Rauch and

Samuel A. Werner (2015). Thus, wave properties can be related to neutron properties

by the de Broglie relations that connect the neutrons momentum �p with the wave vector
�k by �p = ��k and the neutron kinetic energy E with the frequency ω over E = �ω.
Additionally, for a force-free particle the frequency ω and the wavelength λ are related

by |�k| = 2π/λ =
√

2mω/�2. Thus, a force-free neutron with |�v| = 75m/s will have

ω =
1

2�
mn�v

2 ≈ 45GHz (5.8)

and

λ =
h

mn|�v|
≈ 5.3 nm. (5.9)

In the following the wavelength in analogy to optics is used to characterize the neut-

ron kinetic energy. For both solutions the time dependence can be separated, if the

Hamiltonian is not time dependent.
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5.3. Kirchhoff Diffraction Formula

The topic of diffraction of waves at various objects is covered extensively in the literature.

For example, in Bergmann and Schäfer (1992), Cowley (1995) and Helmut Rauch and

Samuel A. Werner (2015). For the topic of stationary matter wave diffraction I closely

follow these three sources.

As superpositions of solutions to the Schrödinger equation are again a solution, one can

use results as given in section 5.2 (for example ΨIn = ΨP) to build up more complicated

compositions ΨOut.

Figure 5.2.: Relevant geometric quantities for diffraction at a thin object. A wave originating
from PSource travels along �r to an object through an arbitrary point in the object plane, gets
diffracted and travels along �s to PScreen. �r0 and �s0 connect the source point PSource and the
screen point PScreen with the origin in the object plane. The arrows indicate the propagation
direction.

If a thin object is radiated from a point source at PSource with λ � (r0, s0), the trans-

mitted wave ΨOut viewed at PScreen can be expressed by

ΨOut =
i

2λ

∫∫
S[x, y]

e−i�k(�r+�s)

|�r||�s|
(cos [�n · �r] + cos [�n · �s]) dy dz (5.10)

which is the Kirchhoff-diffraction formula, as stated in Cowley (1995). Here x and y are

the object-plane coordinates, S[x, y] is the object transmission function, |�k| = k = 2π/λ

the wave vector, λ is the neutron’s wavelength, �n is the normal vector on the object’s

surface, �r & �s are the source vector and the imaging vector respectively and |�r| = r &

|�s| = s are the vector magnitudes. See figure 5.2 for a graphical representation.

Depending on the placement of the source plane and imaging plane compared to the size

of the object and its wavelength, one can distinguish two well explored regimes:
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Regime Distinction — Far vs. Near Field If the size of the object D is very small

compared to the distance to source r0 and image s0

2λ

D2
� 1

s0
+

1

r0
(5.11)

one can replace r and s in the denominator by their not shifted analog r0 and s0. Also

�r and �s are then almost parallel to the object’s normal vector �n which points in z-

direction and thus by only considering forward propagation cos [�n · �r] ≈ cos [�n · �s] ≈ 1.

equation (5.10) can then be simplified to

Ψ =
i

λ

∫∫
S[x, y]

e−ik(r+s)

r0s0
dx dy. (5.12)

One can write

r =

√
(x− xso)

2 + (y − yso)
2 + (zso)

2 (5.13)

s =

√
(x− xsc)

2 + (y − ysc)
2 + (zsc)

2 (5.14)

and approximate the roots to different orders of x & y depending on the distance between

object and source. The coordinates χso belong to the source plane and the coordinates

χsc to the screen plane. If one finally writes (r + s) = (r0 + s0) + ∆(x, y) the previous

equation becomes

Ψ =
i

λ

e−ik(r0+s0)

r0s0

∫∫
S[x, y]e−ik∆(x,y)dx dy. (5.15)

Here ∆(x, y) is the path difference between the path defined by �r & �s and the path

defined by �r0 & �s0. Using the concept of the Fresnel number F one can distinguish

different regions. F compares the phase shift between two maximal positions in the

objects at the imaging plane by

F =
D2

s0λ
(5.16)

whereD is the characteristic size of the transmissible part of the object. Beware that this

distinguishes only coherent diffraction processes. If the incoming wave is not coherent,

a pattern will be strongly damped and, depending on the homogeneity of the incoming

beam, even be distorted.
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Fraunhofer Diffraction — Far Field If the imaging distance is very large, F >> 1

only ∆[x] and ∆[y] contribute only to first order. One can write equation (5.15) as

Ψ =
i

λ

e−ik(r0+s0)

r0s0

∫∫
S[x, y]e−ik∆(x,y)dx dy (5.17)

with

−∆[x, y] ≈
(
xso

r0
+

xsc

s0

)
+ y

(
yso
r0

+
ysc
s0

)
. (5.18)

Fresnel Diffraction — Near Field For not too small distances, reasonably sized

objects and F ≈ 1, one has to account for second order contributions which will dominate

∆(x, y). The diffracted wave function can be expressed as

Ψ =
i

λ

e−ik(r0+s0)

r0s0

∫∫
S(y, z)e−ik(∆(y,z))dy dz. (5.19)

If the object has a finite extension in the y-dimension and an infinite extension in the

x-dimension the integral over x can be executed. Using ∆(x, y) ≈ 1
2
(x2 + y2)( 1

r0
+ 1

s0
)

the integral over x is

Ax =

∞∫

−∞

e
−ik

(
1
r0

+ 1
s0

)
x2

2 dx =

(
1

2
− i

2

)√
k

1

r0 + s0
(5.20)

and equation (5.19) becomes

Ψ =
i

λ
Ax

e−ik(r0+s0)

r0s0

∫
S(y)e

−ik
(

1
r0

+ 1
s0

)
y2

2 dy. (5.21)

The following subsections will give an example for each region, first for the ‘Frauenhofer-

Diffraction’ which is represented by a single slit and then for the ‘Fresnel-Diffraction’

which is represented by a straight edge.
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The following subsections will give an example for each region, first for the ‘Frauenhofer-

Diffraction’ which is represented by a single slit and then for the ‘Fresnel-Diffraction’

which is represented by a straight edge.
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5.3.1. Frauenhofer-Diffraction: Single Slit

Following Bergmann and Schäfer (1992) and Shull (1969) the intensity distribution of

neutrons Fraunhofer diffracted at a single thin slit is given by

I(β) = I0
sin2 [(πD/λ) sin (β)]

((πD/λ) sin (β))2
(5.22)

where β is the diffraction angle, D is the slit opening, λ the neutron wavelength and

I0 the total intensity of the beam in the entrance slit. The angular position of the zero

crossings is given by

βn = arcsin

[
nλ

D

]
(5.23)

where n is the order of the crossing. The resulting pattern can be seen in figure 5.3

which shows a measurement by Anton Zeilinger et al. (1988) in (a) and the calculation

in (b). Additionally, this is experimentally verified by Shull (1969).

(a) (b)

Figure 5.3.: Neutron far field single-slit diffraction pattern. The left figure (a) is a measurement
taken by Anton Zeilinger et al. (1988) for a 90µm slit with L = 5m. The right figure (b) is
a calculation of an ideal pattern at a distance L = 0.5m for D = 10µm, I0 = 1, λ = 6.34 nm
and F = 0.02.
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5.3.2. Fresnel-Diffraction: Straight Edge

Figure 5.4.: Straight edge diffraction geometry.

The straight edge has to be treated

with the approximations of the Fres-

nel diffraction, as in one dimension

the integration region is not bound

to a small area to the axis. ∆(y, x)

will be dominated by terms which are

quadratic in y and x. For an edge

with an infinite extension in the x-

dimension the problem becomes two-dimensional as shown in figure 5.4 and the wave

function is given by

Ψ(ysc) = Ae−i 2π
2

λ
(s0+r0)

∞∫

0

e
−i π

2λ
(y−ysc)

2
(

1
s0

+ 1
r0

)
dy (5.24)

where s0 is the distance between edge and the point of observation, ysc is the coordinate

in the detector plane, and the dependency of the distance to the source is dropped as it

is taken to be constant.

This equation can be expressed with Fresnel integrals C(u) and S(u) as written in equa-

tion (A.11) which can be evaluated numerically

Ψ(ysc) = Ae−i 4π
2

λ
s0

(
1 + (1 + i)FC

[
ysc

1√
s0λ

]
+ (1− i)FS

[
ysc

1√
s0λ

])
. (5.25)

The corresponding normalized probability density |Ψ|2 is

|Ψ(ysc)|2 =
∣∣∣∣
(
1

4
+

1

2
FC[ξ](1 + FC[ξ]) +

1

2
FS [ξ](1 + FS [ξ])

)∣∣∣∣ . (5.26)

with ξ = ysc
1√
s0λ

. In the experiment performed by R. Gähler, A. G. Klein and A.

Zeilinger (1981) and corresponding calculations the beam has finite divergence, is not

monochromatic and the entrance slit has a finite size. An ideal pattern and the measured

pattern by R. Gähler, A. G. Klein and A. Zeilinger (1981) can be seen in figure 5.5.
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5.3.2. Fresnel-Diffraction: Straight Edge

Figure 5.4.: Straight edge diffraction geometry.
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2

λ
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0

e
−i π

2λ
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2
(

1
s0

+ 1
r0

)
dy (5.24)

where s0 is the distance between edge and the point of observation, ysc is the coordinate
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(a) (b)

Figure 5.5.: On the left (a) is the straight edge as measured by R. Gähler, A. G. Klein and
A. Zeilinger (1981) with very-cold neutrons. A wavelength of λ = (2 ± 0.5) nm is used in the
original experiment and the scale in the measurement by Gähler is given as Y0 = 100µm. On
the right (b) is the ideal Fresnel diffraction with similar geometric dimensions but infinitesimal
entrance slit size, no beam divergence and for a monochromatic beam.

41



5. Theory

5.4. Green’s Formalism

In some cases the basic structure of the Kirchhoff diffraction formula i.e. that a spherical

incoming wave produces spherical waves which will be summed in a diffraction area, is

not convenient. In particular the Kirchhoff diffraction formula assumes a diffraction

object without significant extension along the propagation direction. If the object has

a significant extension and specific symmetries are present in a system, the Green’s

formalism is more convenient1.

Figure 5.6.: Geometry of the principle of a Green’s
function. V denotes the region for which the Green’s
function is defined and d�S is the boundary surface.
The boundary is denoted in brown.

The Green’s function G(�r, t;�r ′, t′) is

introduced as the impulse response to

an point source at position �r ′ at the

time t′ that is observed at �r at a time

t. In the case of force-free motion and

without diffraction at an object the

response is called G0. By using G0 to

build up more complicated constructs

one can incorporate geometrical fea-

tures and even arrive at the Kirchhoff

integral. Green’s function in general

can be used to incorporate geomet-

rical features directly by demanding

boundary conditions. The prerequis-

ites for the following section can be found in Morse and Feshbach (1953) and Arfken and

Weber (2013). Especially important is Brukner and Anton Zeilinger (1997) as it dis-

cusses various time-dependent single-slit, double-slit and edge phenomena using Green’s

function.

Starting point is the Schrödinger equation and, as subsequent boundary conditions and

potentials will not be time dependent, the stationary Schrödinger equation is sufficient.

By adding a source term2, the Schrödinger equation will become the inhomogeneous

Helmholtz equation

∇2ψ(�r) + k2ψ(�r) = −4πρ(�r), (5.27)

1Green’s formalism produces as a special case the Kirchhoff diffraction formula 5.10 if a Green’s
function of a point source without added symmetries is used.

2This term is not physical and is only needed for the construction of the solution after which it is
dropped.
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as stated in Morse and Feshbach (1953). This equation can be solved uniquely with a

Green’s function, if the source is a delta distribution and if boundary (Dirichlet and/or

Neumann) and initial conditions are given

∇2G(�r, �r ′) + k2G(�r, �r ′) = −4πδ(�r − �r ′). (5.28)

For a force-free particle where the boundary conditions at the surface �S

G0 (�r, �r
′)
∣∣
�r∈S = 0 (5.29)

are set at infinity and a Green’s function can be given as

G(�r, �r ′) = G0(�r, �r
′) =

ei|
�k||(�r−�r ′)|

|�r − �r ′|
, (5.30)

as shown in Morse and Feshbach (1953). G0(�r, �r
′) gives the response of a point source to

three-dimensional force-free empty space. With this and given initial conditions ψ0(�r
′)

the wave function ψ(�r) at position �r ′ becomes

ψ(�r) =

∫

V

ψ0(�r
′)G(�r, �r ′)dV ′. (5.31)

For the a scalar wave equation3 as for example the Helmholtz equation at hand, equa-

tion (5.31) can be expressed as

Ψ(�r) =

∫
dV ′Gρ(�r ′)

+
1

4π

∮
d�S′ ·

(
Ggrad′Ψ(�r ′)−Ψ(�r ′)grad′G

)
(5.32)

by using Green’s theorem. If only inhomogeneous Dirichlet type boundary conditions

are given as for example Ψ(�r)|�r ′∈S′∧�r∈S = Ψ0(�r0) one can set G(�r, �r ′)
∣∣
�r ′∈S′∧�r∈S = 0 at

the surface and thus the previous equation reduces to

ψ(�r) = − 1

4π

∮
ψ′(�r ′)grad′G(�r, �r ′)d �A′. (5.33)

The basic structure of equation (5.33) is very similar to the Kirchhoff-Diffraction integral

but with the important difference that G(�r, �r ′) can have a more complex form than just

3For the more general time dependent case see Morse and Feshbach (1953) or appendix A.7.
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a point source i.e. G0(�r, �r
′). This can be shown if G0(�r, �r

′) is inserted in Term 5.32.

Considering the fact that λ is much smaller than the geometrical quantities and if the

problem can be reduced to a thin two-dimensional diffraction region, the wave function

can be described as

Ψ(x, y) =
i

2λ

∫∫
e−2iπ�k�r

|�r|
q(x′, y′)

× e−2iπ�k�r ′

|�r ′|
(
cos (�ez�r) + cos (�ez′�r

′)
)
dx′dy′ (5.34)

where q(x′, y′) is the function which describes the transmission through the diffraction

object.

5.5. Lloyd’s Mirror

The following subsection give the well-known plane wave solution of Lloyd’s mirror and

states some simple implications. In particular higher order terms in a frequently made

approximation are considered.

Figure 5.7.: Lloyd’s mirror setup sketch for plane wave calculation of the interference pattern.
For the first part of the calculation the mirror is supposed to be infinitely extended.
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5.5. Lloyd’s Mirror

5.5.1. Plane Wave Reflection

A plane monochromatic wave Ψ that passes in front of an infinitely extended reflective

plane will give rise to a mirror image of itself, which it will then interfere with. The

geometry can be seen in figure 5.7. This plane wave approximation yields an interference

pattern with a period constant over the y-dimension. The intensity4 Ipl(ŷ) at a specific

section of the mirror and as a function of distance from the mirror ŷ can be calculated

by

Ipl(ŷ) ∝ |Ψ∗
L(ŷ)ΨL(ŷ)| = |(Ψ∗

I +Ψ∗
II) (ΨI +ΨII)| (5.35)

where ΨL(ŷ) is the wave function of Lloyd’s mirror. Subsequently ŷ will be named y

for simplicity. An incoming monochromatic plane wave ΨIn = Ae−ikr will accumulate

an additional phase ϕI in path I of ϕI = −k
√
L2 + (a− y)2 and ϕII in path II ϕII =

−k
√

L2 + (a+ y)2.

The wave function in the corresponding path is then given by ΨI(y) = AI/IIe
−ikr+iϕI/II .

Additionally, the reflected wave function does accumulate a phase shift of ∆ϕref ≈ −π

because of the neutron-mirror interaction which is added to the reflected path ϕ′
II =

ϕII +∆ϕref.

The phase geometrical difference ∆ϕgeo can be expanded by

∆ϕgeo = ϕI − ϕII = −k
2ay√

a2 + 4L2
+

16aL2y3

5
√
a2 + 4L2

+O(y)5 (5.36)

which in first order and if L >> a can be approximated by

∆ϕgeo ≈ −k · 2ay
L
. (5.37)

This is identical to the phase shift as presented in Pokotilovski (2013a).

4This is not a probability distribution as the plane wave solution is not normalizable.
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The interference pattern5 becomes

Ipl(y) ∝ 2

(
1 +

ei(ϕI−ϕ′
II) + e−i(ϕI−ϕ′

II)

2

)

∝ 1 + cos [∆ϕgeo −∆ϕref ]

≈ 1 + cos
[
4π

ay

λL
+ π

]
= 1 + cos

[
2π

y

λL
+ π

]
(5.38)

and

λL =
Lλ

2a
(5.39)

is the period of the resulting pattern. The pattern is depicted in figure 5.8.
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Figure 5.8.: Interference pattern of Lloyd’s mirror for a = 53µm, λ = 6.3 nm. The interfero-
gram can be recovered by cutting at a specific mirror length parallel to the y-axis. The region
shaded in light blue is not geometrically reachable by the reflected wave. For the calculation
the mirror starts L1 = 10mm behind the entrance slit-screen and the mirror has a length of
L = 0.315m. The entrance slit is marked in red. The irregular pattern on the left of the plot
is a Moire pattern due to the finite plot resolution. See appendix A.4 for the parameters used.

Finite Mirror Length For a finite mirror and a gap between mirror and slit as shown

in figure 5.7, the interfering pattern will be constrained from both sides at the screen.

Figure 5.8 overlays the plane wave interference pattern with the geometrical shadow6

due to the finite mirror and slit restriction to the incoming wave.

5In literature Pokotilovski (2013a) an intensity I ∝ sin
(

πy
λL

)2

is stated. Remembering

sin (x/2) =
√

(1 + cos (x))/2 the here stated equation is consistent.
6Important to note is that diffraction at the slit and at the mirror are neglected at this point. Additional
diffraction effects are accounted for in section 5.5.2.
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The interference pattern5 becomes
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Figure 5.8.: Interference pattern of Lloyd’s mirror for a = 53µm, λ = 6.3 nm. The interfero-
gram can be recovered by cutting at a specific mirror length parallel to the y-axis. The region
shaded in light blue is not geometrically reachable by the reflected wave. For the calculation
the mirror starts L1 = 10mm behind the entrance slit-screen and the mirror has a length of
L = 0.315m. The entrance slit is marked in red. The irregular pattern on the left of the plot
is a Moire pattern due to the finite plot resolution. See appendix A.4 for the parameters used.
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in figure 5.7, the interfering pattern will be constrained from both sides at the screen.

Figure 5.8 overlays the plane wave interference pattern with the geometrical shadow6

due to the finite mirror and slit restriction to the incoming wave.
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diffraction effects are accounted for in section 5.5.2.
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5.5. Lloyd’s Mirror

Two restrictions can be derived: first, one for the shallowest angle possible and secondly,

one for the steepest possible angle. The shallowest angle α will restrict the interference

in the region near the mirror and defines the lowest point yα that will be geometrically

illuminated by the reflected beam as

yα = L3
a

L1 + L2

(5.40)

where L1 is the distance between slit-screen and mirror, L2 is the length of the mir-

ror and L3 is the distance between mirror and viewing-screen. The steepest angle β

which is allowed7, restricts the highest distance from the mirror the reflected wave can

geometrically illuminate yβ which is given as

yβ = (L2 + L3)
a

L1

. (5.41)

For a finite sized slit with width S1, a has to be changed to either a → a + S1/2 or

a → a − S1/2. Later in section 6.2 it will be shown that a finite sized mirror and

entrance slit is a significant constraint of the observability of Lloyd’s mirror interference

pattern. Thus, the following section will introduce a calculation which accounts for both

restrictions.

Figure 5.9.: Relative nth-order expansion. Shown are the relative phase change of the third and
fifth-order contribution in equation (5.36) for standard parameters as defined in appendix A.4.

7Note that this does not mean that no neutron can reach this region. It states that one cannot expect
Lloyd’s interference fringes in this region.
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Higher Order Phase Expansion In equation (5.36) an approximation to the first order

is introduced. It is reasonable to check the contribution of the higher order expansions,

thus equation (5.36) is developed to the third and fifth-order. Figure 5.9 shows the

relative contribution ϕn/ϕ1 of next order expansions. The fifth-order term does not

contribute significantly but the third-order needs to be accounted for, if the phase-

sensitivity should ever reach values below δϕ < 10−7. The following section gives a more

sophisticated method of calculating the relevant wave function, where an expansion is

not needed.

5.5.2. Wave Function Using Green’s Function

Figure 5.10.: Geometry for Lloyd’s mirror to calculate
Green’s Function. In blue is the position of the source
and region I is the region which is to be considered.

It is possible to define a Green’s

function respecting the bound-

ary conditions of the geometry

of Lloyd’s mirror as shown in

figure 5.10. It has to be kept

in mind that the vertical bound-

ary condition is idealized as very-

cold neutrons do not reflect under

every incidence angle. Neverthe-

less, this geometry is the general

approach and it would be possible

to incorporate partial reflection

and angle dependencies8.

For GL(�r, �r
′) to be uniquely defined, the behavior of GL(�r, �r

′) at a given boundary S

has to be specified, for example for the force-free particle G0(�r, �r
′) in section 5.4. The

position of the chosen boundary S is indicated in figure 5.11. It is required that GL(�r, �r
′)

vanishes on the boundary and thus

GL(�r, �r
′) = 0 for �r ∈ �S (5.42)

8An incident under a non-normal angle is calculated in section A.7.1.3.
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5.5. Lloyd’s Mirror

Figure 5.11.: Boundary for Lloyd’s mirror geometry. SB and SC are evaluated for lim |�r| → ∞.

AGreen’s function that respects these conditions can be constructed by using the method

of images analogue to electrostatics

GL(r, r
′) = G0−G0(|x− x′|, |y + y′|, |z − z′|)

−G0(|x− x′|, |y − y′|, |z + z′|)

+G0(|x− x′|, |y + y′|, |z + z′|)

where G0 is the Green’s function of a force-free particle as given in equation (5.30).

Demanding that Ψ(�r) vanishes on the boundary except next to the source region gives

Ψ(�r) =




0 for �r ∈ SD ∧ �r ∈ SB ∧ �r ∈ SC

0 for �r ∈ SA ∧ b < y& y < a

1 for �r ∈ SA ∧ b > y > a .

(5.43)
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Using GL(r, r
′) with equation (5.33), solves9 the integral equation and gives

ΨL,st(�r) = ΨGreen(y, z) = A
iz|�k|
2

ei|
�k|z

×




b∫

a

dy′
H(1)

1

[
|�k|

√
(y − y′)2 + z2

]

√
(y − y′)2 + z2

−
b∫

a

dy′
H(1)

1

[
|�k|

√
(y + y′)2 + z2

]

√
(y + y′)2 + z2




(5.44)

with amplitude A and |�k| = 2π/λ.

Figure 5.12.: Lloyd’s mirror probability density calculated using a Green’s identity and by
taking advantage of present symmetries. The function is normalized to the first maximum on
the bottom of the plot. For the calculation standard parameters as given in appendix A.4
were used. On the left a S1 = 8.5µm wide slit on an opaque screen is the starting point of
a single-slit diffraction pattern that reflects on a reflecting plane on the bottom. The orange
line in the upper right corner corresponds to maximal position of geometrical illumination yβ
as given in equation (5.41).

9See appendix A.7 for a detailed calculation.
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9See appendix A.7 for a detailed calculation.
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The resulting diffraction pattern for parameters as defined in appendix A.4 is shown in

figure 5.12 and a comparison between the plane wave and this approach at one specified

mirror length is shown in figure 5.13.

Figure 5.13.: Interference pattern comparison for a = 53µm, λ = 6.3 nm, L = 0.34m. The
thin line represents the plane wave approach and the red line |ΨL,st|2 is the result of the
calculation using Green’s functions as presented in section 5.5.2. For the calculation standard
parameters as given in appendix A.4 were used.

The comparison of the plane wave solution and |ΨL,st|2 yields three interesting facts.

Firstly, the period λL of the interference pattern of the plane wave approach and the one

using a Green’s function only slightly deviate from each other near the mirror surface.

For subsequent chapters it is convenient to calculate additional effects in Lloyd’s mirror

with a plane wave approach first. Only if effects are considered, which lead to significant

deviations from the plane wave solution, a more rigorous approach has to be considered.

Secondly, before interacting with the mirror the interference pattern is a single-slit pat-

tern as described in section 5.5.1 and can be seen in figure 5.12 on the left side. The mir-

ror will be irradiated only after the single-slit pattern overlaps with the mirror. The angle

under which the minima of the single-slit pattern propagate is given in equation (5.23).

Thus, the distance between the slit and the incident position on the mirror is defined

by Ln = (a +D/2)/ arcsin (nλ/D). With the parameters used in figure 5.12 this yields

L1 ≈ 72mm, which agrees with the position of the start of the interference pattern in the

lower left corner of the graphic. Combining this result with equation (5.41), the maximal

distance from the mirror that is geometrically illuminated is given by yβ = az/L1 and is

depicted in the graphic as dashed orange line. Indeed, yβ does correspond with the upper

boundary of the single slit maximum in which the interference pattern is embedded. As

ΨL,st does describe an infinitely extended mirror, the restriction which defines a shadow

region after the mirror cannot be reproduced.

51



5. Theory

Thirdly, the pattern of Lloyd’s mirror as seen here can be roughly approximated by the

combination of the plane wave case and the single-slit diffraction pattern.

5.5.2.1. Finite Mirror Length

In section 5.5.1 it is discussed that for a setup which has a flight path beam upwards and

beam downwards from the mirror, the illuminated region will shrink. It is of interest

how the interference pattern will change with a propagation region beam downwards

from the mirror. More importantly, it is to be answered whether the resulting pattern

can still be identified as one produced by diffraction at a mirror. This can be done by

employing Huygens-principle analogously to the problem of the wave function following

a channel as in Hartmut Lemmel (2006). In figure 5.14 the vertical red/black dashed

line corresponds to the plane defined by the end of the mirror at z = L which is called

the cut-off plane Sx,y,z=L. At Sx,y,z=L every point gives rise to a spherical wave which is

weighted with the amplitude of the wave function as defined in equation (5.44)

ΨL,F(y, z) ≈ k

2πi
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The resulting pattern which uses the static solution up to the point L and then continues

with the propagated solution can be seen in figure 5.14.

Note that ΨL,F(y, z) is only valid for z > L. Further, ΨL,F(y, z) is not a valid approx-

imation, if the wave function is built up by considerable back reflection. As the static

solution at a specific z = L is built up partly by waves which originate beam downwards

at the mirror z > L it is necessary to check the size of this contribution as only the

forward traveling wavefront should be propagated further. Indeed, back reflection does

only contribute marginally as is explained in detail in the following section 5.5.2.2. Thus,

using the static solution as the wavefront at the end of the mirror is sufficient10.

10See the following section 5.5.2.3 which presents an optical measurement of the interference pattern
for further verification.
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The resulting pattern which uses the static solution up to the point L and then continues

with the propagated solution can be seen in figure 5.14.

Note that ΨL,F(y, z) is only valid for z > L. Further, ΨL,F(y, z) is not a valid approx-

imation, if the wave function is built up by considerable back reflection. As the static

solution at a specific z = L is built up partly by waves which originate beam downwards

at the mirror z > L it is necessary to check the size of this contribution as only the

forward traveling wavefront should be propagated further. Indeed, back reflection does

only contribute marginally as is explained in detail in the following section 5.5.2.2. Thus,

using the static solution as the wavefront at the end of the mirror is sufficient10.

10See the following section 5.5.2.3 which presents an optical measurement of the interference pattern
for further verification.
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Figure 5.14.: Composition of a static solution |ΨL, st|2 and a propagated static solution using
Huygen’s principle |ΨL,F|2. The left part of the pattern along the mirror is calculated using
equation (5.44) and the second is the static solution propagated using Huygen’s principle. The
static solution is taken along the plane (black-red dashed line) at the end of the mirror (red)
as shown in equation (5.46).

An interesting, but not surprising point is that the period λL,F(L2) of the propagated

solution does indeed follow λL(L2). See figure 5.15 which compares a cut at z = L2

of the propagated solution with the pattern of the static solution using a mirror with

length L2. The period of both patterns is almost identical, therefore λL is used for future

calculations as the period estimate.

This is reasonable as long as it is considered, that the pattern will be slightly deformed

and partially degrade/lose visibility by propagating beam downwards from the end of

the mirror11. See section A.7.1.4 for a more detailed derivation.

5.5.2.2. Time-Dependent Solution

The static solution does contain the superposition of all possible emitted waves12 in the

geometry of an infinitely long mirror. For a specific z = L this includes waves originating

from the mirror further down up until z → ∞. It is not immediately clear that the

pattern is mostly formed by forward traveling waves at every possible z. Especially for

the applicability of Huygen’s principle, using the static solution hinges on vanishing back

reflection.

11The plane at the edge of the mirror that separates the mirror region and the downwards propagation
region is depicted as red/black dashed line in figure 5.15.

12The solution is constructed with the barrier forming the slit and the mirror being perfectly reflecting.
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Figure 5.15.: z-slice of the propagated interference pattern. Shown in black is a slice at
L = 0.415m through the pattern shown in figure 5.14. The red dashed line corresponds to
equation (5.44) at an equivalent mirror length. Both patterns are normalized to have a unit
enclosed probability.

Figure 5.16.: Shown is the normalized difference of the time-dependent and the static solution
at t = Tc(L) and z = L. It is calculated for standard parameters as defined in table A.3.
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Figure 5.15.: z-slice of the propagated interference pattern. Shown in black is a slice at
L = 0.415m through the pattern shown in figure 5.14. The red dashed line corresponds to
equation (5.44) at an equivalent mirror length. Both patterns are normalized to have a unit
enclosed probability.

Figure 5.16.: Shown is the normalized difference of the time-dependent and the static solution
at t = Tc(L) and z = L. It is calculated for standard parameters as defined in table A.3.
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5.5. Lloyd’s Mirror

To estimate the back-reflected part13 one can compare the time-dependent solution ΨL, Tc

sliced at the classical propagation time Tc with the static solution both fixed at z = L.

The classical propagation time for a particle in a plane is given by TL = mλ
2π�

√
L2 + y2.

The time-dependent solution of Lloyd’s mirror is given in appendix A.7.2 by equa-

tion (A.98). Figure 5.16 shows the normalized difference between ΨL, Tc and ΨL, st eval-

uated at t = Tc(L) and z = L. For the dominant first few maxima the deviation is

below 0.4% and not of further interest, if the propagation distance for the finite mirror

calculation is not too big. The deviation in the second cluster of maxima can reach sev-

eral percent but is not of further interest either as this region is suppressed, if the finite

∆λ/λ is taken into account. This is even more apparent if the difference is integrated.

The fraction of the wave that is back-reflected cannot be much bigger than

ymax∫

0

(
|ΨTc,L|2 − |Ψ,L|2

)
< 0.06% (5.47)

where both patterns are normalized to the unit area. ymax is the maximum point of the

calculated pattern. In summary, the contribution from back-reflections in the region of

interest is only a few per-mill and does not need to be corrected for.

5.5.2.3. Optical Lloyd’s Mirror

Using the same setup as presented in section 7.2 which is optimized for neutrons and

exchanging the slit assembly, a Lloyd’s mirror with light using the same mirror can be

implemented. Instead of a layer which is transparent for neutrons, the slit is a gap

produced by placing S1= (155 ± 0.1) µm spacers between the mirror and a boron-steel

sheet. The relevant parameters are summarized in table 5.1. The setup consist of a

Quantity Value Information

S1 (155± 0.14) µm Thickness of a brass spacer.
a (810.5± 0.14) µm Thickness of a plastic spacer and half a brass spacer.
β ≈ − 200 µrad Estimated from data.
λ (653± 0.3) nm The bandwidth should be well below 1 nm.
L (0.34± 0.001)m Length of the mirror region.
LD 30mm Distance between mirror and cmos camera.

Table 5.1.: Parameters that are used to calculate the theoretical pattern for the measurement
of an optical Lloyd’s mirror as shown in figure 5.17.

13At least for back-reflection not in the local area of the time-dependent solution.
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laser pointer at λ = (653±0.3) nm, aligning optics, the slit and the mirror, and finally a

cmos camera to capture the interferogram. The setup itself is shown in appendix A in

figure A.1. The measurement and the pattern which are predicted by equation (5.44) and

equation (5.46) are shown in figure 5.17. Indeed, |ΨL,F, β|2 does describe the measured

pattern over a major area correctly. While the measurement itself is not perfect as for

example the slit assembly used has an extension of 2mm and thus deviations from the

ideal model are expected, the overall shape of the pattern is correctly reproduced. More

importantly, even smaller structures as for example the period of the pattern, relative

peak height, and the propagation behavior beam downwards from the mirror region are

in agreement. Incorrect is the structure of the first pattern breakdown at y = 800 µm
which can be further enlarged by using an even deeper14 (30mm) entrance slit. Thus,

this deviation is most probably due to a superimposed pattern in the slit region.

Figure 5.17.: The orange line shows the normalized interference pattern of an optical Lloyd’s
mirror as measured using a λ = (653 ± 0.3) nm laser and an cmos camera. From the camera
image a region of ROI= (60µm× 4mm) is cut as the slit parameters (S1, a) are not constant
over the vertical extension of the slit. Both patterns are normalized to the area under the curve
and the y dimension is fixed by the position of the second maximum. No further data manipu-
lations are applied. The black dashed line is the theoretical exception for the same parameters
but using an infinitesimal slit using equation (5.46) and a slight angular misalignment of the
incoming beam.

For this measurement the finite length model as presented in equation (5.46) is extended

to include a small angle β between incoming wave and slit S1 as it is described in in

section A.7.1.3 for the static model ΨL, st.

14Measured along the z-direction.
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laser pointer at λ = (653±0.3) nm, aligning optics, the slit and the mirror, and finally a

cmos camera to capture the interferogram. The setup itself is shown in appendix A in

figure A.1. The measurement and the pattern which are predicted by equation (5.44) and

equation (5.46) are shown in figure 5.17. Indeed, |ΨL,F, β|2 does describe the measured

pattern over a major area correctly. While the measurement itself is not perfect as for

example the slit assembly used has an extension of 2mm and thus deviations from the

ideal model are expected, the overall shape of the pattern is correctly reproduced. More

importantly, even smaller structures as for example the period of the pattern, relative

peak height, and the propagation behavior beam downwards from the mirror region are

in agreement. Incorrect is the structure of the first pattern breakdown at y = 800 µm
which can be further enlarged by using an even deeper14 (30mm) entrance slit. Thus,

this deviation is most probably due to a superimposed pattern in the slit region.

Figure 5.17.: The orange line shows the normalized interference pattern of an optical Lloyd’s
mirror as measured using a λ = (653 ± 0.3) nm laser and an cmos camera. From the camera
image a region of ROI= (60µm× 4mm) is cut as the slit parameters (S1, a) are not constant
over the vertical extension of the slit. Both patterns are normalized to the area under the curve
and the y dimension is fixed by the position of the second maximum. No further data manipu-
lations are applied. The black dashed line is the theoretical exception for the same parameters
but using an infinitesimal slit using equation (5.46) and a slight angular misalignment of the
incoming beam.

For this measurement the finite length model as presented in equation (5.46) is extended

to include a small angle β between incoming wave and slit S1 as it is described in in

section A.7.1.3 for the static model ΨL, st.

14Measured along the z-direction.
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5.5.2.4. Detector Influence

Both ΨL,F and ΨL, st describe a wave function that is not disturbed by a detector present

in the setup. As in the previous paragraph, back-reflection at the mirror contributes

marginally to the build-up of the first interference peaks in ΨL, st. ΨL,F follows only

for a forward propagating wavefront, thus it is necessary to address reflections at the

detector. The detector that will be presented later in chapter 8 has a 10B coating to

absorb neutrons with high efficiency followed by a thin d < 50 nm copper layer for

stress relief. The reflectivity is given in equation (5.4) and the values for the reflectivity

are given in table 5.2 for the boron, copper, and CR39-layers which are the detector

materials15. For neutrons around λ = 6nm the reflectivity of the coating in use can be

Layer function Compound bc [fm] R

Neutron Converter 10B & 11B 0.14 < 2.8 · 10−7

Intermediate Cu 7.7 < 2.7 · 10−5

Substrate CR39 59 < 4.2 · 10−6

Table 5.2.: Summary of the reflectivity R of the different layers of the CR39-based detector.
R is given for the wavelength range 1 nm < λ < 10 nm and at the normal incident θin ≈ π

2 .

neglected as the reflected fraction is below R < 10−5. See figure 5.18 for a plot of the

absorption and reflectivity in the wavelength region of interest.

5.5.2.5. Straight Edge vs. Lloyd’s Mirror

An interesting question is, whether Lloyd’s mirror offers a significantly different diffrac-

tion phenomenon compared to the effect of a straight edge as described in section 5.3.2.

For a mirror that is as long as the propagation length after the edge, figure 5.19 shows

the resulting pattern for the edge, Lloyd’s mirror, and the approximation for a finite

mirror. In Roland Gähler and Anton Zeilinger (1991) it is verified that in the case of a

straight edge the position of the first maximum relative to the edge is given by

P1,max = 1.22F = 1.22
√
λL (5.48)

where F is the first Fresnel zone. For the identical parameters in the case of ΨL,st,

the position of the first maximum is given by λL/2 = Lλ/(4a) and it is closer to the

surface of the diffraction object as long as a > 0.2
√
Lλ. Another comparison can be

made to ΨL,F where the first maximum propagates in the shadow region but the overall

15Ordered by starting from the neutron exposed side.
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Figure 5.18.: Reflection and absorption probability of a neutron with a wavelength λ at the
boron-coated detector surface. The coating is a mixture of 95% 10B and ≈ 5% 11B. The
incident of the wave on the surface is normal θin ≈ π

2 to the surface.

Figure 5.19.: The lower figure is the straight edge diffraction pattern. The upper is the
diffraction pattern of Lloyd’s mirror with a mirror length equal to the propagation length in
the straight edge case. The black line corresponds to ΨL,st for L = 1.34m, λ = 6.3 nm, and
standard parameters. The red line corresponds to ΨL,F for L2 = 0.34m and L3 = 1m. The
orange line corresponds to the straight edge with a propagation length of s0 = 1.34m.
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Figure 5.18.: Reflection and absorption probability of a neutron with a wavelength λ at the
boron-coated detector surface. The coating is a mixture of 95% 10B and ≈ 5% 11B. The
incident of the wave on the surface is normal θin ≈ π

2 to the surface.

Figure 5.19.: The lower figure is the straight edge diffraction pattern. The upper is the
diffraction pattern of Lloyd’s mirror with a mirror length equal to the propagation length in
the straight edge case. The black line corresponds to ΨL,st for L = 1.34m, λ = 6.3 nm, and
standard parameters. The red line corresponds to ΨL,F for L2 = 0.34m and L3 = 1m. The
orange line corresponds to the straight edge with a propagation length of s0 = 1.34m.
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characteristics of Lloyd’s mirror are conserved. In conclusion, the vertical mirror adds

substantial deviation from a straight edge diffraction. Most notable are the position of

the first maximum which probes the closer to the diffraction object surface and a more

stable interferogram period. While in the case of a straight edge the period will decrease

rapidly over y, for the case of Lloyd’s mirror the region which can reasonably be probed

for a given detector resolution is much bigger.

5.6. Phase Shifting Effects

Both the very simplified plane wave approach in section 5.5.1 and the Green’s function

approach in section 5.5.2, describe Lloyd’s mirror in a force-free environment. For the

investigation of the usage of Lloyd’s mirror as a probe for physics beyond the Standard-

Model it is necessary to consider fundamental systematic effects and the sensitivity to

hypothetical scenarios.

The standard treatment of phase-changing effects is discussed extensively in the literat-

ure for example in Helmut Rauch and Samuel A. Werner (2015) and in Berman (1997).

Phase shifts specific to Lloyd’s mirror are first proposed and discussed in Pokotilovski

(2011) and further investigated in Pokotilovski (2013b). The following section starts

with a short recapitulation of the general treatment. After that, a paragraph discussing

phase shifts due to gravity, due to the Sagnac effect, and other standard effects follows.

Section 5.6.4 then discusses phase shifts due to hypothetical forces and particles. Finally,

section 5.7 concludes this chapter and gives a summary of the discussed effects. It is

important to note that each phase shift depends on the specific experimental realization

and thus in general not all effects will be present in every setup.

5.6.1. Phase Shifts in Interferometry

Following S. A. Werner (1994) the phase shift ϕ(�r, t) in a two-path interferometer in

one path is given by the line integral in space-time as

ϕ(�r, t) =
1

�

∫
L dt′ (5.49)

where L = �p ·�v− Ĥ is the Lagrangian, Ĥ the Hamiltonian of the system, �p the canonical

momentum, and �v = d�s
dt

the classical group velocity.
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The phase shift in both paths can be expressed as

ϕI,II(�r, t) =
1

�

�r∫

�r0

�pI,II · d�s−
1

�

t∫

t0

ĤI,IIdt
′. (5.50)

Figure 5.20.: Scheme of a two-path interferometer with a general potential U(�r, t). See Helmut
Rauch and Samuel A. Werner (2015).

See figure 5.20 for a simplified sketch. The phase shift caused by a potential U(�r, t) is

given by the difference between the phase shifts of an interferometer with potential and

of the same interferometer without potential. Thus, the phase shift is

∆ϕU = ϕI(�r, t)− ϕII(�r, t)− (ϕI(�r, t)− ϕII(�r, t))|U(�r,t)=0 (5.51)

=
1

�

�r∫

�r0

∆�pI · d�s−
1

�

t∫

t0

∆ĤIdt
′

− 1

�

�r∫

�r0

∆�pII · d�s+
1

�

t∫

t0

∆ĤIIdt
′ (5.52)

with ∆ĤI/II = ĤI/II −
(
ĤI/II

)
|U(�r,t)=0 and ∆�pI/II = �pI/II −

(
�pI/II

)
|U(�r,t)=0. If the Hamilto-

nian Ĥ is time-independent the time integration drops out, the phase shift due to the

potential becomes the integral along the interferometer path through the potential region

R(U)

∆ϕU =
1

�

∮

R(U)

∆�p · d�s (5.53)

with the change of the kinetic momentum ∆�p in the region where the potential is present

R(U).
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5.6.2. Sensitivity to a Small Shift

Figure 5.21.: Scheme to calculate the sens-
itivity for a certain phase shift. The black
line corresponds to I(y, 0) and the red line
corresponds to I(y,∆ϕ). For this repres-
entation Imax = 1 is chosen.

Having calculated the phase shift ∆ϕ(y) for an

effect, it is of interest to calculate the statist-

ical sensitivity of a measurement using Lloyd’s

mirror for a small shift that can be tuned.

The basic premise is to compare two situations

and in the most basic implementation to com-

pare the pattern between the case with effect

and without effect. For the measurement a

scanning slit is moved at the detector position

along the y-coordinate, thus giving an intens-

ity I = N/T at every point. N is the neutron

count collected in a integration time T . Fig-

ure 5.21 shows the shift of a normalized pattern

due to a small additional phase shift ∆ϕ(y).

For the measurement it is not necessary to

probe the full pattern, but only to compare the

situation with and without shift while the slit is positioned at the point of the steepest

slope ys = yπ1/4(2n+1) in the not shifted case. Here n is the number of the slope counting

from the mirror and starting at zero. Following for example Durstberger-Rennhofer,

Jenke and Abele (2011) a Taylor-Expansion is used to approximate the pattern at ys to

the first order, as only small deviations ∆y � λL are considered. Thus, comparing the

not-shifted I(y, 0) and the shifted intensity I(y,∆ϕ) of the interferogram at ys gives

I(ys, 0)− I(ys,∆ϕ) = ∆y

(
Imax

∂

∂y
P (y, 0)

∣∣∣∣
ys

)
(5.54)

⇒ ∆y = (I(ys, 0)− I(ys,∆ϕ))

(
Imax

∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

(5.55)

where Imax is the intensity at the maximum. For a measurement using a scanning slit,

the size of the slit has to be accounted for by convoluting P (y) = A|Ψ(y)|2 ∗ T (y) where

T is the transmission function of the slit, A is the normalization constant, and Ψ(y)
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already includes the wavelength distribution. The statistical uncertainty δy of ∆y is

then given by

δy ≈
√
(δI(ys, 0))2 + (δI(ys,∆ϕ))2

(
Nmax

T

∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

(5.56)

≈

√(√
Nmax

2

)2

+

(√
Nmax

2

)2
(
Nmax

∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

(5.57)

≈ 1√
2Nmax

(
∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

(5.58)

where δI(ys,∆ϕ) =
√
Nmax

T
P (ys,∆ϕ) and P (ys, 0) ≈ P (ys,∆ϕ) ≈ 1/2 is used. For

equation (5.58) the derivative ∂
∂y
P (y) of the pattern P (y, 0) has to be calculated. This

is shown in figure 5.22 for a setup without additional phase shifting effects and calculated

for standard parameters.

Figure 5.22.: Derivative of the pattern P (y) as seen at the detector calculated for standard
parameters as defined in appendix A.4. Note that by anticipating section 6.3.1.1 the wavelength
bandwidth is already incorporated in P (y). A rectangular transmission function T with a width
bScan = 10µm is assumed and shortly discussed in section 6.1.2.

The wave function that describes the static case of Lloyd’s mirror and is explained in

detail in section A.7.1.1 is based on Hankel-functions. Hankel-functions do not have a

product relation as exponential functions do

H(q)
p [ϕI]H(q)

p [ϕII] �= H(q)
p [ϕI + ϕII], (5.59)
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already includes the wavelength distribution. The statistical uncertainty δy of ∆y is

then given by

δy ≈
√

(δI(ys, 0))2 + (δI(ys,∆ϕ))2
(
Nmax

T

∂

∂y
P (y, 0)
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ys

)−1
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∂
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P (y, 0)

∣∣∣∣
ys

)−1

(5.57)

≈ 1√
2Nmax

(
∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

(5.58)

where δI(ys,∆ϕ) =
√
Nmax

T
P (ys,∆ϕ) and P (ys, 0) ≈ P (ys,∆ϕ) ≈ 1/2 is used. For

equation (5.58) the derivative ∂
∂y
P (y) of the pattern P (y, 0) has to be calculated. This

is shown in figure 5.22 for a setup without additional phase shifting effects and calculated

for standard parameters.

Figure 5.22.: Derivative of the pattern P (y) as seen at the detector calculated for standard
parameters as defined in appendix A.4. Note that by anticipating section 6.3.1.1 the wavelength
bandwidth is already incorporated in P (y). A rectangular transmission function T with a width
bScan = 10µm is assumed and shortly discussed in section 6.1.2.
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thus an easy treatment of a phase shifting effect is not possible in this description16. As

only small shifts are considered, it is assumed that the derivative does not change signi-

ficantly due to an effect. The phase shift ∆ϕ(y) is approximated by using the asymptotic

form for big arguments which is the plane wave solution given in equation (5.38). The

explicit calculation of the asymptotic solution is given in section A.7.1.2 and in Filter,

Pitschmann and Abele (2018).

The shift ∆ϕ = ∆y 2π
λL

and its dependency on quantities of interest ξ can be calculated

for different effects but it is only applicable if the effect can be turned on and off. If this

is not the case, more elaborate measurement schemes have to be employed. Nevertheless,

∆ϕ is an important quantity which is given for several different effects in the following

paragraphs and subsections. The sensitivity to a small shift due to an arbitrary quantity

ξ is calculated by solving

∆ϕ(ξ)|y=ys
≈ 1√

2Nmax

2π

λL

(
∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

(5.60)

for ξ. The phase sensitivity multiplied by the neutron count at the maximum δϕ ·
√
Nmax

is a useful quantity to estimate the sensitivity for arbitrary effects and is shown in

figure 5.23. Additionally, the sensitivity per measurement day is frequently used which

is valid only for a specific intensity.

Figure 5.23.: Phase sensitivity calculated for standard parameters as defined in appendix A.4.

16This not surprising. A rigorous approach would need to calculate the wave function with an additional
potential present and then compare this to the case without it.
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5.6.3. Systematic Phase Shifting Effects

The following subsection discusses phase shifting effects which are due to known phe-

nomena and can be treated as systematic effects or noise.

5.6.3.1. Mirror Reflection Phase Shift

Geometrically, the reflection at the mirror introduces a π phase shift. In case of the re-

flection of a neutron at the finite mirror potential there will be a y-coordinate dependent

deviation, as stated in Pokotilovski (2013b).

Figure 5.24.: Shown is the phase shift ∆ϕreflection − π due to the reflection of the neutron at
a mirror. Aluminumoxid, silicondioxid, and nickel are frequently used mirror coatings while
BK7 is the material of the bulk. Phase shifts are calculated for standard parameters as defined
in appendix A.4.

The phase shift due to the reflection in the plane wave case is given as

∆ϕreflection = 2arccos (k⊥/kb) = π − k(a+ y)

kbL
(5.61)

with kb =
√

4πN̂bc, N̂ the number density of the mirror, and bc the coherent scattering

length. The resulting phase shifts for different mirror materials are shown in figure 5.24.

The part of the phase shift which is proportional to y is expected to be of the order

ϕ ∼ 30 · 10−3 and thus has to be considered for precision measurements. On the other

hand, this effect is not time dependent and is negligible if measurements are implemented

which investigate a tune-able effect which does not effect this shift. In general this

phase shift can be incorporated in the interferometer model by setting the boundary
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condition for the wave function at the mirror surface SD not to zero but to match it to

an exponential decay in the mirror

Ψ(�r)|SD
= Ae−ky. (5.62)

5.6.3.2. Gravitational Phase Shift

As has been shown in Cowley (1995) and is reviewed in S. A. Werner (1994) the linear

gravitational potential Ug = m�g · �r will induce a phase shift in a neutron interferometer

that is proportional to the enclosed area A = aLy/(a+ y) of the interferometer of

∆ϕgravity =
gλ

2π

(m
�

)2

A sin (θ) (5.63)

=
gλ

2π

(m
�

)2 ayL

a+ y
sin (θ). (5.64)

θ is the angle between the local gravity vector g and the mirror surface. This result

is also stated in Pokotilovski (2013b) specifically for Lloyd’s Mirror. Figure 5.25 shows

the gravitational phase shift for standard parameters, as stated in appendix A.4. As

the gravitational phase shift can get bigger than the geometrical phase shift it could

dominate the interference pattern, therefore it is crucial to minimize a misalignment of

the mirror relative to gravity.

Figure 5.25.: Phase shifts induced by gravity. Shown are the standard phase shifts due to
gravity namely ϕgravity and due to the vertical drop of neutrons in the gravitational field
namely ϕvertical. An small misalignment of θ = 0.01◦ is assumed.
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Vertical Drop Additionally, neutrons will fall differently depending on their flight path

length and thus their path difference will be altered, breaking the assumption that the

problem is strictly two-dimensional. In Pokotilovski (2013b) the phase shift ϕvertical due

to different flight paths in the gravitational field is given as

∆ϕvertical =
2π

λv4
g2aLy (5.65)

with the particle velocity v. The corresponding phase shift for a standard parameter

setup can be seen in figure 5.25.

Time-Dependency of g Due to the expected low intensity, measurements can span

over several days and thus temporal variations of g have to be taken into considera-

tion. Variations of g due to density variations as for example solid tides, atmospheric

movement, and even movement near the experimental area. Table 5.3 gives a not com-

plete overview of sources of variations in g and their magnitude based on Peters, Chung

and Chu (2001). The effect with the highest magnitude is the effect of solid tides with

∆g ∼ 3 · 10−6 m/s. Using equation (5.60), the sensitivity to a small change in g is given

as

δg ≈ 1√
2Nmax

2π

λ

(
�
m

)2
(a+ y)

ayL sin(Θ)

2π

λL

(
∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1

. (5.66)

As the gravitational phase shift depends on the coordinate y, the most sensitive point is

Effect Magnitude [m/s2] Uncertainty Timescale/Info

Solid Earth Tides 3 · 10−6 0.1% Daily
Ocean Loading 200 · 10−9 1% Daily
Air Pressure 80 · 10−9 63% < Daily
Polar Motion 100 · 10−9 0.1% ∼ Yearly

Table 5.3.: Magnitude of Time-dependent contributions to g. The table closely resembles
Table 4 in Peters, Chung and Chu (2001).

not the point of the steepest slope but slightly shifted. The point of minimal sensitivity

can be found at ys = y5π/4 = 23 µm, the third flank of the pattern, to be

δg ·
√

Nmax ≈ 10 · 103 m/s2 (5.67)
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in the case of Θ = 0.01◦ and to be

δg ·
√
Nmax ≈ 1.7m/s2 (5.68)

in the case of Θ = 90◦. Table 5.4 summarizes the expected sensitivity for two specific

intensities derived from equation (6.19). For a mirror that is vertically aligned and

δg [ m
s2
√
day

] Θ Imax · 10−6 [#/s
bin

]

3827 0.01◦ 159
605 0.01◦ 40× 159
0.67 90◦ 159
0.11 90◦ 40× 159

Table 5.4.: The sensitivity of Lloyd’s mirror is given for standard parameters and already
include the restrictions presented in the following chapter. The point of minimal sensitivity
is found at n = 2 and thus ys = y5π/4. Θ is the angle between the gravitational vector and
the mirror surface. The intensity Imax = 159 · 10−6#/s is calculated from equation (7.17) for
a 1.2µm scanning slit. I2 = 40 · Imax is given, as this is the brilliance without the specific
monochromatization setup and gives a benchmark for the case that the monochromatization
can be implemented without losses.

with given intensity Imax and I2, the interferometer is rather insensitive to deviations

on g that are aligned with the gravitational vector and even on g itself. Note that

the optical setup will tilt slightly over time as quantified in table 7.8. As this tilt is

smaller than the considered minimal misalignment relative to the gravitational field

Θ = 0.01◦ = 175 µrad � 10 µrad, this systematic effect can be neglected. The situation

is different for a horizontally aligned mirror where the interferometer gains in sensitivity

but not enough to resolve Earth tides which is the major contribution of temporal

deviations. In the present case of very-cold neutrons at the PF2 these effects can be

neglected as measurements will be constrained statistically17.

5.6.3.3. Sagnac Effect Phase Shift

Due to Earth’s rotation a phase shift ∆ϕsagnac caused by the Sagnac effect is introduced

as for example discussed in Helmut Rauch and Samuel A. Werner (2015)

∆ϕsagnac =
2m

�
�ωe

�A (5.69)

17Even if a measurement could be performed on a level where these effects would be significant, they
can be corrected as it is, for example frequently done for Earth tides as also used in Peters, Chung
and Chu (2001).
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where ωe is the Earth’s angular rotational vector and A the enclosed area. The enclosed

area was already stated in the previous section as

∆ϕsagnac =
2m

�
|�ωe|| �A| cos (θ) (5.70)

=
2m

�
|�ωe|

aLy

a+ y
cos (θ) (5.71)

where |�ωe| = (7.292115 · 10−5 ± 1 · 10−11) rad/s18 is the mean angular speed of Earth’s

rotation and θ = (0.781801± 2 · 10−6) rad is the angle between Earth’s rotational vector

and the normal vector of the enclosed area �nA at the experimental position at the ILL19.

Using standard parameters and y = yϕ=1/4π(2n+1) the phase shift becomes

∆ϕsagnac = 15 · 10−3, (5.72)

thus it has to be precisely modeled if the full interferogram is to be interpreted for the

composition of the total phase shift.

5.6.3.4. Phase Shift due to a Magnetic-Field

As long as only a homogeneous magnetic field �B is present no phase shift will be intro-

duced. An example for an inhomogeneous field is investigated in H. Rauch, Zeilinger

et al. (1975) where a field is present in one interferometer path of a single silicon crystal

interferometer. In appendix A.8.3 phase shifts due to different orientations of a magnetic

field gradient relative to the interferometer plane are calculated. For example, one can

assume a magnetic field

�B =




Bx(y)

0

0


 . (5.73)

that acts in a single direction and in this case the y-direction. The phase shift for the

spin up component is given by equation (A.150) as

− �2k∆ϕMag,+

mµn

=
cosαIL

y − a

y∫

a

dŷBx(ŷ)−
cosαIIL

y + a




a∫

0

dŷBx(ŷ) +

y∫

0

dŷBx(ŷ)


 (5.74)

18Note that |�ωe| is not a constant but is varying due to tidal effects. For the given value and a model
of variational effects see Petit and Luzum (2010).

19The Institut Laue-Langevin reactor is at a latitude of 45.206112 ◦. The stated uncertainty is estimated
form the uncertainty of the exact experiment position.
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where αn is the angle between axis and momentum of the neutron in path I or path

II and µn is the magnetic moment of the neutron. Assuming a linear field gradient of
∂
∂y
Bx(y) = b the phase shift becomes

∆ϕMag,± = ∓ m

�2k
µnb

ayL

a+ y
(5.75)

as stated in equation (A.152). Note that this shift is identical to the gravitational phase

shift in the case θ = π/2 in which gravity acts perpendicular to the mirror plane. Due

to the smallness of this phase shift earth’s magnetic field can be neglected as systematic

influence in the interferometer. In general, magnetic contributions can be neglected

as long as no component introduce strong gradients in the experiment. The ambient

magnetic field strength as measured in the interferometer setup without shielding during

beam-time Test–2455 is below B < 40 µT and changes over time on the level of ∆B ≈
2%. By unrealistically assuming that the magnetic field drops off over the vertical

extension of the interferometer one can set b = 4 µT/mm. This yields a phase shift

between spin up and spin down components of

|∆ϕMag,+ −∆ϕMag,−| = |∆2ϕMag,+| = 1.6 · 10−7. (5.76)

Presently, this contribution can be neglected as long as the gradient is not higher than

the values measured during Test–2455.

5.6.3.5. Phase Shift due to Casimir Effect

A Casimir-Polder potential of a neutron due to its magnetic moment in front of an

electrical conducting surface is proposed in Gebhart, Klatt and Buhmann (2016). It is

given by

Ucasimir, PF =
�2

64πy3
γ2µ0 (5.77)

with γ = gne0/(2m), the g-factor of the neutron gn = −3.8, and the vacuum permeability

µ0. The phase shift in Lloyd’s mirror due to this potential is calculated in appendix A.8.2

and is given in equation (A.137) as

∆ϕCasimir =
mγ2µ0L

128πk

(
a3 + y3

a2y2(a2 + y2)
− 1

(y + a)y2min

)
(5.78)

≈ −mγ2µ0

128πk

L

(y + a)y2min

. (5.79)
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As the potential diverges for y = 0, a lower cutoff ymin is introduced and is set to be

ymin = λ⊥/4 with the perpendicular component λ⊥ = 2π/k⊥ relative to the mirror’s

surface. This estimate cuts between first maximum of a wave and the mirror. k⊥

is estimated using the first zero of the single slit diffraction which is approximately

the steepest angle under which a neutron can hit the mirror in the main interference

region. This angle is discussed in section 5.5.2 and thus the lower limit is given as

ymin ≈ 2 · 10−6 m. The resulting phase shift is rather small around

|∆ϕcasimir| < 5 · 10−6 (5.80)

and highly dependent on the value of ymin. Note, that a more refined calculation method

is needed to asses the suitability of this phase shift as measurement quantity. The phase

shift is calculated for λ = 6.3 nm and standard parameters. Additional to the potential

for the perfect conducting surface also other models are proposed in Gebhart, Klatt

and Buhmann (2016). In mind of a rough estimation, the perfect conducting surface

potential is used as it offers the potential with the highest magnitude. Further models

are not considered in this work.

5.6.4. Non-Standard Model Effects

Lloyd’s mirror can be used as a probe for physics beyond the Standard Model. Several

proposed models beyond the Standard Model of particle physics would lead to measur-

able effects. Three hypothetical models are introduced and their contributions will be

discussed. The phase shift of a hypothetical chameleon field, a hypothetical axion and

non-Newtonian gravity are discussed in the following.

5.6.4.1. The Chameleon Field

Section 2.4 introduced the hypothetical chameleon field that is proposed by Khoury and

Weltman (2004) to resolve the cosmological dark energy problem. At the moment, the

strictest limits are stated in Hamilton et al. (2015) using atom-interferometry. Selec-

ted previous limits where presented in Burrage, Copeland and Hinds (2015) reanalyzing

atom-interferometry data, in Jaffe et al. (2017) deriving from recent cesium interfero-

meter experiments, in H. Lemmel et al. (2015) for neutron-interferometry, and in Cronen-

berg (2015) for the current strictest limit deriving from a neutron experiment.
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Figure 5.26.: The logarithm of the relative chameleon phase shift ∆ϕcham/∆ϕgeo as a function
of the relative interaction strength β and the Ratra-Peebles index n. The dependence on n is
rather small as can also be seen in the depiction of the expected sensitivity in figure 5.27.

The phase shift due to a chameleon field in Lloyd’s mirror is introduced in Pokotilovski

(2013a). There the phase shift is given as

∆ϕcham =
γβ

λα−1
DE α

2ay
yα−1 − aα−1

y2 − a2
(5.81)

with α = (4 + n)/(2 + n),

γ = ζ
mL

k�2

(
2 + n√

2

) 2
2+n

(5.82)

and the parameter ζ = 0.9 · 10−21 eV with λDE = �c/Λscale and Λscale = (�3c3ρDE)
1/4 ≈

2.24meV the dark energy scale and ρDE = (3.3± 0.03) keV/cm3 the dark energy density

as given in section 2.2. The chameleon field is parametrized by the interaction strength

relative to gravity β and the Ratra-Peebles index n. Figure 5.26 shows the relative phase

shift ∆ϕcham/∆ϕgeo as a function of β and n. ∆ϕgeo is defined in equation (5.36). Note

that the predicted phase shift can be substantial, as first noted in Pokotilovski (2013a).

Assuming that the chameleon interaction is fully turned on and off in a measurement,

equation (5.60) leads to a sensitivity to a chameleon field of

δβ =
1√

2Nmax

1

∂
∂y
|ΨL|2

∣∣∣
ys

(
λα−1
ch

γ

α

2ays

y2s + a2

yα−1
s − aα−1

)
2π

λL
(5.83)
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where ys = yϕ=1/4ϕ(2n+1), and ∆ycham = ∆ϕcham
λL
2π

was used.

Figure 5.27.: The statistical sensitivity of Lloyd’s mirror for a chameleon field for standard
parameters of the setup compared to current limits. The limits from neutron interferometry
are taken from H. Lemmel et al. (2015), the limits from the qBounce experiment are taken
from Cronenberg (2015) and limits from atom interferometry in 2015 as well as from torsion
pendulum experiments are taken from Hamilton et al. (2015). The most recent limits deriving
from atom interferometry are stated in Jaffe et al. (2017). The sensitivity is calculated using
the intensity explained in equation (6.19) which is calculated for a 1.2µm wide scanning slit
and an integration time of one week.

The sensitivity expected from different configurations of Lloyd’s mirror are shown in

figure 5.27 together with current limits on the interactions given by different experiments.

The recent limits given by atom interferometry already exclude the range that can be

hoped to be tested with Lloyd’s mirror if the phase shift as given in Pokotilovski (2013a)

is assumed. It is to be checked if this is still true, if recent progress in the formulation of

the chameleon interaction, especially for table top experiments, are taken into account as

discussed in H. Lemmel et al. (2015). For n = 1, at the slope point ys = y7/4π = 42 µm,

and for the intensity taken from equation (6.19), the sensitivity per time is given as

δβ = 1.8 · 108 1√
days

(5.84)

and for an increase of a factor six the sensitivity per day becomes

δβ = 2.9 · 107 1√
days

. (5.85)
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5.6. Phase Shifting Effects

5.6.4.2. The Axion

Using the Lloyd’s mirror as a probe for a hypothetical axion particle is first proposed

in Pokotilovski (2011) and the effect is introduced in section 2.4.

-6.0

-5.5

-5.0

-4.5

Figure 5.28.: Shown is the phase shift in Lloyd’s mirror for standard parameters due with a
coupling to a hypothetical axion.

The potential from an interaction of a neutron with the surface of the mirror is given

in Pokotilovski (2013b) as

Umon-dip = ±gsgp
�2Nλ

4m

(
e−y/λax − e−(y+d)/λax

)
(5.86)

where gsgp are the coupling constants for a monopole-dipole interaction, λax = �/(maxc)

is the interaction range, and max is the mass of the axion.

The phase shift is calculated in Pokotilovski (2011) to be

∆ϕaxion =
2gsgpγλax

y2 − a2
(
a(1− e−y/λax)− y(1− e−a/λax)

)
(5.87)

with γ = NλaxλL/(8π) and is shown in figure 5.28 for different ma, as a function of y,

and for gsgp = 10−18. Again the sensitivity of Lloyd’s mirror to an axion interaction is

73



5. Theory

calculated by assuming a scanning slit measurement. This leads to an adaptation of the

equation (5.60) for ξ = gsgp as follows

δgsgp ≈
1√

2Nmax

2π

λL

(
∂

∂y
P (y, 0)

∣∣∣∣
ys

)−1
1

2γλax

y2 − a2

a(1− e−y/λax)− y(1− e−a/λax))
. (5.88)

The resulting sensitivity is shown in figure 5.29 as a function of the axion mass.
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Figure 5.29.: Shown is the sensitivity of Lloyd’s mirror for standard parameters to the coup-
ling strength gsgp and for a measurement period of one week assuming the neutron intensity
extrapolated in section 7.1.4.

The best sensitivity is found for an implementation with standard parameters at n = 3

for ys = yπ1/4(2n+1) ≈ 33 µm and for maxc
2 ∼ 10−6 eV with

δgsgp ≈ 1.3 · 10−14 1√
days

(5.89)

for a wide range of max and at neutron wavelength of λ = 6.3 nm. In the case of an

increase of the intensity by a factor of forty in neutron intensity this becomes

δgsgp ≈ 7.9 · 10−16 1√
days

. (5.90)

In Afach et al. (2015) strict limits to the coupling strength gsgp are given for an axion

mass range of 10−1 eV > maxc
2 > 10−5 eV determined by laboratory experiments. Note

that this mass range corresponds to an interaction range of 0.02m > λax > 0.2 · 10−6 m.
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These and other limits together with the expected sensitivity of Lloyd’s mirror are shown

in figure 5.30. The sensitivity of Lloyd’s mirror is calculated for standard parameters

and the neutron intensity determined in section 7.1.4.

Figure 5.30.: Shown are current limits of the coupling strength gsgp for different axion masses
extracted from Afach et al. (2015). The limits for 129Xe and 131Xe 2013 are first presented
in Bulatowicz et al. (2013) and for 3He and 129Xe 2013 are first presented in Allmendinger
et al. (2013). Finally, the expected sensitivity of Lloyd’s mirror to a hypothetical axion using
standard parameters is included. It is assumed that using Lloyd’s mirror the measurement is
integrated over one week.

As in the case of the searches for a chameleon field, the sensitivity of Lloyd’s mirror

implemented at the PF2 does not cover a not yet probed parameter space. This is even

true if the neutron intensity can be enhanced by several orders of magnitude.

5.6.4.3. Gravitational Torsion

In Ivanov and Wellenzohen (2016) the connection between gravitational torsion in Gen-

eral Relativity and the phenomenon of dark energy is discussed. The hypothetical effect

of gravitational torsion is also briefly sketched in section 2.4.

The phase shift due to gravitational torsion is stated in Ivanov (2016, priv. comm.) as

∆ϕtorsion = Bz
mc

2�k
ay

L
, (5.91)
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where Bz is the axial component of the torsion tensor. An upper bound for Bz is given

in a recent summary of Lorentz violation searches in Kostelecký, Russell and Tasson

(2008). The upper bound is given as

Bz = 1.7 · 10−14 1

m
. (5.92)

The induced phase shift would be on the order of ∆ϕtorsion ∼ 10−16 and thus be con-

siderably smaller then most of the previously discussed effects in Lloyd’s mirror. Thus,

a measurement of this hypothetical effect in the scope of an implementation of Lloyd’s

mirror a the PF2 is not realistic.

5.7. Summary

Recapitulating this chapter, relevant standard theoretical tools of diffraction experiments

are discussed and applied to Lloyd’s mirror. In particular the theoretical foundation for

Lloyd’s mirror is reproduced and extended upon to model the expected interferogram

in an ideal setup. Especially the wave function for the ideal setup with an infinite

mirror ΨL, st and an approximation of the wave function for the finite mirror ΨL, F are

presented. Extended calculations are referenced to and explained in detail in appendix A,

for example the time-dependent solution which is used to justify the approximation of

a setup with a finite mirror. Following these deliberations, the phase shifts caused by

different effects are given and the sensitivity to small disturbances is calculated. Most

phase shifts are taken from literature i.e. from Helmut Rauch and Samuel A. Werner

(2015) and from Pokotilovski (2013a). The calculation for the phase shift of the Casimir-

effect are presented in appendix A.8.2.

After introducing standard tools of diffraction theory, two standard examples, the single-

slit and the straight edge are discussed. Both, model diffraction at a thin object which

is well in the scope of the Kirchhoff-diffraction formula. This is not the case for Lloyd’s

mirror as the mirror extends along the propagation axis. To solve this problem one can

use Green’s identity which relates the solution of a differential equation in a volume to

its derivative on the surface of the same volume. Using basic symmetries of the system,

Green’s identity is applied to Lloyd’s mirror and the solution is compared to the plane

wave solution of Lloyd’s mirror in section 5.5.2 and the tangential phenomenon of the

straight edge in section 5.5.2.5. The solutions for the infinite and finite mirror setups

are shown in figure 5.13.
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5.7. Summary

In conclusion, this provides several important results: The solution ΨL, st given in equa-

tion (5.44) which derives from using Green’s identity, correctly reproduces the single-slit

diffraction near the slit and in addition produces a pattern with a period corresponding

to λL near the mirror for sufficient distance to the slit. For ΨL, st the period of the

interferogram is not a constant anymore and diverges from λL with growing distance

from the vertical mirror. For the case of an observation of the pattern with a distance

between mirror and detector which is discussed in section 5.5.2.1 the resulting solution

ΨL, F has a period that closely resembles the behavior of ΨL, st. As expected, the pattern

of ΨL,F has a slightly lower contrast and a propagation of the first maximum into the re-

gion behind the mirror with growing distance from the slit in the propagation direction.

As a verification of the validity of the theoretical calculation in section 5.5.2.3, Lloyd’s

mirror is implemented using a laser optical setup at a wavelength of λ = (653± 0.3) nm.

Indeed, the measured pattern can be closely modeled using ΨL,Fβ which models a finite

mirror with an additional propagation region and non-normal incident of the beam on

the entrance slit. Only at an intermediate point of the pattern a significant deviation

is visible which is probably due to the extension of the entrance slit in the direction of

propagation. Finally, the detector contribution is estimated based on the reflectivity of

the surface facing the neutron beam. The reflectivity of the used boron coating is negli-

gible at R < 10−5 as discussed in section 5.5.2.4 and thus also the detector contribution

can be neglected if the finite mirror model is used. In section 5.6 small phase shifts

Effect ∆ϕ Magnitude Measurement Scenario Information

Reflection ∼ 20 · 10−3 Interferogram Section 5.6.3.1
Gravity < 0.4 · 10−3 Comparison (Rotation) Section 5.6.3.2

Gravity (v. drop) < 50 · 10−6 Comparison (Rotation) Section 5.6.3.2
Sagnac 15 · 10−3 Interferogram Section 5.6.3.3
Magnetic < 10−7 Comparison (External field) Section 5.6.3.4

Table 5.5.: Summary of phase shifting effects which are present in an experimental realization.
All phase shift magnitudes are given for standard parameters as given in table A.3. The
measurement scenario describes a method to change the effect magnitude and discern it from
other effects.

due to additional potentials present in the interferometer region are considered. Many

effects are already considered in Helmut Rauch and Samuel A. Werner (2015) and are

adapted as Lloyd’s mirror is topologically analogous to a two-path interferometer. The

relevance of these effects is considered with respect to a measurement. Further, hypo-

thetical non-Standard Model effects, as for example the shift due to a chameleon field,
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are introduced in Pokotilovski (2013a). Here the expected sensitivity to selected effects

of Lloyd’s mirror at the PF2 is calculated. Table 5.5 summarizes the discussed phase

shifting effects and gives the sensitivities per day. Note that the sensitivity depends on

the intensity I which can be calculated from equation (6.19) at the detector plane and

thus is dependent on the specific experimental implementation. The used beam intensity

is the expected intensity due to the already realized beam preparation as is discussed in

chapter 7 which fulfills the resulting constraints to a realization in chapter 6.

Distinguishing two measurement goals, different priorities can be given to these effects.

While the Sagnac effect and gravitational effects can be neglected for a first verification

of Lloyd’s mirror with neutrons, the homogeneity of the magnetic field in the inter-

ferometer region needs to be controlled. If the experiment is to reach the realm of a

high precision measurement instrument, also the previously neglected effects are to be

addressed. For example, in the case of gravity this means independent measurements

of the local acceleration, an accurately vertically aligned mirror and, in case the of the

magnetic field, an accurate monitoring of the magnetic field is necessary.

A summary of these effects is shown in table 5.5. In table 5.6 the sensitivities due to

different hypothetical scenarios are listed. In summary, it has to be stated that the here

Effect Sensitivity Imax Sensitivity I2 Measurement Scenario

Chameleon (δβ) 1.8 · 108 1√
day

2.9 · 107 1√
day

Pressure Variation

Axion (δgsgp) 1.3 · 10−14 1√
days

7.9 · 10−16 1√
days

—

Effect ∆ϕ Magnitude Measurement Scenario

Casimir > −5 · 10−6 Interferogram
Torsion Expected effect too small to be measured in Lloyd’s mirror.

Table 5.6.: Summary of phase shifting effects due to hypothetical effects. All phase shift
magnitudes are given for standard parameters as defined in table A.3. Imax is the neutron
intensity measured and extrapolated in section 7.1.4 and section 6.2.4 while I2 = 40Imax.

discussed hypothetical effects are outside the scope of Lloyd’s mirror implemented at

the PF2 considering the already excluded parameter space. Further, it is clear that in

order to capture the interferogram of Lloyd’s mirror, several expected effects need to be

considered and even decreased. This is true for temporal and spatial variations of the

magnetic field, and effects due to gravitation.
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6. Dimensioning and Simulation

For an implementation of Lloyd’s mirror with matter waves the calculations in the

previous chapter are adapted to account for realistic beam characteristics. For example,

a finite spectral width ∆λ/λ and a finite detector resolution are considered in section 6.3.

Although, as will be seen in section 6.4, it is in principle possible to produce an in-

terference pattern at the available wavelength with all geometrical constraints in mind,

a limited very-cold neutron flux at the entrance slit FS1 could easily push the needed

measurement time into an infeasible domain. Thus, before analyzing constraining para-

meters the measurement procedure needs to be defined. Figure 6.1 gives an overview

over the planned general setup and its most relevant features for this section.

Figure 6.1.: Relevant components and quantities for the simulation. The y−axis is synonym-
ously called ‘detector-coordinate’. FS1 is the flux at the plane of slit S1 and RS3 is the radiance
at the plane of slit S3.

First measurement procedures are discussed in the following section and then in sec-

tion 6.2 practical constraints are considered. Finally, a simulation of the interferometer

is presented in section 6.3.
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6.1. Measurement Procedure

In chapter 5 the basic wave functions for various configurations of Lloyd’s mirror are

presented and phase shifts due to external perturbations (gravity, Sagnac effect,. . . ) are

calculated. These calculations are now used to define specific measurement scenarios.

As for example to check the validity of the calculation for the static wave function for

an infinitely long mirror and the model for a finite mirror as presented in section 5.5.2.

Besides verification of the theoretical framework for Lloyd’s mirror it is of special in-

terest to investigate use-cases. These are for example possible searches for hypothetical

fifth forces and particles beyond the Standard Model of particle physics or verifications

of quantum mechanics and gravity which jointly act in Lloyd’s mirror. For practical

purposes the neutron energy is restricted to the range of very-cold neutrons which can

be treated analog to standard optics as is discussed in Eder et al. (1989) and section 3.2.

The wavelength range of interest is thus (1 → 50) nm. An incomplete overview of

available neutron beams is shown in appendix A.2.

6.1.1. Theoretical Framework Verification

Figure 6.2.: Measurement scheme for full interferogram detection. The detector can be a
spatially sensitive detector or a scanning slit/grid setup.

If the interference pattern is of sufficient size, a spatially sensitive detector can be em-

ployed to directly capture the interferogram as shown in figure 6.2.

It can be estimated that for a very-cold neutron beam with mean wavelength λ = 6nm,

a reasonable interferometer size of L = 1m and a mirror-slit distance of a = 50 µm the

period of the interference pattern is λL = 60 µm as given by equation (5.39). Figure 6.3

shows λL = λL/(2a) as function of L and λ. A recurring quantity is the angle β = L/a
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6.1. Measurement Procedure

which is useful as a characteristic of the interferometer. More implementation examples

are shown in table 6.1 for different instruments. As is shown in section 5.5.2.1 the pattern

will expand while still adhering to equation (5.39). In addition to the mirror length also

the available flight path will be included in table 6.1.
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Figure 6.3.: The period of the interference pattern λL as a function of the mirror length L
and wavelength λ. The distance between slit and mirror surface a is taken to be constant at
a = 1µm. The red square marks the region accessible at the PF2 very-cold neutron source at
the ILL. See section 3.3 for the characteristics of the very-cold neutron beam at the PF2.

If the interferogram is to be captured directly behind the mirror, a detector with a spatial

resolution of the order of a few micrometers is needed. For a detector that is placed at

a distance LD to the mirror, this can be slightly relaxed1 as is shown in section 5.5.2.1.

For the same parameters as above, but with an additional flight path of LD = 5m, the

period at the detection plane becomes λL = 300 µm.

1Nevertheless, coherence and diffraction constraints need to be fulfilled independently. This is the
topic of section 6.2.
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Instrument L [m] λ [nm] λL [µm]
a = 53 µm

λL [µm]
a = 100 µm

PF2-VCN 5 6.3 297 158
PF2-VCN 0.34 6.3 20 10.7
D11 34 3.5 1091 578
D11 0.34 3.5 11 5.78

Table 6.1.: Comparison of implementations of Lloyd’s mirror at the PF2 and D11 and different
mirror lengths. The individual instrument characteristics are summarized in appendix A.2.

As detection mechanism for λL > 4 µm, image plates based on a 10B converter as de-

scribed in Jenke et al. (2013) can be used2. Depending on the post-measurement treat-

ment the spatial resolution3 can be as low as ζ ≈ 1− 2 µm.

Instead of measuring the full interferogram in one take, it can be advisable to scan the

pattern with a small slit as it has been done in neutron double-slit experiments by Anton

Zeilinger et al. (1988). For example, if λL � 4 µm such a scan removes the technical

difficulty of a detector with micrometer resolution as a simple on-line detector would be

sufficient. This is done at the expense of a reduced total neutron capture as the signal

will be only partly be detected.

2Here the Nyquist-Shannon sampling criterion is used. It states that a periodic signal with frequency
fsignal under optimal conditions can be reconstructed without aliasing, if sampled with doubled
frequency fsample > 2fsignal. Keep in mind that a measurement in the context of Lloyd’s mirror
will not happen under optimal conditions and thus the distance between fsample and fsignal has to
be more than doubled. See Landau, Páez and Bordeianu (2008) for example applications of the
Nyquist-Shannon sampling criterion.

3In the scope of this thesis a production process for these detectors and an analysis framework was
developed. A detailed discussion follows in section 8.1.
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will be only partly be detected.

2Here the Nyquist-Shannon sampling criterion is used. It states that a periodic signal with frequency
fsignal under optimal conditions can be reconstructed without aliasing, if sampled with doubled
frequency fsample > 2fsignal. Keep in mind that a measurement in the context of Lloyd’s mirror
will not happen under optimal conditions and thus the distance between fsample and fsignal has to
be more than doubled. See Landau, Páez and Bordeianu (2008) for example applications of the
Nyquist-Shannon sampling criterion.

3In the scope of this thesis a production process for these detectors and an analysis framework was
developed. A detailed discussion follows in section 8.1.
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6.1.2. Single-slit Scan with Varying Phase

Figure 6.4.: Simplified measurement scenario for a vary-
ing phase shift. The black line corresponds to the intens-
ity I(y,∆ϕ = 0) := I0 and the red line to the intensity
I(y,∆ϕ = ∆ϕA) := IA.

If the basic features of the in-

terferogram are known the meas-

urement scheme can be simpli-

fied to allow for precise phase

shift measurements. This scheme

has already been discussed in sec-

tion 5.6.2 where the sensitivity to

a small phase shift is given. In-

stead of directly measuring the

interferogram, a slit is used to

capture only a small part of the

pattern. Thus, figure 6.4 is the

intensity plotted over the slit po-

sition. If the effect under invest-

igation can be tuned or switched

off, the measurement can be reduced to a measurement of the change in intensity while

tuning. Note that the extension of the slit reduces the visibility of the probability dens-

ity as shown in figure 6.5, as the probability density has to be convoluted with the slit

transmission function T . The transmission function can be assumed to be a rectangular

function as used and defined in figure 6.5.

A switchable effect A which results in a phase shift ∆ϕA is assumed in the following.

The setup needs to distinguish between unaffected intensity I(y,∆ϕ = 0) := I0 and the

shifted pattern I(y,∆ϕ = ∆ϕA) := IA. If only one detector dimension yn is considered,

the goal is to show a significant deviation of ∆I = I0 − IA. The uncertainty of ∆I is

given by

δ(∆I) =
√

(δ(I0))
2 + (δ(IA))

2, (6.1)

and for a significant measurement ∆I < Sδ(∆I) with S being the significance.

In addition to the reduced complexity this scheme is especially powerful, as systematic

effects present in both measurements will cancel out and only leave statistical fluctu-

ations and deviations caused by the switching of the effect itself. An example in the

case of Lloyd’s mirror is the search for a hypothetical chameleon field which strongly

depends on the gas pressure in the interferometer arms as is shown in section 5.6.4.1. If

a chameleon field is present the phase shift will translate into a shift of the interference
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Figure 6.5.: Propability density of Lloyd’s mirror convoluted with the slits transmission
function T . It is calculated using the standard parameter as defined in appendix A.4 by

|Ψ̂|2 = |Ψ(y∗)|2 ∗ T (y). Comparing the shown distribution to figure 5.13 one can note that the
visibility even in the not convoluted case is still reduced. The reason is that by anticipating

section 6.3.1.1 the measured wavelength bandwidth is already incorporated in |Ψ̂L|
2
. The trans-

mission function T (y) is assumed to be a rectangular opening with a width of bScan = 10µm.
Thus T (y) = 1 if |y| ≤ |bScan| and T (y) = 0 if |y| > |bScan|.

pattern and the previous scheme would be applicable. In section 6.2.4 the discussion

of this scheme is continued and used to estimate the necessary measurement time for

precision measurements.

6.2. Measurement Constraints

In the previous chapter different measurement scenarios were discussed to precisely define

the experimental challenge. For the implementation of Lloyd’s Mirror requirements on

the beam characteristics need to be set. Even at a very high flux neutron sources as at

the Institut Laue-Langevin, the very-cold neutron density can be low, if certain beam

constraints are to be fulfilled. Thus, the feasibility of an implementation highly depends

on the required constraints and their strictness.

The following constraints are to be considered and will be discussed individually in

sections 6.2.1 and 6.2.4:

— Angular Constraints

The incoming beam irradiating the entrance slit of the interferometer should be
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as coherent as possible. Neutron sources produce incoherent beams, as the fun-

damental production mechanism is of statistical nature. Therefore, coherence can

be achieved by restricting the angular spread i.e. the angular distribution. See for

example Felber et al. (1998) for an educational overview of the phenomenon of

coherence.

— Spatial Distribution

An inhomogeneous beam profile will lead to a distorted interferogram. If the 2-

dimensional interferogram is to be captured, a reference image is needed to correct

the pattern. In this setup, fluctuations in the vertical dimension can be neglected

as they are integrated out during the binning process for the one-dimensional

projection4. Additionally, note that for an inhomogeneous beam it can be time

consuming to find the position of maximal intensity.

— Wavelength Distribution

If wavelengths are homogeneously and isotropically distributed and a small fraction

is selected, ∆λ/λ and λ are sufficient measures for the wavelength distribution.

This is not the case for the unprocessed beam of the very-cold neutron port at the

PF2, as can be seen in section 7.1.1. For a monochromatized and collimated beam

these two quantities are a sufficient approximation as will be shown in section 7.1.2

and section 7.1.3.

— Statistical Constraints

To gather enough statistics to resolve interference fringes on a reasonable time

scale, the neutron beam needs to have a high enough brilliance B while simultan-

eously fulfilling previous requirements.

6.2.1. Angular Constraints

The angular characteristics of a neutron beam play a major role in the realization of

Lloyd’s mirror. Foremost the prerequisite for the calculations in chapter 5 is an in-

coming coherent plane wave. It has to be shown that the beam can be prepared in a

sufficient way. Further, it has to be checked if the condition for total reflectivity and the

illumination of the mirror are fulfilled.

4See figure 6.15 for an example of an one-dimensional projection and figure 8.18 for an example of an
two-dimensional map.
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Wavefront Coherence Reactor neutrons are emitted from an extended volume, as for

example a cold source (See section 3.3) inside the reactor, and they are fully incoherent

because of their thermal origin5. Nevertheless, this kind of source coherence can be

achieved by a propagation region and finite spatial selection. The basic idea is that

free space propagation will blow up fluctuations and thus increase the volume where

the phase relation is nearly constant. If an aperture cuts out this region, the result

is a coherent beam. This concept is illustrated in figure 6.6 for a circular aperture.

See Felber et al. (1998) for an educational introduction.

Figure 6.6.: Coherence patch xc for a circular aperture S1 with size ∆s in a distance R0.
See Mandel and Wolf (1995) for the popular double-slit deviation of the coherence patch.

The Van Cittart-Zernike theorem relates a source to the coherence at a specified down-

stream point as it is for example explained in Cowley (1995) and Mandel and Wolf

(1995). There the case of interference in between two points in a screen that is irradi-

ated by a finite incoherent circular source is analyzed. If the distance R0 between the

source and the screen is much higher than the object extension on the screen i.e. the far

field requirement is fulfilled, visibility and coherence are equal and are given by

γ1 2 =

(
J1

(
π∆s∆x

R0λ

)/
π∆s∆x

R0λ

)2

. (6.2)

5For small angles θ < 1◦ the angular distribution at neutron beams follows a f(θ) = cos θ2 distribution.
This has been shown for the very-cold neutron beam at the PF2 in the Thesis Heumesser (2016).
Thus, the angular distribution does locally not deviate significantly from the expected distribution
of neutrons emitted from a reactor and which are viewed from a certain solid angle.
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Here, a is the source diameter, ∆x is the point separation, R0 is the source-screen

distance and J1 is the first Bessel function. A coherent area called the coherent patch

can then be approximated by the area between the first minima of J1 at

xc = x1,2 = 1.22
λR0

∆s
(6.3)

≈ λR0

∆s
. (6.4)

Thus, the convenient relation for the coherent region of an incoherent source follows as

λ ≥ ∆s

R0

xc (6.5)

≥ ∆Θxc (6.6)

with ∆Θ = R0/∆s.

Figure 6.7.: Horizontal coherent region bound by xc for different angles ∆Θ and with a mean
wavelength λ = 6.3 nm. The horizontal dashed line is placed at the anticipated opening of the
entrance slit S1 = 8.5µm and the vertical red line is at the corresponding angular constraint.

If the entrance slit of the interferometer has a width of xc ≥ S1 = 8.5 µm and the mean

wavelength is λ = 6.3 nm, it follows that the angular distribution in front of the entrance

slit has to be narrower as

∆Θ ≤ 0.74mrad. (6.7)
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Total Reflection Neutrons with a kinetic energy smaller than the optical potential of a

barrier will reflect under every incident angle. See Golub, Lamoureaux and Richardson

(1991). The corresponding wavelength is called the critical wavelength and is given by

λcrit =

√
2π2

m
�2V −1

opt . (6.8)

For mirrors used in experiments with very-cold neutrons and ultra-cold neutrons several

different materials are used. Here the incident surface is given by a thick coating of SiO2

on top of a polished BK7 mirror6. The optical potential is thus given by Vopt ≈ 100 neV

and the critical wavelength evaluates to λcrit = 90.57 nm. Neutrons faster than ultra-cold

neutrons i.e. very-cold neutrons will totally reflect only if the incident angle is smaller

than the critical angle αcrit which is given by

αcrit = arctan



((

Ekin

Vopt

)2

− 1

)−1/2

. (6.9)

Figure 6.8 shows the reflectivity for the relevant wavelength interval.

Figure 6.8.: Reflection at a thick SiO2-surface plotted against the incident angle for neutrons
with λ = 6.28 nm. The red line marks the angle of total reflection αcrit.

Shadow Region and Minimum Reflection Angle Previously in section 5.5.1 the geo-

metrical shadow effect of a finite mirror is discussed without considering the entrance

6More information regarding the main mirror can be fount in section 7.2.2. Additionally, the optical
potential of different materials as used for this experiment is given in appendix A in table A.6.
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slit. If the beam can only enter Lloyd’s mirror at a specific height over the mirror a

a shadow region will form in which the incident beam does not illuminate the mirror.

This can be seen in figure 5.12 where the incoming beam expands due to diffraction at

the entrance slit until it reaches the mirror and reflects onto itself.

As the region where the beam is not yet reflected upwards can be described by single-slit

diffraction, it is sufficient to consider equation (5.22) and its zeros

βzero = arcsin

[
±nλ

D

]
= arctan

(
a

Ln

)
, (6.10)

where D is the slit width, n is the diffraction order and Ln is the mirror position of the

nth zero. To produce a reasonable pattern, β = tan (a/LI) should be smaller or equal

to βzero. In any case βzero should be large enough so that the overall setup is reasonably

small. Note that this feature is incorporated in ΨL,st(�r) given in equation (5.44) and

thus can be quickly checked graphically.

6.2.2. Spatial Distribution

Neutrons which originate from the thermalization position i.e. the cold source should

have a fairly homogeneous spatial distribution. If the position of extraction is placed

far away from the thermalization position, local fluctuations will be washed out. Due to

interactions a beam will gain structure again. For example, reflections can add fluctu-

ations of the order of the size of the beam at the position of extraction, as it is seen at

the very-cold neutron beam at the ILL. This will not interfere with a measurement in a

practical way, as long as the chosen size of the extraction region is chosen much smaller

than the fluctuations

δXspatial � D. (6.11)

D is the characteristic size of a beam component, e.g. a slit, which cuts out a small por-

tion of the beam. The very-cold neutron beam at the PF2 is locally smooth DHorizontal ≈
(10 − 100) µm � δXHorizontal ∼ (1 − 10)mm which can be seen in Heumesser (2016),

where the angular and spatial distributions of the beam were studied. In the vertical

direction this relation does not hold, as can be seen in figure 6.9. The beam profile

was captured using the BiDim-267, a two-dimensional wire-chamber. The projection on

the vertical axis features a non-smooth distribution on the mm-scale, thus the fluctu-

7The BiDim-26 detector is a 3He wire-chamber with an active area of A = (256 × 256)mm. More
information can be found in appendix A.4 in table A.3.
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Figure 6.9.: Projection on the vertical axis of the spatial beam distribution of the very-cold
neutron beam at the PF2. The projection is calculated from measurement ID0043 taken in
beam-time Test–2455 with the Bidim-26 detector. The detector resolution is given by the
pixel size to be ζBiDim26 = (2 × 2)mm. The beam was aligned to the measurement cabin
by a super mirror M0, which cleans up the beam together with slit S4. dM0 = 76mm and
S4Vertical ≈ 120mm.

90



6. Dimensioning and Simulation

50 100 150 200 250
0

5

10

15

Figure 6.9.: Projection on the vertical axis of the spatial beam distribution of the very-cold
neutron beam at the PF2. The projection is calculated from measurement ID0043 taken in
beam-time Test–2455 with the Bidim-26 detector. The detector resolution is given by the
pixel size to be ζBiDim26 = (2 × 2)mm. The beam was aligned to the measurement cabin
by a super mirror M0, which cleans up the beam together with slit S4. dM0 = 76mm and
S4Vertical ≈ 120mm.
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ations are smaller than the extension of the beam components in vertical direction with

DVertical ∼ 100mm. As long as one can sum over the vertical axis the interferogram

does not depend on the vertical coordinate and the vertical distribution will not alter

the final interferogram.

6.2.3. Wavelength Distribution

The wavelength distribution of a realistic beam has a finite width. An example for the

beam spectrum is shown in figure 7.5 and an example for a constrained spectrum is

shown in figure 7.9. Each wavelength λk produces a slightly different pattern according

to equation (5.39). As these patterns contribute incoherently, the resulting pattern for

the distribution has a decreased visibility ν. Thus, to achieve an acceptable visibility, the

wavelength distribution frequently has to be restricted. Figure 6.10 shows the visibility

calculated using ΨL,st from equation (5.44) convoluted8 with velocity distributions with

different ∆λ/λ. Figure 6.11 shows the number of interference maxima in a region of

visibility ν ≥ 30%. If at least four maxima are required to be in this region, the

wavelength bandwidth cannot be greater than

∆λ/λ ≈ 6.5%. (6.12)

6.2.4. Statistical Constraints

Here it is estimated, whether an interference pattern can be resolved in a practicable

time-frame at the PF2 beam-port. This analysis is completed in section 6.3 where a

simulation of an interferogram of Lloyd’s mirror is presented. Here the prerequisites

for the statistical analysis are given and the specific case of a two-point comparison is

discussed.

Measurement Specification In section 6.1 different measurement procedures are dis-

cussed. The case in which a slit scans the pattern is presented in section 6.1.2, where

the question of a significant deviation simplifies to a comparison of the difference of two

measurement points ∆Nn,m to its uncertainty δ∆Nn,m. In section 5.6.2 the sensitivity

to a small phase shift is given for a linear approximation of the pattern. Instead of the

8See section 6.3 for an overview of the simulation of the interferogram which is used to calculate the
visibility in dependence of the wavelength.
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Figure 6.10.: Visibility reduction for a non-monochromatic beam. The visibility of the static
solution of Lloyd’s mirror is convoluted with a velocity distribution with ∆λ/λ = 1% → 10%
and λ = 6.3 nm. Further, parameters are standard parameters as defined in appendix A.4.

● ● ●
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Figure 6.11.: Shown is the number of interference maxima which are contained in a region
with a visibility of ν < 30%.
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Figure 6.10.: Visibility reduction for a non-monochromatic beam. The visibility of the static
solution of Lloyd’s mirror is convoluted with a velocity distribution with ∆λ/λ = 1% → 10%
and λ = 6.3 nm. Further, parameters are standard parameters as defined in appendix A.4.
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Figure 6.11.: Shown is the number of interference maxima which are contained in a region
with a visibility of ν < 30%.
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sensitivity to small variations, the needed measurement time with respect to features

of the pattern and the intensity per bin at the detector can be calculated. Figure 6.12

gives a simple example of a two point measurement. The difference between Nn and Nm

Figure 6.12.: Two-Point measurement scheme with binarized data. For a bin-count at the
maximum of N̂max > 225 the difference ∆N has accumulated enough counts so that zero is not
within a three sigma region. The black bars indicate a one sigma deviation and the red dashed
bars a three sigma deviation. The visibility is assumed to be ν = 1, the phase difference is
∆ϕ = π/8, and the bin size is also chosen to be b = π/8.

is significant if

∆Nn,m = Nn −Nm < Sstatδ∆Nn,m = Sstat

√
(δNn)

2 + (δNm)
2 (6.13)

⇒ Nn −Nm√
Nn +Nm

< Sstat. (6.14)

Here counting statistics applies and thus the relation δN =
√
N is used. Sstat is the

significance which can be set to Sstat = 3 for a small scale experiment. For a measurement

symmetric around the steepest slope the counts at that bin are given as N̂ [π/2] =
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N̂max · P [π/2], where ∆P = P [π/2 + ∆ϕ]− P [π/2−∆ϕ]. With a small phase shift ∆ϕ

the equation (6.14) can be rearranged by using N̂max = ÎmaxT to be

N̂max ≥
(

S
∆P

)2

(6.15)

↪→T ≥ 1

Îmax

(
S
∆P

)2

. (6.16)

Here T is the integration time, Îmax is the intensity per bin at the maximum, and P is

the pattern at the detector. If the visibility is already included in the used model, only

∆P is needed, otherwise the visibility is to be included explicitly as ν. For example,

for the plane wave solution given in equation (5.38), the difference is ∆f = ν(Ppl(yn)−
Ppl(ym)) = ν∆Ppl.

In order to specify a binning, the Nyquist-Shannon theorem is a convenient starting

point. To fulfill the theorem, the binning has to be at least twice as narrow as the period

λL to resolve the difference between maximum and minimum. Thus, the maximal bin

size bmax is set to be bmax = λL/2. If the pattern is to be resolved even better, the bin size

has to be correspondingly smaller. I.e. to make efficient use of the point of the steepest

slope, the bin width has to be b < bmax. For example, for a bin width of bϕ = π/8, the

non-linear contributions are smaller than 0.6% for the plane wave model. Thus, it is

acceptable for the calculations in section 5.6.2 and the bin size is set to be bmax = λL/16.

Intensity Estimation The intensity per bin at the detector plane is given as

Î =

b/2∫

−b/2

|Ψ(y − y′)|2dy′, (6.17)

where Ψ(y) has to account for the finite wavelength distribution. Ψ(y) is calculated

by convoluting the wave function from equation (5.44) or equation (5.46) with the

wavelength distribution measured in section 7.1.3. If the pattern is normalized to the

maximum value, only the quantity Î(ymax) is needed to characterize the pattern intens-

ity.

The intensity I at the interferometer entrance slit S1 can be extrapolated for a specific

beam-shaping region, if the radiance R at the beam port or after the beam-shaping

section is measured. Appendix A.2 gives an overview of different instruments and their

beam radiance. Specifically chapter 7 states characteristics of the very-cold neutron port
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Case L [m] λ [nm] λL [µm] b [µm] Î · 10−6 [ #/s]

I 0.315 6.3 18.7 1.17 79± 4
II 0.315 6.3 18.7 9.4 648± 29
III 5.315 6.3 315 20 118± 5
IV 5.315 6.3 315 157 954± 38

Table 6.2.: Shown are the intensities in a bin at the maximum of the pattern for different
setups. For each set of setup lengths L, two bin sizes are given. For each setup length the bin
size is given for the comparison of maximum and minimum and a measurement of a small shift
around the point of the steepest slope. Note that the pattern which describes the short setup
ΨL,st and the long setup ΨL,F deviate significantly, as can be seen in section 6.3.

at the PF2 for the beam as it enters the very-cold neutron cabin and after it traversed the

beam shaping section. Anticipating section 7.1.4 the radiance of the very-cold neutron

beam at the PF2 with set up beam shaping is given in equation (7.17) as

R∗
S1 = (1.4± 0.06) · 103 #/s

radmm
. (6.18)

The mean wavelength is determined in section 7.1.3 to be λ = (6.73 ± 0.16) nm with

a spectral bandwidth ∆λ
λ

= (5.55 ± 0.48)% which satisfies the previous condition in

equation (6.12). The height of the beam is approximately 80mm. Assuming that the

angular distribution is constrained to be no wider than ∆α = 740 µrad as discussed in

equation (6.7) the intensity I at the entrance slit is given as

IS1 = (8.9± 0.4) · 10−3 #/s. (6.19)

Using this intensity at slit S1, the intensity at the maximum of the pattern for a specific

bin/slit size at the detector can be calculated using equation (6.17). The results for a

short and a long setup, as well as for two different bin sizes are summarized in table 6.2.

Conclusion Table 6.3 summarizes the minimal required measurement time for a signi-

ficant detection Tmin as specified in equation (6.16) for the cases specified in table 6.2.

Due to the high measurement time that is required for a statistically significant result,

a realization of a high precision measurement utilizing Lloyd’s mirror does not seem

feasible at the PF2. Even if the setup could make use of the full brilliance that is stated

in section 7.1.1, which is higher compared to the brilliance of the monochromized beam,

as stated in section 7.1.4, this would be still insufficient. The measurement time for case

I drops by a factor of 40 and a single measurement would take at least one day using
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Case ∆P ∆ϕ
( S
∆P

)2
Tmin T ∗

min

I 0.188 π/8 254 (37± 2) days (124± 19) days
II 0.96 π 9.8 (4.2± 0.2) h (14± 2) h
III 0.119 π/8 636 (71± 3) days (236± 38) days
IV 0.61 π 24 (7.0± 0.3) h (23± 3) h

Table 6.3.: Comparisons of the necessary measurement time for very-cold neutron beam at the
PF2. The second time T ∗

min is given for a detector efficiency of εCR39 = 32% instead of 100% as
is assumed for Tmin. For ∆P either the solution from equation (5.44) or from equation (5.46) is
used, while including a finite wavelength distribution. The significance goal is set to be S = 3.
∆ϕ = π compares two neighboring extrema.

a detector with unit efficiency. Considering that a careful measurement needs several

data points, adjustments, and a time consuming initial setup, this is not in the scope of

a measurement at the PF2 either. The detection of the maxima of the interferogram on

the other hand, can be realized in approximately half a day utilizing a CR39 detector

even with IS1. Thus, between the strict requirement of a ∆ϕ = π/8-shift measurement9

and the most rudimentary detection of the periodic interferogram there exists space to

resolve finer structures at the measured intensity.

It should be noted that if ∆ϕ = π and consequently the extrema are to be compared, it

is implicitly assumed that the pattern can be approximated by a rectangle function with

period λL. This indicates that the value given for Tmin is an underestimate of the needed

measurement time. Consequently, this estimate is not sufficient for an interferogram

detection, as discussed in section 6.1.1. It is of special interest which parts of the

interferogram will be significantly detectable through statistical noise and finite detector

resolution. A more sophisticated way estimating the pattern is the direct simulation of

the pattern. The following section presents such a simulation for a CR39-detector as

described in chapter 8.

9The ∆ϕ = π/8-shift is considered as a reference. Additionally, in section 5.6.2 a small shift in
I(y,∆ϕ) is considered by a linear approximation around I(ys, 0). ys is the point of the steepest
slope. This is valid as long as non-linear deviations are relatively small. For ∆ϕ = π/8 the deviation
are below 1% at least for the first few maxima where the diffraction pattern is comparable to the
plane wave solution.
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6.3. Measurement Estimation

The goal of the following calculation is to simulate an interferogram of Lloyd’s mirror

at the very-cold neutron beam at the PF2. The subsequent subsections will take into

account the wavelength distribution, the detector resolution, and slight misalignments

of the detector. The contribution of the mirror roughness, slit imperfections, bending

of the detector, and incomplete knowledge about the mirror position relative to the

detector are briefly discussed or incorporated in the simulation.

6.3.1. Interferogram Simulation

In chapter 5 several different approximations to the probability density of Lloyd’s mirror

are given. Here the static solution ΨL,st as given in equation (5.44) with a mirror length

of L = 0.315m is applied. Figure 6.13 shows the scheme which is used for the simulation.

The individual modules are discussed in the following section 6.3.1.1, section 6.3.1.2, and

the simulation is finalized in section 6.3.1.3.
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Figure 6.13.: Simulation scheme that is used to estimate the interferogram as it would be
seen on a detector with resolution ζdet. The technique of Monte-Carlo rejection sampling is
presented as described in Lang and Pucker (2016).
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6.3.1.1. Wavelength Distribution

Figure 6.14.: Dependency of ΨL on the ∆λ/λ.

The effect of a finite wavelength distri-

bution has already been discussed in sec-

tion 6.2.3, where figure 6.10 shows the

visibility as a function of ∆λ/λ. For a

given wave function Ψ(y, λ) the effect can

be included by incoherently summing and

weighting the individual patterns with the

wavelength distribution of the beam. The

integral is then given as

ΨI(y) =

λmax∫

λmin

f(λ)Ψ(y, λ)dλ. (6.20)

Figure 6.14 shows the effect of a Gaus-

sian wavelength distribution with varying

∆λ/λ which features a strong drop in visibility. In section 6.2.3 the fact that the visib-

ility drops significantly has already been discussed and a threshold for ∆λ/λ is defined.

Utilizing these results, ΨI(y) with λ = 6.3 nm and ∆λ/λ = 6.5% is used at different

sections of this thesis. See for example section 5.6 and section 6.2.4.

6.3.1.2. Detector Effects

The interference pattern can be detected by employing a spatial resolving detector. Such

a detector has a finite resolution ζDet. Because the expected interferogram period λL is

rather small and can be of the same order of magnitude as the detector resolution, this

has to be considered. If for example a neutron hits the detector at a position (x, y), it

is only possible to measure the position with an uncertainty corresponding to ζDet
10 and

thus

(x, y) → (x± ζ, y ± ζ). (6.21)

Further, several other effects will interfere with the spatial neutron detection. A detector

can be misaligned relative to the interference pattern. For example, its surface can be

rotated, bent, skewed, or a combination of all effects can interfere with the precise spa-

tial detection. This is not limited to the process of exposing the detector to neutrons,

10Note that ζDet does not have to be isotropic.
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Quantity Value Information

λ 6.3 nm Center wavelength of the distribution shown in sec-
tion 7.1.3.

∆λ
λ

6.5% Width of the spectral distribution as measured in sec-
tion 7.1.3. Conservatively the uncorrected value is used
instead of the smaller corrected value.

ζCR39 2.4 µm Estimated resolution of a boron-coated CR39 neutron
detector.

dwidth 15mm Width of the simulated region. y-coordinate region.
dheight 80mm Height of the simulated region. x-coordinate region.
bwidth 3 µm Bin width to produce a histogram from the simulated

detector.
εCR39 32% CR39 detector efficiency.

Table 6.4.: Parameters that are needed for the simulation of the Lloyd’s mirror interferogram.

but can also cover the optical readout mechanism of the detector and the reconstruction

of the neutron distribution. In the case of a boron-based CR39 detector as discussed in

chapter 8, the detector can be pressed tightly on the mirror’s edge and thus bending and

skewing during neutron exposure can be neglected11. By scanning a chemical prepro-

cessed12 detector using an optical microscope, several systematic effects are introduced.

Detectors are fixed on the microscope stage and thus bent slightly; the microscope’s

objective adds coordinate distortions as a function of the distance to the center point

as is analyzed in Thalhammer (2018); misalignments of the focal plane relative to the

detector plane add not uniform distributed noise; and finally dust that settles on the

detector adds a uniform noise. In the context of this thesis only the most prominent

effects are considered. This is the detector resolution, noise not distinguishable from

neutron signals, and a slight bending of the detector. The simulation process first draws

individual neutron incident positions (x, y) using the Monte-Carlo rejection technique

and the probability density ΨI(y) stated in equation (6.20). On each neutron a random

noise drawn from a Gaussian distribution with ζ as width is added to simulate the de-

tector resolution. Finally, a polynomial describing a y-deviation is added simulating a

bending of the detector in y direction. The relevant parameters are given in table 6.4.

11This is only true for the presented setup. In general CR39 detectors bent and their surface deviates
from the detector plane. Depending on the needed resolution this is not necessarily problematic.

12See section 8.3 regarding the post-processing of the exposed CR39 detectors.
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6.3.1.3. Finalization and Statistical Assessment

The finalized simulation is shown in figure 6.15 for two measurement times τ = 7days

and τ = 21 days. Here again the radiance from section 7.1.4 is taken

R∗
S1 = (941± 44)

#/s

radmm
, (6.22)

which is corrected for the CR39 detector efficiency ζCR39 = 32%.

(a)

(b)

Figure 6.15.: Shown are simulations and fits of the interferogram of Lloyd’s mirror for standard
parameters and for an integration times of τ = 7days in Figure (a) and for an integration time
of τ = 21days in Figure (b). The important fit parameters are collected in table 6.5.

In the case of a seven day integration time the first three maxima and minima are

clearly distinguishable from the background, while the rest of the pattern cannot be
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clearly distinguishable from the background, while the rest of the pattern cannot be
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resolved. The longer measurement with τ = 21 days shows the interferogram with

sufficient statistical data to distinguish at least four to five extrema.

This statement can be refined by comparing the significance of a fit and its parameters

of each simulation. A simplified model consisting of five functional parts is used to fit

to the data. A periodic part that models the interference pattern by Lloyd’s Mirror and

is given in section 5.5.1, an exponential 1/(1+ eτ1(y0−y)) that models the rising behavior

near the mirror, an exponential κe−τ2y that approximates the visibility modulation, an

exponential e−τ3y that models the intensity decay of the overall pattern, and finally a

constant background B. The compound function is given as

f(y) =
1

1 + eτ1(y0−y)

(
1− κ · e−τ2(y0−y) cos

(
3π

2
+

2π

λL
y

))
e−τ3y + B. (6.23)

The fit is calculated using Mathematica13 by Wolfram Research (2017). The resulting

parameters are collected in table 6.5 and show that even for a seven day measurement,

characteristics of the pattern can be extracted from the simulation data.

Mainly the first maxima can be cleanly modeled while deviations exist in the decaying

slope. The adjusted14 R�,2
7 = 0.9 and R�,2

21 = 0.97 and thus sufficient agreement15 of

the simplified model and the data exist to extract λL. This is in accordance with the

conclusion of section 6.2.4.

Despite the very low intensity and the various constraints the signal can still be dis-

tinguished from the background with sufficient visibility and in a practical time frame.

Especially the fact that the first three maxima are well resolved is important for tests

of hypothetical interactions and particles. The potentials introduced have a strong de-

pendency on the detector coordinate as for example discussed in section 5.6.4.1 and

section 5.6.4.2. Thus, the point of highest sensitivity to these effects is at the second

or third flank. For a τ = 21 days measurement these points of the interferogram should

indeed be resolvable after accounting for systematic effects. Additionally, the simulation
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13In particular the function NonlinearModelFit[Data, Model, Parameter, y, Options]
is used. The options that were supplied for the “NonlinearModelFit” are
Weights −> (1/(#)ˆ2 & /@UncertaintyData, VarianceEstimatorFunction −> (1 &), and
Method −> ”LevenbergMarquardt”.

14R�,2 = 1 − n−1
n−p

(
1−R2

)
, n is the length of the dataset, p is the number of parameters, R2 =(∑n

i (fi −
∑n

j gi)
2
)
/
(∑n

i (gi − fi)
2
)
, and gi is a datapoint at position yi. The definition is taken

from Wolfram Research (2017).
15See figure A.2 and figure A.3 for the residuals of each fit for further verification.

101



6. Dimensioning and Simulation

Quantity Value Information

7 Day Simulation

λL (18.7± 0.3) µm Estimated plane wave period of Lloyd’s Mirror.
κ (0.64± 0.13) Visibility of the pattern for the first maxima.
y0 (101.8± 0.6) µm Mirror surface position.
B (5.8± 0.3)#/(s · bin) Background in the region 0mm < y < 0.1mm.

21 Day Simulation

λL (18.7± 0.2) µm Estimated plane wave period of Lloyd’s Mirror.
κ (0.64± 0.07) Visibility of the pattern for the first maxima.
y0 (101.9± 0.3) µm Mirror surface position.
B (21.3± 0.6)#/(s · bin) Background in the region 0mm < y < 0.1mm.

Initial Simulation Parameters

λL 18.7 µm Plane wave period of the Lloyd’s Mirror.
κ 0.84 Visibility of the pattern for the first maxima.
y0 100 µm Mirror surface position.
B7 8.0#/(s · bin) Intensity in a non-signal region of size A = 8mm2

with a bin size of biny = 2 µm and integration
time of 7 and 21 days.

B21 23.8#/(s · bin)

Table 6.5.: Result of a fit on the simulation of Lloyd’s Mirror. An additional parameter table
is given in appendix A.4 in table A.7 which includes decay and rise parameters.

Figure 6.16.: Shown is the interference pattern |ΨL,F|2 of a setup where the main mirror is
followed by a LD = 5m propagation region which will stretch out the pattern. As for the
situation presented in figure 6.15 the finite width of the wavelength spectrum is considered.
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6.3. Measurement Estimation

Looking at a more general setup with an additional flight path behind the mirror as is

described by ΨL,F and is given in equation (5.46), a stretched out interference pattern is

detected. See figure 6.16 which shows the simulated probability density captured using a

CR39 at a position LD = 5m behind the mirror. The pattern spans several millimeters

and from the point of view of the size of the pattern, it should be easily resolvable by a

scanning slit setup. However, such a setup is not feasible, as it would be impossible to

distinguish the interference signal from the background. The background intensity per

area at the detector can be expected to be more or less constant for a position further

beam downwards, and thus the value calculated in section 7.2.4 is used for a comparison.

In this case, the signal magnitude given by equation (7.16) is diluted to be

F = I/A ≈ 44 · 10−6 #/s

mm2
(6.24)

and therefore does not elevate above the detector background flux of F = (83 ± 8) ·
10−6 #/s

mm2 as given in equation (7.19). Only with a detector that features a lower back-

ground flux, a measurement with an added propagation region of the order of LD is

realizable at the PF2.

6.3.2. Additional Systematic Effects

Figure 6.17.: Geometry of a misaligned en-
trance slit in front of the main mirror. The
slit is composed of three regions. Two beam
blocking components S1a and S1c, and a trans-
missive region S1b.

Besides the already discussed systematic

effects the contribution of additional ones

need to be estimated. What will for ex-

ample happen, if the slit is not well aligned

or the mirror is not perfectly flat or even

rough?

6.3.2.1. Misaligned Slit

Consider a slit consisting of two absorbing

blades S1a and S1c which are misaligned in

the x-axis relative to the mirror as shown

in figure 6.17. For the perfectly aligned

system one can sum over the pattern along

the x-axis because no relevant structure

is expected besides intrinsic beam fluctu-
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ations as discussed in section 6.2.2. Recalling the interference pattern period given in

equation (5.39), a deviation ∆a leads to

λL,∆a =
Lλ

2(a+∆a)
. (6.25)

For a misalignment of β = 10 µrad, a vertical extension of the slit of S1vert ≈ 100mm,

and a ≈ 53 µm leads to a maximal change of ∆a ≈ βS1vert = 1 µm and

λL,∆a − λL

λL
= 1− a

(a+∆a)
≈ 1.8%. (6.26)

Summing along the x-axis the visibility of the pattern will be reduced as is shown in

figure 6.18, where the drop in visibility is given as a function of β and y. In order to

conserve a high visibility the angle β needs to be below β < 2 µrad for the chosen value

of a. Dependent on the achievable β in a specific implementation of Lloyd’s mirror, a is

constrained. For example, if alignment can only be achieved to a level of β ≈ 20 µrad,
one would need to choose a > 530 µm respectively larger.
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Figure 6.18.: Shown is the visibility drop (ν − νm.a.)/ν for a misaligned slit with a visibility
νm.a.. To calculate the visibility the probability density in equation (5.44) is used. The slit is
divided in N = 20 vertical sections which are shifted as indicated in figure 6.17 by β and for
which the interference pattern is calculated individually. Summing over the individual sections
and calculating the visibility of the resulting pattern leads to the shown result. The structure on
the upper right corner is partly caused by numerical artifacts, because the calculated visibility
in this region is very close to zero. Interesting is the low loss at β = 10µrad and y = 150mm
which is explainable as the original pattern and the disturbed pattern are very similar. Thus,
this low loss region does not indicate a usable parameter set, because of the low absolute
visibility at this point.
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6.3.2.2. Rough Slit

Figure 6.19.: Geometry of rough entrance slit
surfaces in front of the main mirror. The slit
is formed by two opaque components S1a and
S1c. In the setup as presented in section 7.2.1
boron-steel is used for these components.

The inner surfaces of the blades shaping

the slit will have some roughness. Here it

is assumed that the deviations of the inner

surfaces between different points n follow

a Gaussian distribution with

f(n) ∼ 1

σ
√
2π

e−
1
2

x−a
σ

2

(6.27)

and σ the roughness of the surface. This

is similar to varying the slit width S1

and the slit mirror distance a for differ-

ent points along the x-axis. The model is

shown in figure 6.19 where the slit is di-

vided into N subsections with individual

an and S1n. Summing and weighting over

the set of patterns gives the interference

pattern with reduced visibility16. The res-

ulting visibility drop compared to the pat-

tern formed by a perfect slit is shown in figure 6.20. In order to conserve the visibility of

the pattern, the roughness should be smaller than σ < 1 µm for the standard parameter

defined in table A.3.

6.3.2.3. Main Mirror Imperfections

As the slit, the mirror surface will also deviate from a perfect plane. In section 7.2.2 the

profile function f(x) = a(x− c)2 + b is calculated from fitting a parable at an optical

measurement of the profile of the used mirror. The parameter a is determined to be

a = −11.1 ·10−6 µm. Over the extension of the mirror a height change of ±0.4 µm can be

observed. Additionally, the mirror roughness is measured using a needle roughness tester

to be ra ≈ (0.007±0.001) µm. While in general both the roughness as well as the overall

shape of the mirror will contribute to the interferogram, both effects are neglected. In

case of the overall shape or waviness this can be a particularly bad approximation and

has to be addressed in future considerations.

16Note that the the neutron beam is not coherent in the vertical direction/x-direction.
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observed. Additionally, the mirror roughness is measured using a needle roughness tester

to be ra ≈ (0.007±0.001) µm. While in general both the roughness as well as the overall
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case of the overall shape or waviness this can be a particularly bad approximation and

has to be addressed in future considerations.

16Note that the the neutron beam is not coherent in the vertical direction/x-direction.
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Figure 6.20.: Shown is the visibility drop (ν−νrough)/ν for a rough slit with a visibility νrough.
To calculate the visibility the probability density in equation (5.44) is used. The slit is divided
in N = 30 vertical sections which are shifted as indicated in figure 6.19 by β and for which
the interference pattern is calculated individually. Summing over the individual sections and
calculating the visibility of the resulting pattern gives the shown result. The structure along
the detector coordinate is due to the periodic revival of the pattern.

6.4. Summary

In this chapter experimental constraints of an implementation of Lloyd’s mirror are

discussed and analyzed with respect to the very-cold neutron beam at the PF2 at the

Institut Laue-Langevin. To achieve an acceptable visibility of the interferogram both

the angular and the spectral width of the beam need to be constrained as is shown in

section 6.2.1. Using standard parameters for the setup dimensions the divergence has

to be

θ < 740 µrad (6.28)

in order to have a coherent wavefront over the extension of the entrance slit. In sec-

tion 6.2.2 it is shown that the spectral width has to be constrained to be around

∆λ

λ
= 6.5% (6.29)

in order achieve a visibility of v > 30% up to the fourth maxima. Both constraints,

if implemented by cutting in phase-space tightly, limit the available intensity at the

entrance slit IS1. This is discussed in section 6.2.4. Therefore a measurement which
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compares two points in the interferogram around the point of the steepest slope, the

needed measurement time for a specific significance S is estimated. Due to the very

low expected intensity at the entrance slit of the interferometer, it is not possible to

resolve phase shifts of the order of ∆ϕ = π/8. The measurement time that is needed

to distinguish two points with a significance of S ≥ 3 for such a shift is estimated to

be higher than Tmin ≥ (37± 2) days for a detector with unit detection efficiency. It has

to be noted that a loss in brilliance by a factor of forty is not accounted for over the

monochromatization stage as discussed in section 7.1.4. The most probable cause is a

not optimal beam positioning which would be possible to be compensated in principle.

For a successful compensated loss, the necessary measurement time would reduce to

Tmin ≥ (0.9± 0.001) days which is still feasible but does not constitute a high precision

measurement. Anticipating the results of this section, the simulated pattern is already

used in the sensitivity estimation in section 5.6. There the achievable sensitivity with

the given interferogram and beam intensity is discussed for various phase shifting effects.

Despite these constraints it is shown that the interferogram itself can certainly be re-

solved with high significance as the minimal measurement time for a peak to peak

detection is just about Tmin ≥ (14 ± 2) hours for a measurement employing a CR39

detector. This is consistent with the result of the full simulation shown in figure 6.15

where the interferogram is distinguishable from the measured background as presented

in section 7.2.4.

The entrance slit of the interferometer is discussed more closely in section 6.3.2.1 and

section 6.3.2.2. There a misalignment and the roughness of the entrance slit is considered

which will both reduce the visibility of the pattern. The constraints on the specific

material properties as for example a roughness below σ < 1 µm, are followed up on in

section 7.2.2 which is embedded in part III. The following chapter 7 presents a not yet

finished experimental implementation of Lloyd’s mirror and the intensity measurements

which where referenced throughout this part of the thesis.
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7. Experimental Setup and First

Measurements

This section gives an overview of an experimental setup to realize Lloyd’s mirror at

the PF2’s very-cold neutron beam at the Institut Laue-Langevin. A basic scheme for

a successful implementation of the setup as described in chapter 6 depends on three

prerequisites.

First, the wavelength distribution needs to be as narrow as specified in section 6.2.3.

Second, the coherence condition has to be met as shown in section 6.2.1 and third,

the intensity has to be high enough to make a measurement practical. Together these

constrain the minimal radiance needed over the horizontal divergence angle R/γ. The

mean brilliance B of different beam ports is summarized in table 7.1 together with the

available wavelength range of selected very-cold neutron beams at the ILL1.

Instrument λ [nm] B [ #/s
cm2 sterad nm

]

D11 0.45− 4 2 · 1011
D33 0.45− 25 ∼ 2 · 1011
H18 1.5− 3.0 1.3 · 108
PF2-VCN 2− 400 −

Table 7.1.: Brilliance and wavelength range of different neutron beams at the ILL. The values
for D11, D33, and H18 are taken from the flux distribution plot on page 8 in Laue-Langevin
(2008) which is reproduced in appendix A as figure A.12.

Note that for the very-cold neutron beam at the PF2 no value for the mean brilliance is

available. Extrapolating for a wavelength of λ = 60 nm from figure A.12 yields a wide

value range of B ∼ (2 ·105−2.5 ·107) [ #/s
cm2 sterad nm

], which is not reliable as an estimate for

a specific beam port as the brilliance strongly depends on the implemented extraction

1For a general description of the very-cold neutron source at the Institute Laue-Langevin see section 3.3
and figure 3.4.
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mechanism. The flux per wavelength at the neutron vertical guide exit port is stated

in Laue-Langevin (2008) and measured in Steyerl et al. (1986) as

R ≈ 40 · 103 #/s

cm2 Å
(7.1)

around a wavelength of λ ≈ 10 nm. This value is problematic to use for estimates as

no angular information about the beam at the cabin entrance is provided. Thus, an

experimental determination is necessary for further calculations.

Nevertheless, the very-cold neutron beam at the PF2 is expected to have the lowest mean

brilliance compared to the other mentioned beams because of its higher mean wavelength

and the overall cold source wavelength distribution. Conversely, this beam is favorable

in respect to its wavelength’s distribution of up to λ ∼ 10 nm and that it offers relatively

long experimental-periods of a couple of weeks. Both points are especially relevant in

respect to searches for fifth-forces and dark matter as indicated in section 5.6.

In the following section an implementation of a beam preparation stage (section II) for

the interferometer obeying the beam constraints is presented together with relevant bril-

liance measurements. The brilliance measurements are compared to the characteristics

of the H18 beam2, which has been used for similar free-space interferometry as presented

in Anton Zeilinger et al. (1988). Finally, the proposed interferometer setup (section I)

and its components are presented as they have been prepared in beam-time Test–2455.

7.1. Experimental Implementation

The figure 7.1 shows a proposed setup that fulfills the restrictions explained in chapter 6.

The overall setup at the very-cold neutron port at the PF2 is situated on a vibration-

ally isolated optical table which is equipped with two spring-mass systems to damp

vibrations. Further, the table can be placed on air cushions to damp vibrations.

Neutron optical components are placed on 25.4mm diameter thick rods in order to avoid

enhancing the residual vibration magnitude. The setup in section II consists of three

neutron optical mirrors and three slits. The alignment of these components in relation

to the neutron beam is accomplished using a multi in-line laser system and a sequential

build-up of the setup. Each mirror has a motorized rotational degree of freedom and

each, slit a motorized translational degree of freedom perpendicular to the neutron beam.

2Currently, the beam is permanently used for the D17 instrument and is not available for full setup
experiments.
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Figure 7.1.: Full schematic of the setup of Lloyd’s mirror at the PF2 at the ILL. Section II
composes the beam preparation region and section I the interferometer region.

The overall motorization of the setup is discussed in Heumesser (2016). The laser beams

and the neutron beam are aligned relative to each other by employing an in-line silicon

mirror that is transmissive for neutrons. An on-line detector is placed beam downwards

from section I for alignments that require a neutron beam. This detector is a Bidim-26

wire chamber detector with a pressurized 3He gas filling and an efficiency of roughly

εBidim26 = (68.3± 1)%.

The beam enters the setup at the left in section II and mirror M0 aligns the very-

cold neutron beam to the experimental chamber. The slits S4 and S3 form the first

beam shaping stage. There the beam collimation is reduced to be compatible with

the monochromatization stage. Monochromatization is achieved with Ni-Ti multilayer

mirrors3 with a spacing d = 4.3 nm and a variation of the spacing of ∆d/d ≈ 5%4.

Finally, slit S2 and S1 prepare a coherent region in front of the mirror. This concludes

the beam preparation and the beam enters section I through slit S1. After transversing

the region forming Lloyd’s mirror, the beam hits the detector plane. The main detector

I captures the signal and detector II captures a background signal. Over every part of

the setup shielding is added. In particular heavy shielding is present at each mirror to

capture transmitted neutrons and stray neutrons. By this a very low neutron background

of FBackground ≈ 0.3#/(mm2h) is achieved at the detector plane, as will be presented in

section 7.2.4.

3These mirrors were graciously supplied to us by Hino Masahiro and Tatsuro Oda from Kyoto Uni-
versity. They are also used in other experiments as for example M. Hino et al. (2003).

4As discussed in section 7.1.3 the resulting expected spectral bandwidth is ∆λ/λ = (5.75± 0.01)% as
given in equation (7.11).
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Beam Preparation Section II of the setup shown in figure 7.1 has been realized and

tested at the PF2 during the beam-time Test–2455 in 2015 and 3–14–343 in 20145.

Specific modules are presented and discussed in Bricher (2015) and in Heumesser (2016).

Especially in the following, the slit and the mirror motion and measurement control

system are presented.

S3S2 S4

M2 M1 M3

Figure 7.2.: Implementation of the beam-shaping section. M0 is the first neutron super-mirror
with m = 2 which deflects the very-cold neutron beam in the direction of the experimental
chamber. The slits S4 & S3 are used to collimate the beam for the wavelength selection which
is realized using Ni-Ti-super mirrors M1 & M2. Beam downwards, slit S2 prepares a wavefront
together with S1 through which the wavefront enters the interferometer region.

The implemented beam preparation is shown in figure 7.2 as built up during beam-time

Test–2455. The setup closely follows the setup shown in figure 7.1, where a system of

slits is applied to collimate the beam and mirrors used to restrict the wavelength. At

the position of M0 a neutron m = 2 super-mirror deflects the very-cold neutron beam

in the direction of the experimental chamber. The slits S4 and S3 are used to collimate

the beam to achieve a narrow wavelength distribution at the monochromatization stage.

The wavelength selection itself is realized using the Ni-Ti-super mirrors M1 & M2. Beam

downwards, slit S2 prepares a wavefront together with S1 which marks the entrance to

the interferometer region.

Each component can be moved through an unified control system based on LabView.

Measurement scripts then allow for time intensive measurements as for example narrow

slit scans of the beam. Slits are placed on translation stages6 and mirrors are placed

5Due to an unforeseen reactor shutdown further testing and measurements were not possible. This
is particular true for the spectral selection which is here presented as constructed in beam-time
3–14–343.

6The translation stages are various stages produced by Physik Instrumente. Examples are the M-
403.1DG which offers a travel range of 25mm and a minimal step size of 0.2µm.
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tested at the PF2 during the beam-time Test–2455 in 2015 and 3–14–343 in 20145.

Specific modules are presented and discussed in Bricher (2015) and in Heumesser (2016).

Especially in the following, the slit and the mirror motion and measurement control

system are presented.

S3S2 S4

M2 M1 M3

Figure 7.2.: Implementation of the beam-shaping section. M0 is the first neutron super-mirror
with m = 2 which deflects the very-cold neutron beam in the direction of the experimental
chamber. The slits S4 & S3 are used to collimate the beam for the wavelength selection which
is realized using Ni-Ti-super mirrors M1 & M2. Beam downwards, slit S2 prepares a wavefront
together with S1 through which the wavefront enters the interferometer region.

The implemented beam preparation is shown in figure 7.2 as built up during beam-time

Test–2455. The setup closely follows the setup shown in figure 7.1, where a system of

slits is applied to collimate the beam and mirrors used to restrict the wavelength. At

the position of M0 a neutron m = 2 super-mirror deflects the very-cold neutron beam

in the direction of the experimental chamber. The slits S4 and S3 are used to collimate

the beam to achieve a narrow wavelength distribution at the monochromatization stage.

The wavelength selection itself is realized using the Ni-Ti-super mirrors M1 & M2. Beam

downwards, slit S2 prepares a wavefront together with S1 which marks the entrance to

the interferometer region.

Each component can be moved through an unified control system based on LabView.

Measurement scripts then allow for time intensive measurements as for example narrow

slit scans of the beam. Slits are placed on translation stages6 and mirrors are placed

5Due to an unforeseen reactor shutdown further testing and measurements were not possible. This
is particular true for the spectral selection which is here presented as constructed in beam-time
3–14–343.

6The translation stages are various stages produced by Physik Instrumente. Examples are the M-
403.1DG which offers a travel range of 25mm and a minimal step size of 0.2µm.
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on rotational stages7 as well as on translation stages. Angular alignment is guaranteed

by using the optical table as common reference and a laser alignment system which

allows for easy alignment of slits and mirrors relative to the beam axis. The subfigure

on the right in figure 7.2 shows this system consisting of three λ = 670 nm lasers that

are reflected by an in-line neutron-transmissive silicon mirror. Each laser beam crosses

at a slightly different height to cover the vertical extension of each slit. Thus, the optical

beams can closely follow the neutron beams path.

7.1.1. Very-Cold Neutron Beam at the PF2
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Figure 7.3.: Spatial distribution before M0 measured
without any additional beam shaping components. It
was measured in beam-time 3–14–343. The main part of
the beam is restricted to a square of A ≈ (4.2× 8.4) cm2

at the detector with a fraction of the beam carrying an
upward and a leftward component.

The size of the very-cold neut-

ron beam at the PF2 is half

the size of the neutron guide

leading to the turbine. Thus,

the beam cross-section has a size

of about A ≈ (70 × 34)mm

as already noted in section 3.3.

In beam-time 3–14–343 the full

beam was captured directly be-

hind the beam port without any

additional beam components us-

ing a 3He-filled wire chamber.

The measured total intensity8 is

I = (2± 0.044) · 106 #/s (7.2)

and thus gives a flux of

F = (0.84± 0.02) · 103 #/s

mm2

(7.3)

7The rotational stages are Physik Instrumente M-61.DG which can turn through 360 ◦ with a resolution
of 1.2µrad

8This value captured in measurement ID0001H using the Bidim-26 detector, is corrected for the de-
tector efficiency of εBidim26. The measurement shows non-uniform efficiency on the level of 60% in
a limited number of rows. This is probably due to the saturation of singular wires, as this effect
is not visible in measurements with lower intensity. Additionally, measurements directly after the
beam port had significant dead time because of the high neutron intensity. The distance between
detector and beam port was d = 1145mm.
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through the beam port. The spectral width of the raw beam is FWHM≈ (10.8±0.5) nm9

around the maximum at λ ≈ 4 nm and thus, the flux per wavelength at the beam port

follows as

R = (78± 4)
#/s

mm2 nm
= (0.78± 0.04) · 103 #/s

cm2 Å
. (7.4)

Comparing this value to the one given by the ILL in equation (7.1) a discrepancy of a

factor of approximately 51 becomes apparent. Note that this comparison is not valid as

both values should differ due to the following effects.

— Measurement Position:

The value given in Steyerl et al. (1986) is measured at the end of the vertical

neutron guide coming from the cold source before the ultra-cold neutron turbine.

In contrast to this beam extraction position the here presented value is taken after

the turbine at the very-cold neutron cabin entrance. Losses are expected due to

scattering at the guides and non-guiding components (shutter and joints), as well

as general absorption in the section separating foil.

— Quantity:

The presented value is the peak flux at the specified wavelength. The radiance

given in equation (7.4) is the mean over the full beam and does not respect in-

homogeneities and the anisotropy of the beam. Later measurements are performed

on small sections of the beam, thus enhancing the accuracy of the homogenous ap-

proximation.

— Detector:

The measurement is corrected for the detector efficiency, and air absorption is

negligibly small. But the detector is saturated at some parts due to the high

intensity, as can be seen in figure 7.3. For measurements beam downward this

effect is not problematic.

While a lower value for the measured radiance at the cabin entrance is expected, the mag-

nitude is still surprising and should be further investigated. This is especially important

as this experiment is heavily restricted by the intensity at hand and losses between the

turbine entrance and the very-cold neutron cabin can in principle be reduced, if present.

9This value has been graciously supplied by Geltenbort (2013, priv. comm.).

116



7. Experimental Setup and First Measurements

through the beam port. The spectral width of the raw beam is FWHM≈ (10.8±0.5) nm9

around the maximum at λ ≈ 4 nm and thus, the flux per wavelength at the beam port

follows as

R = (78± 4)
#/s

mm2 nm
= (0.78± 0.04) · 103 #/s

cm2 Å
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7.1.1.1. Time of Flight
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Figure 7.4.: Spatial distribution after M0. The plateau
on the right side after the main peak is due to the high
beam divergence.

In order to measure the spec-

tral distribution, a Time of Flight

measurement10 is implemented.

The setup consists of a neutron

super-mirror M011 to deflect the

beam, a chopper, and a synchron-

ized detector. As the beam enters

the cabin under a small angle, the

super-mirror is needed to realign

the beam. This effectively trun-

cates the beam and only selects

an area of A = (12 × 76)mm.

The logarithm of the spatial dis-

tribution of the central part of

the beam after transversing M0 is

shown in figure 7.4. The central

peak in the figure is wider as the

mirror cross-section of roughly 12mm due to the divergence of the beam. The selected

central beam is the most bright part of the beam and it is important to emphasize that no

other stronger or comparable maximum is visible in the full beam. Figure 7.5 gives the

wavelength distribution for the same beam and shows a broad peak with ∆λ/λ ∼ 70%

around λ = 6.5 nm. With mirror M0 a wavelength cutoff is introduced. For the incident

angle of 9.1◦ the cutoff is at λcutoff = 4.53 nm. The flux at the deflecting mirror can be

calculated12 to be

F = (21± 1)
#/s

mm2
(7.5)

which carries a high uncertainty as the mirror is approximated by a rectangular aperture.

10S4 has been opened for ID0043.
11M = 2, non-polarizing, Ni-Ti-super mirror, produced by Hino Masahiro, Kyoto University
12Measured is the intensity without chopper. With the chopper the beam is truncated by a two by two

centimeter aperture. Note that this value is not used further in this thesis.
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Figure 7.5.: Shown is the wavelength distribution of the center beam measured at ID0038
during beam-time 3–14–343. The offset between the physical opening and the trigger signal
has been determined to be ∆T = (10.03±0.1)ms and is corrected analogously to Bricher (2015).
The divergence of the beam is only restricted by a super-mirror (M0) which cuts out a roughly
(12 × 76)mm portion of the beam and is placed 443mm after the beam port. The chopper
opening function was not corrected as it only contributes marginally. The wavelength cutoff
due to M0 is drawn in dashed-red λcutoff = 4.53 nm. The wavelength at the maximum can be
determined to be λmax ≈ 6.5 nm with a relative width of ∆λ/λ ∼ 70%. In the upper right corner
the setup for this measurement is shown. The chopper window has a size of (20× 20)mm, and
the distance between chopper and detector is ∆Chop.,Det. = 1.161mm, between beam port and
M0 ∆Port.,M0 = 390mm, and between M0 and chopper ∆M0,Chop. = 291mm. See Bricher (2015)
for an extensive analysis of TOF-measurements at the PF2 very-cold neutron beam. Only every
fifth data point is shown. The total intensity in this measurement is I = (1267.8± 0.3)#/s.
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Figure 7.5.: Shown is the wavelength distribution of the center beam measured at ID0038
during beam-time 3–14–343. The offset between the physical opening and the trigger signal
has been determined to be ∆T = (10.03±0.1)ms and is corrected analogously to Bricher (2015).
The divergence of the beam is only restricted by a super-mirror (M0) which cuts out a roughly
(12 × 76)mm portion of the beam and is placed 443mm after the beam port. The chopper
opening function was not corrected as it only contributes marginally. The wavelength cutoff
due to M0 is drawn in dashed-red λcutoff = 4.53 nm. The wavelength at the maximum can be
determined to be λmax ≈ 6.5 nm with a relative width of ∆λ/λ ∼ 70%. In the upper right corner
the setup for this measurement is shown. The chopper window has a size of (20× 20)mm, and
the distance between chopper and detector is ∆Chop.,Det. = 1.161mm, between beam port and
M0 ∆Port.,M0 = 390mm, and between M0 and chopper ∆M0,Chop. = 291mm. See Bricher (2015)
for an extensive analysis of TOF-measurements at the PF2 very-cold neutron beam. Only every
fifth data point is shown. The total intensity in this measurement is I = (1267.8± 0.3)#/s.
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7.1.1.2. Angular Dependence

Figure 7.6.: Measurement scheme to determine the an-
gular characteristic of this section of the beam. Slit S2
is moved perpendicularly to the beam while S3 is kept
fixed.

Finally, using two aligned slits,

angular information can be ex-

tracted. Figure 7.7 shows the in-

tegrated beam intensity I after

a two-slit setup consisting of

S3 and S2. Slit S2 horizont-

ally moves over the beam profile

shaped by slit S3 as shown in fig-

ure 7.6. For a slit position of

S3pos = 43.5mm the flux through

slit S2 is F = (26.3 ± 0.3) #/s
mm2

and with the maximal divergence

angle of γhorizontal = 6.6mrad13

and γvertical = 87mrad this gives

R = (45.9± 0.4) · 103 #/s

mm2 sterad
. (7.6)

Slit S3 has been set to a horizontal width of 1.024mm and a vertical width of 100mm,

while Slit S2 has been set to a horizontal width of 0.511mm.

7.1.1.3. Summary

Combining the previous numbers and correcting for the detector efficiency of εD = 67%

the brilliance of the selected part of the beam can be approximated by

B ≈ R/∆λ = (1.6± 0.3) · 103 #/s

mm2 sterad Å
. (7.7)

This underestimates by a few percent as the mirror M0 is approximated by a rectangular

aperture, but it is useful to compare beam downwards brilliance values and check for

losses in that sections.

13As measured by Heumesser (2016).
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Figure 7.7.: Flux of the integrated beam after a two-slit setup where the second slits moves
over the beam in horizontal direction. (Grey, black) represent the two measurements (ID0059,
ID0061) that were combined for this plot and were taken during beam-time Test–2455. The
experimental setup has a horizontal angular width (grey) of γhorizontal = 6.6mrad and a max-
imal vertical divergence angle of γvertical = 87mrad. The maximum on the right side (black) is
the reflection of the beam at the inner surface of slit S3. The beam is constrained horizontally
by the second slit with S2 = 0.511mm and vertically by an aperture with S3 ≈ 20mm. The
distance between S3 and S2 is given as ∆S2,S3 ≈ 384mm. The ROI is chosen to capture the
full beam at the detector. See Heumesser (2016) for an in-depth analysis of this dataset and
in particular for the measurement of the angular width.
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Figure 7.7.: Flux of the integrated beam after a two-slit setup where the second slits moves
over the beam in horizontal direction. (Grey, black) represent the two measurements (ID0059,
ID0061) that were combined for this plot and were taken during beam-time Test–2455. The
experimental setup has a horizontal angular width (grey) of γhorizontal = 6.6mrad and a max-
imal vertical divergence angle of γvertical = 87mrad. The maximum on the right side (black) is
the reflection of the beam at the inner surface of slit S3. The beam is constrained horizontally
by the second slit with S2 = 0.511mm and vertically by an aperture with S3 ≈ 20mm. The
distance between S3 and S2 is given as ∆S2,S3 ≈ 384mm. The ROI is chosen to capture the
full beam at the detector. See Heumesser (2016) for an in-depth analysis of this dataset and
in particular for the measurement of the angular width.
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7.1.2. Angular Preparation

Figure 7.8.: Slit S1 and Slit S2 restrict maximal
angles from the beam axis. Thus, the beam di-
vergence is restricted to γD = 2α2. An addi-
tional smaller component SX defines a smaller
divergence angle γD = 2α1.

At several positions in the setup a con-

strained angular distribution is needed.

Firstly, restricting the beam in a con-

trolled manner reduces stray neutrons

at the detector plane beam downwards.

Secondly, the monochromatization stage

accepts neutrons for a given beam incid-

ent angle around the central wavelength,

if their individual incident angle slightly

deviates from the beam axis. Thirdly,

the interferometer needs a constrained dis-

tribution to fulfill the coherence require-

ment. The maximal possible angle to the

beam axis of a trajectory is given by size

and placement of two spatially constrain-

ing components (S2, S1). This maximal angle is called divergence angle of the beam

γD.

The angular dependency of the beam has been throughly investigated in Heumesser

(2016). An important result is that the measured angular width in front of the mono-

chromatizing mirrors and the angular width behind the mirrors do not differ signific-

antly. Thus, as is already stated in Heumesser (2016), the mirrors M1 and M2 do not

add significant divergence to the beam. Consequently, the angular characteristic of the

mirrors are not a significant loss contribution. In table 7.2 angular characteristics at

different positions of the setup are collected. Finally, to match the coherence restriction

Position Horizontal FWHM Slit Width Distance from Port

Behind S3 (6.51± 0.01)mrad∗ (1± 0.005)mm (653± 0.5)mm
Before S2 (6.6± 0.2)mrad (0.511± 0.001)mm (1183± 0.5)mm

Expected at S1 ∼ 0.74mrad 8.5 µm 1873mm

Table 7.2.: Geometrical parameters and achieved beam collimation at different beam positions
during beam-time Test–2455. The values for S2 and S3 are taken from Heumesser (2016). (∗)
The distribution after S3 shows two peaks where the main peak has the stated width and the
secondary peak was identified as a reflection on the inside of S3. The secondary peak is not
accepted by the two mirrors due to its divergence from the central beam.
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in section 6.2.1, the position of S1 for S1 = 8.5 µm has to be chosen as

L0 ≥
S1 + S2

λS1
≈ 690mm. (7.8)

beam downwards from S2.

7.1.3. Wavelength Selection

Out of the Maxwell-Boltzmann distribution that is emitted by the vertical cold source

only the front most part is cut by the guide leading to the experimental area as discussed

in section 3.3. The center wavelength that will reach the guide port is selected around

λV CN = 6.5 nm, as defined by the guides length and curvature which is discussed in

section 3.3.

The wide wavelength spectrum shown in figure 7.5 does indeed feature prominently

neutrons with λV CN . Important to note is that smaller wavelengths (below the cutoff)

are only present before M0. In fact, it exists a rather broad peak around λ ≈ 4 nm in the

beam which is regarded as unwanted background. The composition of the distribution

varies strongly on the extraction position. This is partly due to gravity and reflections

on the inner guide wall. In particular a small cut-out of the beam can have a thinner

distribution with a width of ∆λ/λ ∼ 15%. In general it will be still too wide to not

reduce the visibility of Lloyd’s mirror substantially as discussed in section 6.2.3.

To achieve the necessary spectral width two monochromatic neutron Ni-Ti multilayer

mirrors are used. The mirrors M1 and M214 have a d = 4.8 nm and a ∆d/d ≈ 5%. Thus,

with a collimated beam the selected wavelength for θ = (41.4± 0.01)◦ is given by

nλ = 2d sin(θ) ≈ 6.3 nm. (7.9)

Further, the width of the selected distribution is given in Majkrzak (1984) by

∆λ

λ
= cot (θ)∆θ +

∆d

d
(7.10)

Slit S4 and S3 collimate the beam to have a divergence of ∆θ = (6.51± 0.01)mrad as is

given in table 7.2. The expected spectral width is thus

∆λ

λ
= (5.75± 0.01)%. (7.11)

14The used Ni-Ti mirrors as well as the initial super mirror are manufactured in Kyoto, Japan by
Masahiro Hino and were graciously lend to us for the duration of the project.
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The selected distribution for this configuration is shown in figure 7.9. Selected wavelength

distributions of beam-time 3–14–343 and specifically their width are discussed in more

detail in the thesis Bricher (2015).
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Figure 7.9.: Time of Flight setup that was used to measure the wavelength distribution of the
center beam. The distance between chopper and detector is 1.303mm. The center wavelength
has two uncertainties, first, the statistical uncertainty originating from counting statistics, and
second, a systematic uncertainty originating from uncertainties of the conversion parameters
(distance, time offset). Two values for ∆λ/λ are given. The first is calculated from the FWHM
of the shown distribution and the second (starred) corresponds to the width if the chopper
opening-function is corrected.

The resulting spectral characteristics of the beam are summarized and compared to

other experiments in table 7.3. With a measured spectral width of

Beam Wavelength [nm] Bandwidth [%]

PF2/VCN∗ 6.3± 0.001 5.3± 0.001
PF2/VCN 6.73± 0.01stat ± 0.15sys 5.55± 0.48sys

H18 1.929± 2 · 10−3 3.6

Table 7.3.: Comparison of very-cold neutron wavelength and frequently used bandwidths ∆λ/λ
at selected beams at the ILL. The value for PF2/VCN∗ is calculated for an incident angle of
θ = (41.4± 0.01)◦ and according to Bragg’s law. The values for the PF2 very-cold neutron
beam are taken from measurements in beam-time 3–14–343 and Test–2455. The values for
the H18 beam are extracted in appendix A.3 from Anton Zeilinger et al. (1988).
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∆λ

λ
= (5.6± 0.5)% (7.12)

the spectral constraint is indeed fulfilled sufficiently. Note that both the uncertainty

of the width and also for the center wavelength is rather large and both values differ

from Bricher (2015). The first is due to a rough estimation of the chopper opening

function which is approximated by a simple unit hat function. The second is due to

a correction on the chopper time offset due to a modification on the original chopper

setup.

7.1.4. Expected Intensity in Front of S1

Figure 7.10.: Setup that is used to calculated the expec-
ted intensity at slit S1. Slit S1 is not present in this setup
as indicated by the dashing of the component.

The expected intensity after the

beam preparation which is trans-

mitted through S1 is the most

important quantity to estimate

the practicability of Lloyd’s mir-

ror and is estimated in this sub-

section. The corresponding setup

is shown in figure 7.10.

In measurement ID0091.008 in

beam-time Test–2455 collima-

tion, monochromatization, and

Lloyd’s mirror are present and

the measured and background corrected intensity at detector position I is I = (0.33 ±
0.01)#/s. Table 7.4 summarizes experimental parameters that are used to calculate the

brilliance of the very-cold neutron beam. Correcting for air absorption15 and detector

efficiency gives the neutron intensity at the detector plane as

I = (0.93± 0.04)#/s. (7.13)

15This implies a compensation of air absorption in the final setup. For this, helium-filled tubes at
atmospheric pressure with thin AlMg3 foils are prepared. This is studied in Scheicher (2015), where
the foils with a thickness of d = 15µm are prepared. The minimal beam path of L > 2.7mm is
required for an absorption compensating effect and for reducing the absorption below 1%.
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Quantity Value Uncertainty Info

εD 67% 1% The efficiency is extrapolated
from Manzin (2011).

Tair 53.8% 1% The transmission is calculated for
standard conditions. T = 298.15K and
p = 1013.25mbar.

S2bh 0.3mm 0.01mm Horizontal beam constraint at S2b.
The slit consists of two boron-steel
sheets with a natural boron content of
roughly 1.74%. The inner surface of the
slits are polished with a roughness of
below ra = (0.06± 0.02) µm.

S2h 511 µm 1 µm The slit is build up analog to S2b.
S2bv 76mm 0.1mm Vertical beam constraint at S2b. The

slit is constrained by mirror M1 directly
in front of S2.

∆S2,S2b 300mm 0.5mm Given is the direct optical path as
measured using a laser distance meter
with an accuracy of δd = ±0.5mm.
The angle then is given as
γ = (SA+ SB)/R. SA and SB are
the constraining slit widths and R is
the distance between them.

∆Port,S2b 1487mm 0.5mm
γh 2.7mrad 0.1mrad
γv 107mrad 1mrad

∆λFWHM 0.37 nm 0.03 nm See section 7.1.3 for more details.

Table 7.4.: Parameters that are needed for the estimation of the brilliance of the very-cold
neutron beam at the PF2 and for the estimation of the intensity in Lloyd’s mirror.

The last slit present in the system is S2b, an intermediate slit between S1 and S2. All

relevant beam parameters are provided in table 7.4. The flux at S2b is given as

F =
I

S2bhS2bv

= (40.7± 1.8) · 10−3 #/s

mm2
. (7.14)

Considering maximal angular restrictions between S2 and S2b as also wavelength re-

strictions as given in section 7.1.3 the brilliance can be calculated as

B =
F

γhγv ·∆λFWHM

= (4.14± 0.18) · 103 #/s

cm2 sterad Å
. (7.15)

Note that the brilliance is only valid for areas and a solid angle comparable to the

prepared system in measurement ID0091.008.
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Continuing from the brilliance, the intensity which would be transmitted through S1

can be extrapolated by using the values given in table 7.5.

Quantity Value

S1h 8.5 µm
S1v 100mm

∆S2,S1 690mm
γh 0.75mrad
γv 90mrad

Table 7.5.: Parameter that are used to estimate the intensity that is transmitted through the
slit S1 in the interferomter region section I.

The extrapolated intensity at slit S1 is thus given by

IS1 = (8.9± 0.4) · 10−3 #/s. (7.16)

Additionally, the partial radiance R∗ at the slit S1 is given as

R∗
S1 = (1.4± 0.06) · 103 #/s

radmm
(7.17)

which is useful to calculate the intensity for different slit sizes. Table 7.6 shows a

comparison of the estimated brilliance for section II, to the brilliance without mono-

chromatization stage, the brilliance given for the H18 beam, and the brilliance at the

D11 instrument.

Beam Brilliance [ #/s

cm2 strad Å
] Source

PF2/VCN (1.6± 0.3) · 105 Equation (7.7)
PF2/VCNmono (4.14± 0.18) · 103 Equation (7.15)

H18mono (1.33± 0.01) · 109 Anton Zeilinger et al. (1988) & appendix A.3
H18Exp 1.3 · 109 Laue-Langevin (2008)

Table 7.6.: Comparison of the PF2 very-cold neutron beam’s brilliance measured before and
after monochromatization and the brilliance of the H18 beam. The value for the brilliance of
the H18 beam is calculated from Anton Zeilinger et al. (1988) and is shown in appendix A.3.
Additionally, the value for H18Exp is the expected value taken from Laue-Langevin (2008).
The brilliance that is given for PF2/VCN is taken from measurement ID0059 and ID0061 in
beam-time Test–2455 and is discussed in more detail in Heumesser (2016). The value for
PF2/VCNmono is taken from measurement ID0094.008 in beam-time Test–2455 with an added
monochromatization stage as discussed in section 7.1.3.
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It is apparent that the brilliance at the raw beam at the PF2 is rather low but it is in

agreement with a rough extrapolation from the overall flux distribution in figure A.4.

In contrast, the brilliance after monochromatization does drop by a factor of ∼ 40.

This could indicate that only 15% of the beam is reflected on each mirror, which is in

disagreement with the reflectivity of 80− 90% per mirror as specified in Masahiro Hino

(2015). More realistic is that both values are not very well comparable for two reasons.

Firstly, the value before monochromatization is a mean over a bigger solid angle and it

cannot be expected, that a small cut from this solid angle is similar to the overall mean.

Secondly, the selected region of the beam with a high probability is not identical in the

two measurements, as they are taken during two different beam-times. Nevertheless,

this mismatch indicates that by readjusting the setup an increase of the local intensity

is possible.
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7.2. Lloyd’s Interferometer

Section I as shown in figure 7.1 houses the interferometer, detectors, and monitoring

probes and begins at the entrance slit S1. A possible implementation for this section is

shown in figure 7.11. The prepared neutron beam enters the interferometer region from

the left through the entrance slit S1. Interference is accomplished by a superposition

of a path where the neutron is reflected at a vertically aligned glass mirror and a path

where the neutron directly travels to the viewing screen. The capture of the interference

pattern can be realized by adding a CR39 detector either directly behind the mirror or

further away.

Figure 7.11.: Proposed scheme of the interferometer region. The entrance slit is composed of
a small mirror S1c that is pressed on two metallic spacers on the main mirror. Thus, the layer
S1b is transmissive and the layers S1c and S1a are absorptive. The rectangle on the bottom
labeled vib. is a vibration sensor on the mirror and the disk labeled with �B which is a precision
magnetic field sensor.

This section presents the proposed setup, the intended characteristics, and individual

setup components.
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7.2. Lloyd’s Interferometer

7.2.1. Entrance Slit

The entrance slit and its alignment to the main mirror is a rather complicated issue.

The vertical extension of the slit is of the order of the beam diameter to not discard

usable flux. Thus, at the very-cold neutron beam at the PF2 the vertical opening is

chosen to be S1ver ∼ 100mm. As the pattern is integrated over the vertical extension

of the slit, non-parallelity α between the S1 and the mirror will reduce the contrast of

the integrated pattern as shown in section 6.3.2.1. The alignment of a free standing

slit would be particularly difficult. Thus, here a stack of a small mirror, a transmissive

(aluminum) and an absorptive (high-brass) layer on top of the main mirror is used. The

thickness of each layer determines the interferometer geometry, while the width specifies

the transmission of the neutron beam through each layer. As is shown in table 7.7, the

Component Material Thickness Width Transmission

S1a High-brass∗ 53 µm 10mm < 0.14%
S1b Aluminum 8.5 µm 10mm 57.9%
S1b Carbon 8.5 µm 12 µm 99.92%
S1c BK7 20mm 20mm � 10−10%

Table 7.7.: Entrance slit neutron transmission characteristics. The transmission given is de-
termined by the width of the specific layer into section I and denotes the fraction of not absorbed
and not scattered neutrons. The edge of the high-brass∗ spacer is coated with a d > 200 nm
thick boron-10 layer to further reduce transmission. For the layer S1b two possibilities exist
where the carbon layer consists of two thin threads or neutron transmissive aluminum. The
uncertainty of the aluminum, high-brass, and carbon thread thickness was measured to be
below δd < 1%.

fraction of undisturbed neutrons passing through the transmissive layer is higher than

T > 57% in the case of an aluminum stripe and higher than T > 99.9% in the case of

two carbon threads. The aluminum case is easily adjustable but produces a incoherent

background signal of scattered neutrons of around 5%. In the carbon thread case two

threads are used as spacers between mirror and brass spacers, which is hard to adjust

correctly but is superior in terms of signal influences. Finally, the maximal misalignment

of the slit S1 to the mirror’s surface is determined by the variation in thickness of each

layer foil. Each foil is checked using a high accuracy thickness gauge and only foils with

a variation below ∆d < 0.1 µm. Thus, the maximal misalignment angle under optimal
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conditions16 is β ≈ 1 µrad and therefore is compatible with the constraint of β < 2 µrad
stated in section 6.3.2.1.

7.2.2. Main Mirror

Figure 7.12.: Shown is the main mirror en-
trance slit setup viewed from the perspective
of the detector. The main mirror is enclosed
in an aluminum holder on the right side. The
small mirror S1c is uniformly pressed on the
main mirror using µm-screws.

The main mirror is a boron silicon glass

block with a thickness of 30mm, a ver-

tical extension of 100mm, and an available

length of L = 315mm due to the entrance

slit assembly. Both sides of the mirror are

polished to have a roughness of less than

ra ≈ (0.007 ± 0.001) µm, which satisfies

the constraint derived in section 6.3.2.2.

The surface profile of the mirror17 in the

direction of the neutron flight path can be

roughly approximated by a paraboloid

f(x) = a(x− c)2 + b (7.18)

with

a = (−11.1± 0.5) · 10−6 µm
mm2

b = (0.372± 0.006) µm

c = (179.6± 2)mm.

Thus, the maximal deviation relative to

the mirror’s edge of about ∆f ≈ 0.37 µm
is found in the middle of the mirror.

Both surfaces are coated with an optical

layer ∼ 102 nm of aluminum and a thin

protective layer of silicon oxide. The glass block is held in place by an aluminum holder

shown in figure 7.12. It offers two rotational degrees of freedom with which the mirror

16A clean working environment is a crucial necessary condition, as a single dust particle has the potential
to seriously inhibit the formation of a high contrast interferogram.

17The profile has been measured by S-DH Sputter-Duennschichttechnik GmbH by laser optical means.
The profile is measured along the middle axis of the mirror. The perpendicular axis shows a similar
behavior with a deviation of ∆f ≈ 0.25µm between the middle and the mirror’s edge.
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can be aligned relative to the incoming beam. They are controlled using two piezo

actuators18 (I/II) with micrometer screws which are monitored using strain gauges. At

the end of the mirror holder a fitting for a CR39 detector is designated which presses

the detector close to the mirror to avoid bending effects during exposure. If no CR39

detector is used the beam propagates further and can be captured in a beam downwards

placed detector.

7.2.3. Monitoring Scheme

Figure 7.13.: Visible is the holder of the main mirror from the back showing several monitoring
systems supporting the measurement. I is the temperature sensor attached to the mirror holder,
II are the positions of the piezo controlling roll and yaw angle of the mirror, III is a three-beam
laser interferometer which hits the mirror at position IV.

18The piezo actuators are Thorlabs DRV517 with a travel range of 30µm for the actuator and 12.7mm
for the micrometer screw. The accuracy of the mirror system in respect to the piezo actuators is
studied in Kappl (2016). There the yaw angle that is controlled by the lever, composed by the piezo

and the mirror holder mechanics, can be calculated by using kβ = (8.75 ± 0.06) µrad
µm . For the roll

angle lever this is determined to be kβ = (7.89± 0.06) µrad
µm .
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The setup is monitored in several aspects as shown in figure 7.13. The temperature is

monitored using ntc-resistors19 placed at various components. For example, at position

I in figure 7.13 the temperature stability of the mirror holder is monitored as well as

each moving stage in section II is equipped with a temperature sensor to detect stage

malfunctions early. At position I/II the movement of the mirror is monitored by strain

gauges which are incorporated in the piezo actuators.

Quantity Variability Time Scale and Information

Magnetic field
variation

±0.5 µT Between min and hourly variations. Mostly
stray fields by neighboring experiments. The
phase shift due to magnetic field fluctuations
is discussed in section 5.6.3.4.

Table tilt ∼ 10 µrad Unidirectional tilt drift in both directions
over a period of five days. The tilt of the
table affects foremost the orientation relat-
ive to gravity and thus induces a phase shift
as discussed in section 5.6.3.2. Note that due
to the small magnitude this effect can be neg-
lected.

Table tilt meas-
urement system-
atic

±5 µrad The used electrolytic tilt sensor is suscept-
ible to temperature variations, thus a false
tilt variation following the day-night cycle is
introduced.

Ambient/table
temperature

±0.125K Main contributions are sinusoidal variations
with low amplitude and a period 12 h. This
is expected for the day-night cycle in a sta-
bilized environment.

Mirror holder
temperature
variation

±0.1K The temperature of the holder is strongly
dominated by the day-night cycle. In the
present measurement the temperature varied
around T = (25.09 ± 0.06)K without signi-
ficant drift.

Table 7.8.: During beam-time Test–2455 environmental quantities were monitored. Exemplary
a long measurement (ID96 & ID97) spanning five days is used. During that time the neutron
beam ran almost continuously and the setup has been checked only once a day. The very-
cold neutron cabin is insulated against thermal and vibrational disturbance but has no active
stabilization.

19The electronic back-end has been implemented and tested in Bloch (2016) during beam-time Test–
2455.
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Additionally, as a reference, a three-beam laser interferometer20 at position III, monitors

the relative movement of the mirror’s rear side at position IV. Not visible in the picture is

a magnetic field probe21 that is drawn in figure 7.1 as a circle labeled with �B. Vibrations

of the setup are monitored using an electrolytic tilt sensor22 attached to the surface of

the optical table. The summary of the measured variations during a longer measurement

period are collected in table 7.8. The effects of a residual magnetic field or time variations

of the field are discussed in section 5.6.3.4. There it is argued that shielding of the

interferometer region is needed and can be implemented with the same Mu-metal sheets

that are used for the qBounce experiment.

7.2.4. Background Intensity

Name Value Unit

Threshold 0.173 a.u.
Training Set ID2017.02 —
Training # 3021 Tracks
Track Area 30 pixel

Class N. Prior Probability

Neutron Point 0.22
Neutron Inclined 0.09
Neutron Faint 0.09

Neutron Extreme 0.01
Candidate Faint 0.09

Candidate Extreme 0.01
Systematic Noise 0.13
Systematic Crack 0.22
Systematic Dust 0.13

Table 7.9.: Table of the relevant parameters that are used for the classification of tracks for
the detector IDL001 and measurement ID0098 in beam-time Test–2455. The used classifier is
an earlier version which can handle low neutron density but features no cluster examples.

During beam-time Test–2455 a CR39-based spatial resolving detector is placed at de-

tector position II as seen in figure 7.1. This position is just outside of the main beam

20The used device is a SIOS™ SR 2000 which operates on a HeNe-laser at λ = 633 nm.
21The magnetic field has been measured using a FLC3–70 magnetic field sensor from Stefan Mayer

Instruments. It offers a measurement range of ±90µT.
22The used sensor is the IRIS™ model of “Applied Geomechanics”. It can measure tilts on two axes in

a range of ±25◦ with a resolution of 0.012◦.
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and is as heavily shielded as the position of the main interferogram measurement. The

detector has been exposed for T = 539882 s ≈ 6 days at this position and then optically

scanned at nine different positions over an area of A = 1.56mm2 each. In total 4219

tracks were found on this detector of which (629± 25) were identified as neutron tracks.

The neutron irradiance is thus given as

FBackground = (83± 8) · 10−6 #/s

mm2
. (7.19)

The procedure for the classification of the tracks is presented in section 8.3.3 and the

relevant parameters are given in table 7.9.

7.3. Summary

This chapter summarizes the results of the two beam-times 3–14–343 and Test–2455. An

additional beam-time 3–14–320 in 2013 was mainly used to gather information on the

beam-port, rough characteristics, present equipment, and the dimensioning of the future

setup. First section II which shapes the beam is discussed in section 7.1. The beam is

roughly characterized in section 7.1.1 and the characterization of the implementation of

section II is presented in the subsequent Subsection:

Section 7.1 for the angular preparation, section 7.1.3 for the wavelength preparation,

and section 7.1.4 for the estimation of the transmitted intensity. Second section I, which

encompasses the planned interferometer setup, the monitoring scheme, and example

environmental measurements are presented in section 7.2.

The built up time of section II is optimized to be as short as T ≈ 10 days to make efficient

use of a full reactor cycle at the ILL of about 50 days. This is especially important as

individual measurements periods are estimated in chapter 6 to be of the order of several

days. The spectral characteristics of the very-cold neutron beam are determined to be

∆λ

λ
= (5.6± 0.5)% (7.20)

at a wavelength of

λ = 6.73 nm. (7.21)

The brilliance B after section II has been determined to be

B = (3.7± 0.4)
#/s

cm2 sterad Å
(7.22)
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and thus the expected radiance over the horizontal dimension is R∗ at S1 followed as

R∗
S1 = (941± 44)

#/s

rad nm
. (7.23)

In this way, the radiance is extrapolated by only assuming the extension of the proposed

entrance slit S1 and is thus no major inaccuracies are to be expected.

The geometrical constraints which are given by the proposed setup in section 7.2 are

already used for the predefinition of the standard parameter as given in appendix A.4

and thus the presented intensity is acceptable as a bases for the calculations in the

previous chapters.

A first attempt on the full interferometer setup is made in beam-time Test–2455. In sec-

tion 7.2.1 an implementation of the entrance slit is proposed, that fulfills the constraints

calculated in section 6.3 and subsequently the main mirror is presented. Important en-

vironmental parameters which were measured during this beam-time are presented in

section 7.2.3. Temperature variations and vibrations are already on a low level dur-

ing these measurements. Additional magnetic shielding should not be necessary but

magnetic components in the interferometer region were avoided. Prominently, the back-

ground neutron intensity at detector position II is determined in section 7.2.4 to be

FBackground = (83± 8) · 10−6 #/s

mm2
. (7.24)

during active beam and full shielding of section I.
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8.1. Spatial Resolving Neutron Detection

Figure 8.1.: On the left: CR39, 10B de-
tector dimensions. On the right: Photo of
a CR39 plate detector with 10B coating.

To capture the interference pattern as dis-

cussed in section 6.1.1 CR39 plate detectors

are a convenient candidate. They offer a spa-

tial resolution of ζ ∼ 2 µm and are discussed

in detail in Rueß (2002) and in Nesvizhevsky,

Börner and Gagarski (2000) for the measure-

ment of quantum neutron states over a hori-

zontal mirror. In the scope of the qBounce ex-

periment a simplified version of these detectors

on CR39 basis with a boron coating1 is presen-

ted in Nahrwold (2005) and refined in Jenke et

al. (2013). The production at the Atominsti-

tut has been realized in the scope of this thesis.

Together with a machine learning supported

analysis this detector concept is applicable for

Lloyd’s mirror. In this section basic concepts

are introduced as for example a short overview

of the developed production procedure in sec-

tion 8.1.2. This is followed up by some con-

siderations on the exposure of CR39 detectors

in section 8.2. Finally, in section 8.3 the ma-

chine vision aided neutron track detection is

presented.

1An alternative design of the CR39-based detector is presented in Krantz (2006). Instead of an boron
coating an uranium 235 is used in this implementation.
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8.1.1. CR39-based Detector Design

The overall design of CR392 plate detectors that were used in this experiment has a three

layer structure, as presented in Jenke et al. (2013) which is a refined design from Nahr-

wold (2005). CR39 serves as substrate and as imaging layer which stores the spatial

information, copper as post-processing layer, and boron-10 as neutron converting layer.

Figure 8.2 provides a schematic overview and table 8.1 gives relevant information for

each layer.

Neutron

CR39

10Boron

Copper

Figure 8.2.: Three layer structure of CR39-based detectors used in this project. This detector
design is presented in Jenke et al. (2013) which is refined design from Nahrwold (2005).

Layer function Compound Thickness Density

Neutron converter 10Boron 220 nm 2.46 g/cm3

Post-processing Copper < 50 nm 8.92 g/cm3

Substrate & imaging layer CR39 1.5mm 1.32 g/cm3

Table 8.1.: Information for each layer that together built up a spatial-resolving CR39-based
plate detector. This detector design is presented in Jenke et al. (2013). It is a refined design
from an earlier version presented in Nahrwold (2005).

Neutron converting Layer Neutrons that impinge on the 10B layer trigger a nuclear

reaction as described in Knoll (2010) and studied in M. O. Klein (2000). This reaction

leaves a Li-ion and an α-particle in 6% of the cases in the ground state (case I) and

otherwise in an excited state (case II) as shown in equation (8.1).

(I) 10B + n → 7Li∗ + α + 2.31MeV → 7Li + α + γ 94%

(II) 10B + n → 7Li + α + 2.79MeV 6%
(8.1)

2Using the CR39 holopolymer as a nuclear track detector for heavy ions is first proposed in Cassou
and Benton (1978).
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The reaction products leave the place of the reaction back to back and one strikes the

CR39 layer as shown in figure 8.3. There Li or α-particle disconnect chemical bounds

Branch Occurrence Ekin(
7Li) Ekin(α) Material Rmax [µm] Rmax [µm]

7Li α 7Li α

I 94% 0.84MeV 1.47MeV CR39 3.2± 0.2 6.1± 0.2
II 6% 1.02MeV 1.77MeV CR39 3.6± 0.2 7.4± 0.1
I Boron 1.8± 0.1 3.5± 0.1
II Boron 2.± 0.1 4.4± 0.1

Table 8.2.: Given are theoretical kinetic energy of daughter particles in the two possible
branches (I,II) for a 10B+ n nuclear reaction. Additionally, the maximal range Rmax of these
ions in CR39 and boron is given. Due to the thinness of the boron and copper layer, these do
not significantly contribute to the range in CR39 and are neglected in the calculation of the
stopping range in CR39. The shown range values were extracted from a simulation using the
srim by Ziegler (2013).

on its way through the holopolymer3, until its energy is dispensed in the material. The

ions stop at a range between 5 µm and 10 µm in the CR39 layer, which is simulated

using Ziegler (2013). The specific energy per branch and particle and the stopping

range is shown in table 8.2.

Neutron

CR39

10Boron

Structural defects

(Li,α)

Figure 8.3.: CR39-based detector is hit by a nuclear fragment (lithium-ion or α-particle) and
enters the CR39 layer where it loses its energy through the production of structural defects.

If the boron and the copper layers are removed and the CR39 is etched with a sodium

hydroxide solution, the upper most layer of the CR39 is removed. Because the etching

velocity is enhanced in the areas where reaction products penetrated the CR39 and

3An holopolymer is produced by polymerization of the CR39 monomere. This process makes CR39
highly resistant to most chemicals and environmental effects as presented in PPG-Industries (2006).
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destroyed internal bounds, the nuclear tracks are enlarged over time. For a 25% sodium

hydroxide solution at 42 ◦ and an etching time of τ = 5h the average track diameter

reaches dtrack ∼ 1 µm. Figure 8.4 shows a post processed CR39 with a high neutron

count.

Figure 8.4.: On the left: Example image of an exposed and chemically treated CR39 as seen
after 50× magnification with an optical microscope. Candidates for nuclear tracks that got
enlarged by chemical etching are selected with a grey scale threshold and are marked with a
red circle. n the right: Map of a scan of a detector. Each dot is a nuclear track candidate.
Depending on the chosen threshold the map can be dominated by several effects. The scan
used is #057 Mittig 1 225x1 of CR39 IDL003.

The chemically etched CR39 with enlarged nuclear tracks is scanned with an optical

microscope. By means of manual or automatic feature detection, a map of these tracks

is produced and an example map is shown on the right side of figure 8.4.

Detector Resolution and Efficiency Resolution and efficiency are directly related to

the thickness of the neutron converting layer. The attenuation of an homogeneous neut-

ron beam transversing matter is given by the Beer-Lambert equation (5.3) in section 5.1.

For a d = 220 nm thick4 absorptive boron layer5 εIdeal = 35% of the neutrons with a

wavelength of λ = 6.3 nm will trigger a nuclear reaction. Not all ionizing fragments will

reach the CR39 layer. A few will be absorbed due to the finite range in the boron layer.

4For Lloyd’s Mirror a thicker layer is advisable but a technical challenge. This has to be addressed in
the future.

5See table A.5 in appendix A for the macroscopic absorption cross-section of the boron coating of the
used detector. The coating is not pure 10B but a compound of approximately 95% 10B and 5% 11B.
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This can be accounted for as shown in Stadler (2009) which is based on M. O. Klein

(2000). There the efficiency for an ionizing fragment originating from the boron layer

and reaching the CR39 layer is given by

εCR39 = 0.94(ε[α, I] + ε[α, II]) + 0.06(ε[Li, I] + ε[Li, II]). (8.2)

If z ≤ Rmax and by using the calculated ranges of the ions in matter in table 8.2, the

efficiency for each reaction branch can be calculated with

ε[Particle, Branch] =
1

2κB
v0
v
Rmax

(
1 + κB

v0
v
(Rmax − z)− (1 + κB

v0
v
Rmax)e

−κB
v0
v
z
)
.

(8.3)

Rmax is the range in boron, v is the velocity of the neutron, v0 = 2200m/s, κB = σN , σ

is the absorption cross-section at v0, and N is the number density. The resulting reduced

efficiency is only slightly smaller with a value of

εCR39 = 32.4%. (8.4)

The point of the nuclear reaction in the boron layer is on the order of 100 nm away

from the entrance point of the reaction product in the CR39 layer. Additionally, the

etching process removes the surface of the CR39. Thus, the projected position (x, y) of

the track in the CR39 layer does not exactly coincide with the reaction position (xr, yr).

The equation for the reduced resolution is given in Stadler (2009) by

ζCR39 =

√
ζGeo

2 + ζTrace
2 = 1.77 µm. (8.5)

While ζTrace ≈ 0.77 µm considers the uncertainty due to the finite track diameter,

ζGeo =

(
d−

∫ d

0
dz ε[p, b](z) · z∫ d

0
dz ε[p, b](z)

+ detched

)
tan [θC] (8.6)

considers the uncertainty of the track mapping between CR39 layer and reaction position.

detched ≈ 0.6 µm is the thickness of the CR39 layer that is removed in the chemical post

processing and θC ≈ 67◦ is the critical angle for the angle between surface normal and

track direction. Tracks with θ > θC will be very faint after etching and will be at best

tracks with enlarged size but shallow depth. Finally, systematic effects of the detector

reduce the achievable resolution further. For discussions of the efficiency and resolution

see Nahrwold (2005), Filter (2009), Stadler (2009) and Jenke et al. (2013). Especially
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in Jenke (2011) the experimental resolution is measured to be ζCR39 < 2.1 µm for ∼ 8m/s

neutrons compared to a theoretical resolution of ζCR39 = 1.8 µm. The resolution ζCR39

and detector efficiency εCR39 for a wavelength of λ = 6.3 nm is plotted against the

thickness of the converting layer in figure 8.5.

Figure 8.5.: The upper plot shows the resolution ζCR39 of boron-coated CR39-based neutron
detectors over the thickness of a boron coating. The second plot shows the efficiency εCR39

of the same detectors over the same thickness range. The neutron wavelength is set to be
λ = 6.3 nm. The top plot is calculated using equation (8.5) and the bottom plot is calculated
using equation (8.3).

8.1.2. Detector Production and New Developments

Continuing the work in Rueß (2002), Nesvizhevsky, Börner and Gagarski (2000), West-

phal (2001), Nahrwold (2005), Krantz (2006), Filter (2009), Stadler (2009), Jenke (2011)

and most recently Jenke et al. (2013), several aspects of the detection using CR39 were

reviewed in the scope of this thesis. As part of this thesis a thin film coating facility

at the Atominstitut was put in operation and the thin film coating procedures were

developed. The cleaning procedure was refined and track detection was enhanced to

make use of current machine learning methods. The latter is discussed extensively in

section 8.3. Here the production procedure will only be sketched in order to provide a

context. It centers around a vacuum electron beam coating facility at the Atominstitut

which is sketched in figure 8.6.

The basic concept is based on heating the material to be evaporated with an electron

beam which is guided by magnetic fields from a filament onto the material. The heated

142



8. Spatial Neutron Detection

in Jenke (2011) the experimental resolution is measured to be ζCR39 < 2.1 µm for ∼ 8m/s

neutrons compared to a theoretical resolution of ζCR39 = 1.8 µm. The resolution ζCR39

and detector efficiency εCR39 for a wavelength of λ = 6.3 nm is plotted against the

thickness of the converting layer in figure 8.5.

Figure 8.5.: The upper plot shows the resolution ζCR39 of boron-coated CR39-based neutron
detectors over the thickness of a boron coating. The second plot shows the efficiency εCR39

of the same detectors over the same thickness range. The neutron wavelength is set to be
λ = 6.3 nm. The top plot is calculated using equation (8.5) and the bottom plot is calculated
using equation (8.3).

8.1.2. Detector Production and New Developments

Continuing the work in Rueß (2002), Nesvizhevsky, Börner and Gagarski (2000), West-

phal (2001), Nahrwold (2005), Krantz (2006), Filter (2009), Stadler (2009), Jenke (2011)

and most recently Jenke et al. (2013), several aspects of the detection using CR39 were

reviewed in the scope of this thesis. As part of this thesis a thin film coating facility

at the Atominstitut was put in operation and the thin film coating procedures were

developed. The cleaning procedure was refined and track detection was enhanced to

make use of current machine learning methods. The latter is discussed extensively in

section 8.3. Here the production procedure will only be sketched in order to provide a

context. It centers around a vacuum electron beam coating facility at the Atominstitut

which is sketched in figure 8.6.

The basic concept is based on heating the material to be evaporated with an electron

beam which is guided by magnetic fields from a filament onto the material. The heated

142

8.1. Spatial Resolving Neutron Detection

material emits atoms of which some are able to reach the substrate that is to be coated

on ballistic trajectories.

_
+

①

②

③
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⑧
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Figure 8.6.: Basic principle of the thin film coating setup at the Atominstitut. (1) is the
crucible containing the material to be evaporated. (2) is a 10 kV High-voltage supply (3) is
the filament which produces the electron beam. (4) is the substrate holder which carries the
substrate face downwards. (5) the setup is arranged in a vacuum chamber. The electron
beam (9) is guided by a static magnetic field (6). The heated material emits atoms (8) and
a fraction of these have trajectories (7) that are able to reach the substrate. The graphic is
taken from Filter (2009).

To achieve a homogeneous and intact coating, the amount of heat that is deposit and

the maximal heat transfer gradient need to be tightly controlled. This was realized at

the Atominstitut to achieve a sufficiently homogeneous coating as shown in figure 8.7.

This figure shows microscope images of pre-2012 detectors as described in Jenke et al.

(2013), an early Vienna prototype with considerable inhomogeneities, and the latest

result of the coating process in Vienna. In particular, cracks of the coating layer were

reduced over the extension of the area of the detector, which eliminates local resolution

uncertainty due to partial coating detachment around the cracks.
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Figure 8.7.: Shown are three exemplary boron 10 coated CR39 detectors imaged using optical
microscope at 50× magnification. On the left, the detector IDL001 is shown that is exposed
to neutrons and etched. In the middle, the detector IDT0036 is shown that belongs to an
early test batch of the coating process in Vienna and is not etched. On the right, an example
of the coating development in Vienna namely detector ID0060 is shown. The middle image
shows early problems of the coating process in Vienna, namely deep cracks in the coating and
substrate, partial detachment of the coating from the substrate in the vicinity of cracks, and
small point-like defects from boron squirts. On the right side, the improved coating process
does not produce cracks over major parts of the detector and no further non-noise is visible.
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8.2. Radiating CR39 Detectors with Neutrons

If the neutron intensity is high enough nuclear tracks in the CR39 layer may overlap.

This can be taken as a natural upper limit for the neutron exposure of CR39 plate

detectors as the track identification is considerably more difficult for overlapping tracks.

Further, the false positive density and neutron background give a lower limit for the

exposure.

8.2.1. Lower Limit for Neutron Exposure

The lower exposure limit for CR39-based detectors is constrained by several effects:

— Very-cold neutron background:

Neutrons that do not coherently contribute to the observed signal. For example,

scattered very-cold neutrons.

— Thermal neutron background:

The beam-guide leading to the PF2 turbine is a source for scattered neutrons.

Most slow neutrons with low energy do not penetrate the very-cold neutron cabins

casing but especially thermal neutrons could reach the detector and react with a

boron-10 nucleus. Only P = 1% of the thermal neutrons which hit the detector

react with the boron layer. This contribution is neglected as no significant thermal

neutron flux at the beam position has been detected.

— Other ionizing Radiation:

γ-rays that originate from the reactor or are from secondary γ-ray producing pro-

cesses in the radiation shielding.

— Post processing:

The production of a map of neutrons on a detector is accompanied by adding

artifacts and dust which are falsely classified as neutron tacks.

Most of these contributions can be determined by placing a CR39-based detector close

to the measurement position during a measurement but outside the direct beam. Fig-

ure 7.1 shows the Lloyd’s mirror setup with CR39 positions marked as ‘Detector I’ and

‘Detector II’. Position I corresponds to the interferogram and position II to a back-

ground estimation. Such a background measurement has been done6 and resulted in

6The relevant CR39 has the IDL001 and has been exposed during beam-time Test–2455 2015. Sec-
tion 7.2.4 discusses this result in more detail.
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FBackground = (83 ± 8) · 10−6 #/s
mm2 . The estimate for the minimal exposure is then given

by the amount of neutrons that are needed to produce a signal that can be distinguished

from the overall background. The difference between FB and FS is significant with S = 3

if √
FS −FB

S
− (δFB)

2 < δFS. (8.7)

8.2.2. Upper Limit for Neutron Exposure:

The upper limit for the exposure is given through the ability to distinguish between

tracks and the accuracy of the coordinate mapping even if tracks overlap. If there

is no possibility to distinguish between single tracks and overlapping tracks, a very

conservative limit is appropriate. For example, by setting the limit to the amount of

cases for which two tracks overlap to be below 1% of the overall neutron count.

Figure 8.8.: Shown is the average number of tracks normalized to single tracks for a k−track
cluster for different k and the sum as function of the number of tracks per microscope picture.
A microscope picture covers an area of 0.06mm2. The consistency of this calculation has been
verified by checking Ntotal =

∑∞
k=1 k · 〈NCk〉.

If k tracks overlap in certain region this is called in the following a k−constituent cluster

〈NCk〉. The ratio between the average number of tracks in k−constituent cluster and

the number of tracks Ntotal should thus be

〈NCk〉
Ntotal

= nk · k ≤ 1% (8.8)
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where nk is the average relative number of k-constituent clusters. In Quintanilla and

Torquato (1996) it is shown that

nk =
p1(1− p1)

k−1

k
(8.9)

is a good approximation for nk, if the area covered by tracks is small compared to the

total area. Here p1 = e−4N̂V1 is the probability to find a single track with an area

V1 = π(dtrack/2)
2 for a number density of N̂ = Ntotal/A. Solving the right side of the

equation (8.8) for N for a specific area A gives the maximal number of tracks N limit
k for

which clustering is insignificant. In figure 8.8 the average relative number of tracks in a

specific cluster is shown.

Figure 8.9.: Average number of tracks in k−track clusters with k ≥ 1.

For a microscope image with an area of A = 0.06mm2 and an average track diameter of

dtrack = 1.2 µm an uniformly exposed picture can have an average of N limit
2 = 140 tracks

before more than 1% of the tracks form a 2−constituent cluster. If it is possible to do

cluster size N limit
k [ #]

N limit
k

A
[ #
mm2 ]

k = 2 140 2244.4
k = 3 1545 24705.9

Table 8.3.: Values for the maximal track number per microscope image N limit
k , which satisfy

equation (8.8), if the number of tracks in k−clusters is below 1%. It is assumed that the
detector is uniformly exposed to neutrons.

both, distinguish the elements of a 2−constituent and determine the position to sufficient
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precision, one can limit the amount of 3−constituent clusters. Again a threshold of 1%

allows on average for N limit
3 = 1545 tracks per picture. These values are collected in

table 8.3 together with the corresponding density limits.

In low intensity measurements the total number of tracks per picture is well below N limit
2

and thus only single tracks need to be considered. For measurements with intensities

above the given limit, clusters with k > 1 constituents need to be included in the

classification and analysis.

8.3. Post-Processing of a CR39 Detector

8.3.1. Chemical Treatment

The residual defects that are left behind by impinging ionizing particles in the poly-

matrix can be etched away with a base, for example NaOH. These residual defects

following the flight path of the impinging particle are called track in the following. The

procedure of etching can be seen as a region of interest for particle type and energy. The

phenomenology of track formation is extensively studied in Fleisher, Price and Walker

(1975) for various substrates.

After production, the detectors are exposed to several different types of radiation. This

covers electromagnetic radiation as for example γ−rays and x-rays, secondary radiation

from fast and thermal neutron radiation, and other kinds of ionizing radiation. Most of

these produce tracks but of varying size and depth. By etching a specific time and with

a specific strength, tracks produced by low energy background are etched away leaving

only the wanted neutron tracks to be enlarged in the chemical process. For the specific

energies of the produced Li and α ions the detectors are etched with 25% − NaOH

at T = 42 ◦ for τ = 5h. The basic procedure has been developed and is presented

in Nahrwold (2005).

8.3.2. Image Capture and Image Processing

The chemically treated detectors are scanned with an optical microscope and a suffi-

ciently accurate 2D-stage7. The result is a set of pictures, taken at 50×magnification. A

single picture has a size of Aimage = (288.8× 216.6) µm2. Additional parameters related

7As is shown in the dissertation of Thalhammer (2018) the camera and lens system used to capture
individual pictures does not preserve the coordinate system but introduces distortions. This can be
corrected by using a map which transforms into the not distorted frame. The resulting uncertainty
is on the order of 0.3µm and is neglected in the scope of this thesis.
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to these pictures are summarized in table 8.4. To detect neutron tracks on these pictures

Picture Parameter x-Axis y-Axis Unit

Size in µm 288.83 216.63 µm
Size in Pixel 1376 1032 pixel
Conversion 0.20991 0.20991 µm/pixel

Table 8.4.: Shown are important values for pictures produced with an optical microscope at
the Atominstitut. The values are supplied in private communication in Thalhammer (2018).

and build a track-map, one needs to perform several image processing steps before an

automated algorithm is able to yield a meaningful result. Most importantly, this is the

normalization of all pictures of one set to a joint intensity baseline. Alternatively, for

small scanned areas it is possible to detect the tracks by manual selection8, as etched

neutron tracks have a unique appearance. See figure 8.13 for a non-complete sample set

of neutron tracks.

Figure 8.10.: Image 552 taken from CR39 ID0067, Scan 2016 06 28 4x429 Normalised before
post-processing. For visual clarity the intensity scale of the image is normalized to values
between I = (0 − 1). Visible is a crack originating from the boron layer which propagated
to the CR39 surface and was subsequently etched. In the middle a big black spot is a dust
particle on the detector. The small black points are nuclear tracks that are formed by etching
up regions weakened due to the impact of ionizing radiation.

8Additionally, to a solely manual selection a combined algorithm can be employed. There the human
interaction is reduced to removing wrong tracks and adding missed tracks to the pool of neutron
tracks.
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8.3.2.1. Image Normalization

Image normalization is necessary as the image capturing process does not produce image

sets with equal intensity distributions. Additionally, the normalization allows to com-

paring tracks from different scans and detectors, which is necessary to build a classifier

which then can be used on all detectors. The distribution depends on the picture content

and on the distance of the focal plane to the detector plane.

Here each image is normalized to its background intensity. Figure 8.10 shows a rep-

resentative image of a single scan of detector IDL001. From such an image N pixel

samples with size A = (30×30) pixel2 are selected randomly and the mean as well as the

standard-deviation of their intensity distribution is calculated. This yields a distribution

B̂ as shown in figure 8.11. From this distribution only samples which are close to the

mean are selected (red dots) in order to remove samples that are sampled randomly from

non-background areas. The selected tracks build up the distribution B.

Figure 8.11.: Shown is the sample distribution B of randomly selected samples from a single
image. For each sample area the mean and the standard deviation are calculated. Each black
dot represents one sample and each red dot represents one accepted sample which is used to
calculate the mean background intensity. The image 552 is taken from CR39 ID0067, Scan
2016 06 28 4x429 Normalised.

The mean of B is taken as the approximate image background value. This is valid if the

background covers a major part of the image.

If the background is not the dominant feature, for a small subset m of images the

standard deviation of Bm is bigger compared to the set of all Bm. By defining a threshold

150



8. Spatial Neutron Detection

8.3.2.1. Image Normalization

Image normalization is necessary as the image capturing process does not produce image

sets with equal intensity distributions. Additionally, the normalization allows to com-

paring tracks from different scans and detectors, which is necessary to build a classifier

which then can be used on all detectors. The distribution depends on the picture content

and on the distance of the focal plane to the detector plane.

Here each image is normalized to its background intensity. Figure 8.10 shows a rep-

resentative image of a single scan of detector IDL001. From such an image N pixel

samples with size A = (30×30) pixel2 are selected randomly and the mean as well as the

standard-deviation of their intensity distribution is calculated. This yields a distribution

B̂ as shown in figure 8.11. From this distribution only samples which are close to the

mean are selected (red dots) in order to remove samples that are sampled randomly from

non-background areas. The selected tracks build up the distribution B.

Figure 8.11.: Shown is the sample distribution B of randomly selected samples from a single
image. For each sample area the mean and the standard deviation are calculated. Each black
dot represents one sample and each red dot represents one accepted sample which is used to
calculate the mean background intensity. The image 552 is taken from CR39 ID0067, Scan
2016 06 28 4x429 Normalised.

The mean of B is taken as the approximate image background value. This is valid if the

background covers a major part of the image.

If the background is not the dominant feature, for a small subset m of images the

standard deviation of Bm is bigger compared to the set of all Bm. By defining a threshold

150

8.3. Post-Processing of a CR39 Detector

Figure 8.12.: Mean background values which are used to normalize individual pictures. The
shown distribution is calculated for CR39 ID0067, Scan 2016 06 28 4x429 Normalised with a
total of 1716 pictures. The broad distribution is due to imperfect focusing of images.

for the standard deviation, images without accurate background estimation are identified

and an extrapolation from neighboring images is used for the background value.

Figure 8.12 shows the distribution of calculated mean background values for an example

dataset with 1716 images. The visible width is mostly due to imprecisions in the image

focusing procedure. For 40% of the images it was necessary to repeat the random

sample drawings and for 20% of the images the mean value had to be extrapolated from

a neighbor image. For the present scan this can be explained by the neutron intensity

at the peak of the neutron distribution where no background is visible anymore. A

classification of this detector is shown in figure 8.19. For regular neutron densities the

number of images where extrapolation is needed are zero or below 0.1%.

8.3.3. Track detection

After image capture and normalization the next step is the determination of the position

of nuclear tracks. Therefore, a threshold for the intensity value range is defined, which

selects all pixels over that threshold and determines the size of clusters of the selected

pixel.

With a defined region of interest for the cluster size one yields a dataset of candidates

for nuclear tracks. Figure 8.13 shows a set of candidate tracks that were selected for an

example image. The delicate problem thus is to determine which of the candidate tracks

are nuclear tracks and which are not. In past experiments in the qBounce project this

selection was done by hand9. First it is identified, which of the tracks originate from

9See appendix A.1.4 for an overview of the front-end of the software. Figures A.5 and A.6 show the
manual classification front-end as used in the early scope of this thesis.
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Figure 8.13.: Shown are example candidates which were selected by a grey-scale and size
threshold. Both thresholds were slightly relaxed to reduce a False-Negatives bias. The size
of of the track image varies if the track is located near the border of a picture. Especially
cracks are selected which is not an issue for detectors produced at the Atominstitut but earlier
versions.

neutron exposure and their possible peculiarities as for example in Nahrwold (2005) or

in Stadler (2009). Then scans of parts of a detector with highlighted candidates are

time-consumingly10 classified by hand. Due to these practical restrictions the neutron

detection is limited to small areas and low counts. In past qBounce experiments the

expected pattern did not exceed the dimension of one image slice of the detector of

ASlice = 289 µm× b · 217 µm, where b is the number of images to be stitched11. Thus, in

this case manual selection is still practicable. This is not necessary the case for Lloyd’s

mirror. Due to the expectedly low beam intensity it might be necessary to search a big

area of a detector. As this is not possible by hand, an automated method of classification

was developed.

8.3.4. Machine Vision Based Detection

Machine vision algorithms were extended and hardened extensively over the past dec-

ade and even ported to popular and accessible computer algebra systems as for ex-

10A well trained researcher only needs a few seconds per candidate track to judge and note the choice
with computer assistance. For past scans full classification would need on the order of days for one
detector slice of AFull, Slice ≈ (289µm× 80mm), if it is taken into account that one scan has to be
judged by several researchers to estimate systematic effects.

11Figure A.7 shows an example of a stitched track map.
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ample Wolfram Research. Making use of these developments the problem of classification

is significantly hardened against human bias, increases the reproducibility, and decreases

the time necessary for the analysis. In the following, an application of machine vision

techniques to the problem of track identification is presented12.

8.3.4.1. Classification

In the scope of this thesis the implementation of the Random Forest algorithm by Math-

ematica13 is used to classify found tracks in one of several classes. A feature of the ran-

dom forest is that it is efficient and especially able to identify a dominant class. As here

the goal is to discriminate tracks of secondary neutron radiation against dust, cracks,

and background, this algorithm is chosen.

Class Definition Foremost every track which can be attributed to a neutron triggering,

a nuclear reaction in the boron layer should be classified as neutron. As the lithium and

helium ions enter the CR39 layer under different angles, point-like and inclined shapes

can be expected. Also as the ions lose energy in the bulk faint tracks for ions with a

short path are expected but with a significant lower probability. Further, dependent on

the neutron density each of theses tracks can be in close proximity and form different

sized clusters, as explained in section 8.2. Thus, to capture the expected variety at least

five classes are needed.

{Neutron Point , Neutron Inc l ined , Neutron Faint ,

Neutron Double , Neutron Tr ipp let }

It is to be noted, that 2-clusters are not frequent and 3-clusters can normally be neg-

lected, as stated insection 8.2. The faint neutron category is vulnerable to other kind of

damages which are also etched away by the chemical treatment procedure. Therefore, a

buffer category Candidate is introduced to reduce the false positive rate in the neutron

category.

{Candidate Faint , Candidate Extreme}

Finally, dust, cracks in the initial coating, and other non-nuclear tracks are merged in

the Systematic category.

{ Systemat i c Arte fac t , Systematic Dust , Systemat ic Crack }

12See appendix A.1.4 for an overview of the developed front-end of the software.
13The Mathematica implementation is based on the implementation by Breiman (2001). Dependent on

the specific detector at hand the program can switch to a different algorithm for the classification.
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As some tracks will not be recognizable easily, additional sub-classes are added to catch

these during manual classification but are then dropped in the actual training set. An

example of manually classified tracks is shown in figure 8.14.

Neutron_Point

Neutron_Inclined

Neutron_Extrem

Neutron_Faint

Neutron_Double

Candidate_Extrem

Candidate_Faint

Systematic_Crack

Systematic_Dust

Systematic_Artefact

Systematic_Unclear

Figure 8.14.: Manually classified nuclear track candidates. Shown are classifications for the
classes Neutron, Candidate, and Systematic as they would be chosen in past manual track clas-
sification. The sub-classification is introduced to yield more robust classifiers. Some pictures
slightly vary in size when a track is found close to the border of the image.
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Training Tracks To train the classifier a large set of training tracks is manually clas-

sified14 using the classes and sub-classes introduced in the previous paragraph. These

training tracks should originate from a set which is distinct from the set of measurements

to be classified. For this purpose scans without relevant information are used to extract

examples15. In general, this is no problem for a Random Forest algorithm, as long as

the training set is big enough.

Table 8.5 summarizes the detectors and scans used and the total of training tracks on

each scan. A specific training set is assigned an identifier which for the present case is

ID2017.04 and has a total of N = 3983 training tracks.

Detector Scan Prominent Classes Count

ID0036 Scan 1 Normalised Neutron 339
ID0060 2016 02 16 #017 MIII Normalised Neutron & Candidate 442
ID0084 #054 ID0084 40x20 Normalised Neutron 991
IDL001 2015 07 12 Normalised Artifacts 235
IDL001 2016 02 22 #018 MII Normalised Crack & Dust 202
IDL001 2016 02 22 #018 MIII Normalised Crack & Dust 327
IDL003 #057 Mittig+1 225x1 Normalised Crack 630
IDL012 2016 09 09 7x215 #047 Normalised Crack 828

Table 8.5.: Detectors and scans which were used to extract training examples. Only scans
which are excluded from further analysis are used to avoid trivial classification.

Using the training set, the classifier is set up as depicted in figure 8.15.

Out of the training set a subset is selected randomly which is used to build up a decision

tree as is described in Wolfram Research (2017). This implementation16 selects at an

individual branch, a random feature subset out of the 900 pixel per sample region17 to

calculate a test case. The size of the subsets is optimized while building the classifiers

by internal cross-correlation. The tree is applied by testing each candidate track at each

branch and applying the label at the leave (end point). A track that is to be classified is

tested at each branch until an end point is reached and a class per tree is assigned. This

procedure is repeated to build up a forest of decision trees, each built up with a random

14See appendix A.1.4 for an overview of the front-end of the software. Especially figure A.10 which
depicts the training front-end.

15ID0084 and IDL001 are classified with an earlier version of the classifier which does not include
training tracks from the same detector. If these detectors were to be reclassified, it would be
advisable to exclude the respective examples, even if in the case of ID0084 only 3% of the neutron
tracks are used.

16The used implementation is a bootstrap aggregating algorithm by Breiman (2001).
17For each track a region of A = (30× 30) pixel2 is cut around the center of the track.
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Figure 8.15.: Random Forest algorithm illustration.

subset of the training data and as big as the maximal training time allows. Finally, the

mean over all trees is taken and the mean class is returned as the result.

To optimize the accuracy of the algorithm, the prior probability18 of each class is adjusted

instead of using equal prior probability. If the intensity at the detector is known, the

relative abundance of (Neutrons, Neutron Doublets, Neutron Tripplet) are calculated in

section 8.2. The abundance of systematic effects is dependent on several external factors

and in general not known. It thus has to be estimated for each detector. Because the

classification is repeatable, the prior probabilities can be tuned until optimal parameters

are found. In the present case the false positive rate is minimized in the neutron category

or, for datasets with several thousands tracks, the homogeneity of the background is used

as a test quantity. See table 8.6 for an example for prior probabilities and the resulting

classification.

8.3.4.2. Example Classification

To illustrate the classification process the detector IDL001 is used. During beam-time

Test–2455 it has been placed near the detector position II to capture the signal back-

ground. See figure 7.1 for a depiction of detector position I and II. The training result

of the Random Forest with ID2017.04 which is used to classify the tracks found on scan

2016−02−22−#018−UIII−Normalised produces the maps shown in figure 8.16. Sub-

figure (a) shows all tracks that are detected as described in section 8.3.3. subfigures (c)

18See appendix A.1.4 for an overview of the front-end of the software. Especially figure A.9 which
shows an example definition of the prior probabilities.
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and subfigures (d) show first tracks classified as Neutron and second tracks classified as

Not-Neutron. Where Not-Neutron joins the Candidate and the Systematic class.

The corresponding parameters and numerical results are summarized in table 8.6. As

expected, for a detector which is not directly exposed, neutrons are randomly distrib-

uted. In contrast, systematic tracks like cracks and dust are more likely to be found in

clusters19 which is in agreement with the visible distribution. Long curves correspond

to cracks and the cluster on the right side in the middle corresponds to a dust particle

which produced multiple track candidates. In appendix A figure A.4 shows the full scan

with the images stitched together. For this classification the parameters, training data,

prior probability for each class, the count of classified tracks, and the false positive count

are given in table 8.6. Only one case of false positive detection exists in the Neutron

Name Value Unit

Threshold 0.173 a.u.
Training Set ID2017.04 —
Training # 3923 Tracks
Track Area 30 pixel

Neutron Accuracy ≈ 99 %
Overall Accuracy ≈ 77 %

Class N. Examples Prior Probability Classified FP

Neutron Point 723 0.12 14

1

Neutron Inclined 499 0.15 18
Neutron Faint 383 0.12 16

Neutron Extreme 76 < 0.02 0
Neutron Doublet 101 < 0.02 0
Neutron Triplet 35 0.00 0

Candidate Faint 407 0.12 19
0Candidate Extreme 25 < 0.02 0

Systematic Noise 312 < 0.02 0

Systematic Crack 1020 0.30 370 —
Systematic Dust 314 0.15 191 —

Table 8.6.: Classification parameters and results for the detector CR39 IDL001, Scan ’2016–
02–22–#018–UIII-Normalised’. The detector was exposed during beam-time Test–2455 and
should not show neutron structure. Examples are used to train and verify the classification.
The prior probability is an estimate of the probability of a track belonging to a class. FP
are false positives where a track is wrongly classified in the given class. Note that a buffer
category for unrecognized particles is not shown.

19A very big object with texture will be broken up in smaller pieces by the binarizing threshold.
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Figure 8.16.: Figure (a) shows the raw input of the classification which consists of a list of
coordinates and properties of an identified track. Figure (b) shows tracks which are classified
as of neutron origin and Figure (c) show objects which are classified as not being of neutron
origin.
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Figure 8.16.: Figure (a) shows the raw input of the classification which consists of a list of
coordinates and properties of an identified track. Figure (b) shows tracks which are classified
as of neutron origin and Figure (c) show objects which are classified as not being of neutron
origin.
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class which in this case was checked manually. The low neutron count means that the

false positive rate is below 2%. Between sub-classes the false positive rate is higher as

for example between Neutron Point ↔ Neutron Inclined. These classes are merged later

and thus this is not of importance for neutron detection.

Finally, the questions about the accuracy of the classifier on a more diverse set and

about its stability under frequent repetition for a given set of prior probabilities have to

be addressed.

8.3.4.3. Classification Accuracy

The accuracy of a classification is measured by the fraction of correctly classified objects

and is stated in Powers (2011) as

ac = (TP + TN)/N. (8.10)

Here N is the total number of objects to be classified and TP and TN are defined as:

— TP , True Positives

A track is correctly classified as a member of class A.

— FP , False Positives

A track is in-correctly classified as a member of class A.

— TN , True Negatives

A track is correctly classified as to be not a member of class A.

— FN , False Negatives

A track is in-correctly classified as not to be a member of class A.

For the present problem it is important to note that false positives and false negatives

are not equally problematic. False positives need to be avoided as much practically

possible. If a fraction of neutron tracks is rejected uncorrelated to their position, only a

fraction of the beam intensity is lost. If, on the other hand, tracks which are not neutron

tracks (dust, cracks, . . . ) are classified as neutrons, an incoherent background is added

to a the signal. This in turn reduces the significance of the signal. Thus, the goal is

to reduce false positives as much as possible while maintaining a reasonable level of

true positives. The central benefits of automated detection are the straightforward

implementation of reproducible accuracy estimations and the fast processing of a single

track classification.
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(a)

(b)

Figure 8.17.: Figure (a) gives the accuracy of the classification for the neutron category. The
classifier was calculated in N = 1000 runs while the prior probabilities were taken to be
constant. Figure (b) shows the fraction of cases which were falsely classified as neutrons. Note
that neither mean nor standard deviation are good estimates for the moments of the data
distribution and are only added as rough approximation.
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classifier was calculated in N = 1000 runs while the prior probabilities were taken to be
constant. Figure (b) shows the fraction of cases which were falsely classified as neutrons. Note
that neither mean nor standard deviation are good estimates for the moments of the data
distribution and are only added as rough approximation.
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8.4. Summary

The classification of one track takes on average τClassification = (14± 2)ms while the most

time consuming process is the training of the classifier which takes τTraining ≈ (42± 1) s

on average for the roughly NExamples ≈ 4000 training examples. Thus, it is possible to

repeat classification and training a sufficient number of times to estimate the stability

of characteristics of the classifier. This was done for the classification on the example

dataset from detector IDL001 for which N = 1000 distinct classifiers are trained. The

resulting distributions of the accuracy and false positive cases are shown in figure 8.17.

Indeed, the neutron accuracy is stable at 99% and the neutron false positive cases are

stable at 1%. This is important as in practice not the classifier but only the training set is

saved and classifiers are calculated as needed and as a prediction for new classifications.

8.4. Summary

The presented classification procedure succeeds in selecting nuclear tracks in noisy mi-

croscope images automatically and to sufficient accuracy by applying machine vision

algorithms. In section 8.3.4.3 it is shown that the classification can classify reprodu-

cible to accuracy up to ∼ 99% without having an overlap between training data and

classification data. The manual labour that is necessary is reduced substantially and

a classification can be easily assessed in respect to its accuracy and in particular to

its false positives rate. Figure 8.18 and Figure 8.19 show two distinct measurements

of other experiments where CR39-based detectors were used and the presented proced-

ure is applied. The first example features an example classification of a detector that

was exposed during beam-time 3–14–331. It shows the quantum mechanical probab-

ility density of ultra-cold neutron gravitational bound over a horizontal mirror. The

result indeed features the heavy neutron band in the middle with a visible sub-structure

which can be attributed to the phenomenon of the quantum bouncing ball20 as discussed

in Thalhammer (2018). Also the background neutron noise shows the expected structure

as the bottom of the detector was covered by a mirror and has a lower neutron dens-

ity. Here an exciting result is the increased neutron count compared to the traditional

manual selection. Traditionally only neutron tracks with clear shape and intensity are

selected to reduce the false positive rate as much as possible. This leaves out a quite

substantial amount of neutron tracks which are classified in the category Neutron-Faint.

20The quantum bouncer is a phenomenon where a quantum mechanical state propagates on top of a
hard boundary condition in a gravitational field. The problem can be solved using Airy functions.
It is for example discussed in Gibbs (1975), in Langhoff (1971), and in Gea-Banacloche (1999) and
in the case of ultra-cold neutrons in Luschikov and Frank (1978).
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(a) (b)

(c) (d)

Figure 8.18.: Shown is the classification result of CR39 ID0020 which was exposed during the
qBounce beam-time 3-14-331. Further analysis and information can be found in Thalhammer
(2018) who is the principle investigator of the experiment. A detector was placed at the edge
of a mirror on which neutrons formed bound state. The bottom of the detector is covered
by the mirror and is not directly exposed. Subfigure (a) shows all tracks which are found
by setting a gray value threshold. Subfigure (b) shows the setup of the experiment where
ultra-cold neutrons propagate from left to right. The prepared state |1〉 falls down at the
step between both mirrors which generates a quantum bouncer that is to be observed. The
embedded table collects the file information for this particular dataset. Subfigure (c) shows
the selected neutron tracks (note that quantum mechanical structure is already visible as faint
horizontal stripes) and finally Subfigure (d) depicts the subtracted systematic. The classified
neutrons are checked for false positive cases. 63 false positive cases are found for all neutron
classes.
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Figure 8.18.: Shown is the classification result of CR39 ID0020 which was exposed during the
qBounce beam-time 3-14-331. Further analysis and information can be found in Thalhammer
(2018) who is the principle investigator of the experiment. A detector was placed at the edge
of a mirror on which neutrons formed bound state. The bottom of the detector is covered
by the mirror and is not directly exposed. Subfigure (a) shows all tracks which are found
by setting a gray value threshold. Subfigure (b) shows the setup of the experiment where
ultra-cold neutrons propagate from left to right. The prepared state |1〉 falls down at the
step between both mirrors which generates a quantum bouncer that is to be observed. The
embedded table collects the file information for this particular dataset. Subfigure (c) shows
the selected neutron tracks (note that quantum mechanical structure is already visible as faint
horizontal stripes) and finally Subfigure (d) depicts the subtracted systematic. The classified
neutrons are checked for false positive cases. 63 false positive cases are found for all neutron
classes.
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8.4. Summary

If automatic classification is used, not only shape and intensity can be used as paramet-

ers but also the resulting distribution of neutron tracks as well as systematic tracks21.

If the systematic map shows a clear neutron signal the classifier priors are adjusted to

better distinguish between these categories. Thus, a category of faint tracks is classified

robustly as neutrons which have been missed before.

The second example features the spatial neutron distribution inside a single crystal

silicon interferometer that was heavily exposed to the point of multiple track overlap.This

complicates the detection significantly as single tracks cannot be identified anymore. The

stripe on the left is the beam that is transmitted by the first plate and the right stripe

corresponds to the first diffraction order. As no sub-structure is expected due to the

setup geometry, the classification is sufficient as the overall beam shape can still be

recovered even in this extreme case.

21If for example it is known that parts of the detector are covered by neutron absorbing material, the
fact that now neutrons can reach this area can be used to refine the class priors.
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(a) (b)

(c) (d)

Figure 8.19.: Subfigure (a) shows tracks which are classified as neutrons. The visible distribu-
tion is the spatial distribution inside of a single crystal silicon interferometer of the LLL type
taken in 2013 at the S18 instrument at the ILL. The detector has been placed directly in front
of the second plate. The dominant stripe is the transmitted beam and the faint stripe on the
side is the refracted beam. Subfigure (b) gives data information and Subfigure (c) shows the
classified neutron tracks. Subfigure (d) shows tracks which are not classified as neutrons for
the same measurement. Especially on the transmitted beam clearly neutron tracks are wrongly
discarded. In the here presented measurement the neutron density at the peak reached the
threshold where no single neutron tracks are present. To offer a high accuracy also at the
peak, binarizing, cutting at a threshold, and a rectangular image cut out is not sufficient to
characterize tracks of interest.
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9. Future Prospects

Part II of this thesis discusses and analyzes the prospect of Lloyd’s mirror. Chapter 5

gives the theoretical foundations in the form of the wave function of an idealized setup.

Chapter 6 discusses a simulation of the interference pattern, and part III chapter 7

presents a not yet finalized implementation of Lloyd’s mirror.

Chapters 6 and 7 present realizations of the above considerations in a specific setup at the

PF2 at the Institut Laue-Langevin. It might be worth reflecting whether a different part

of the parameter space would offer a more favorable realization environment. Further,

it is shown in chapter 5 that the search for a chameleon field and an axion particle does

not seem to be competitively realizable with Lloyd’s mirror. This suggests that a new

search area for a novel physical effect where Lloyd’s mirror can perform competitively

is needed.

Apart from these two theoretical questions especially in chapter 7 and in chapter 8

concrete experimental methods are presented. As central characteristics of the interfer-

ometer are restricted by the chosen implementation, it is sensible to ask whether different

experimental methods could lower the complexity and difficulty of a realization or even

enlarge the accessible parameter space. The following section sketches possible paths to

continue the work performed in the individual chapters.

9.1. Proposed Implementation at the PF2

The implementation of Lloyd’s mirror as proposed in this thesis and the characterized

beam preparation setup does indeed offer a feasible prospect of a realization of the

interferometer. This is the conclusion made in chapter 6 on the basis of an intensity

measurement at the PF2 and a simulation of the interference pattern. Nevertheless,

the low intensity as measured in section 7.1.4 hampers precision measurements under

the constriction of a practical time frame. The next logical step is to analyze the setup

for further potential intensity gains and adapt the setup accordingly. Three aspects are

already mentioned in this thesis and are sketched in the following:
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— Divergence losses

Only the path between S4 and S3 as well as the path between S2 and S1 restrict

the angular distribution of the beam and losses in these sections cannot be avoided.

Losses in the remaining section could be reduced by employing beam guides which

reflect neutrons back into the beam. This conserves the brilliance of the beam

between the end points of the beam guides. Since most distances between neutron

optical components vary strongly, additional beam guides would need to be fitted

to each path. For example, rectangular beam guides consisting of four 58Ni coated

mirrors should be sufficient.

— Air absorption

The current setup is realized in an air atmosphere with an option to add a helium

atmosphere or a rough vacuum. As already discussed in Scheicher (2015), losses

due to scattering or absorption can be avoided by using either beam guides which

are kept at a low pressure or in a helium atmosphere.

— Wavelength Selection

If the propagation region behind the mirror is chosen to be L3 ∼ 2m or bigger, a

smaller wavelength could be selected which in turn yields a higher intensity. See

figure 6.16 for a simulated pattern with an extended propagation region after the

mirror. Note that ultimately a cold neutron beam could be considered.

— Monochromatic Mirrors

The graciously loaned disk shaped super mirrors (M1 and M2) with a diameter of

d = 76mm could be increased in size in the vertical direction to make full use of

the beam (70− 85)mm.

See figure 9.1 for the proposed additions to the current setup. This figure shows areas

where beam guides with helium atmosphere can be added in orange. In general the full

beam path should transverse a helium atmosphere to reduce air absorption. Finally, in

section I a low pressure region should be added to make measurements that depend on

pressure variation possible.

Further, the overall alignment system as used during the last beam-time Test–2455

would be more robust, if adaptions made during the beam-time were included in a revised

version. Up until now alignment has been achieved by a three-beam laser guiding system

sufficient for the beam shaping setup and initial alignment of Lloyd’s mirror. Adding

on-line detection by a ccd camera, photo diodes, and alignment routines, the laser
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9.2. Refined Theoretical Model for Lloyd’s Mirror

Figure 9.1.: Possible additions to the current setup of Lloyd’s mirror with very-cold neutron at
the PF2. The light blue Section I should by kept at a low pressure to make measurements that
depend on pressure variation possible. In orange beam regions an approximately rectangular
beam guide with a helium atmosphere can be added. In yellow beam regions the beam is
shaped by slits and losses are necessary to yield constricted distributions. Nevertheless, these
regions should have a helium atmosphere to reduce absorption and scattering.

guided alignment would be more comprehensible. This is especially important at the

interferometer stage where one can make use of the optical analogue of Lloyd’s mirror

as presented in section 5.5.2.3.

9.2. Refined Theoretical Model for Lloyd’s Mirror

In chapter 5 wave functions for specific cases of Lloyd’s mirror as well as phase shift

calculations due to various effects are presented. These are essential for future meas-

urements as all deviations from the plane wave approach would have been considered

to be systematic effects without a deeper theoretical understanding. Despite now hav-

ing necessary theoretical tools these calculations can be further enhanced and adapted,

especially in respect to the finite mirror length or systematic deviation of the mirror’s

surface from the perfect plane. Both cases should be throughly modeled. This can be

accomplished with finite element methods or by employing the path integral formalism.

While the phase shift estimations of several phenomena in section 5.6 are sufficient for

the estimation of systematic effects and the initial estimation of the sensitivity to specific

phase shifting effects, it does neglect peculiarities of the wave function of the system.

For example, if a future measurement is used to test a hypothetical model beyond

the Standard Model, it is necessary to calculate the probability density including the

hypothetical effect. As high accuracy is needed in this endeavors, one has to go beyond
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the plane wave approach as used in section 5.6 and directly calculate the wave function

or an estimate. Also in the case of a possible Casimir-Polder interaction this has to be

implemented as the current model is highly sensitive to a artificially introduced cut-off

parameter that is necessary to avoided the divergence of the integral.

9.3. Probing Physics beyond the Standard Model of

Particle Physics

An important motivation to implement Lloyd’s mirror with very-cold neutrons is given

in Pokotilovski (2013b) where it is discussed as a tool to probe the hypothetical chameleon

field. In section 5.6 it is shown that as of 2015 the chameleon parameter space accessible

by Lloyd’s mirror is mostly excluded by strong limits derived from atom interferometry

most notably presented in Hamilton et al. (2015). The same is true for the hypothetical

axion particle for which strict limits were published in Afach et al. (2015) and already

exclude the parameter space accessible by Lloyd’s mirror. An alternative measurement

subject can be the hypothetical symmetron field, which is proposed in Hinterbichler and

Khoury (2010) to address the phenomenon of dark energy. In the scope of this thesis

the symmetron field is not examined.

Further, general searches of deviation from Earth’s linearized gravity would be a pos-

sibility. The highest sensitivity to a gravity-like phenomenon can be achieved, if the

effect in question acts normal to the mirror’s surface similar to gravity as discussed

in section 5.6.3.2. This case is analogous to the mirror oriented horizontally in Earth’s

gravitational field1 where the introduced phase shift is bigger than the geometrical phase

shift. For the vertical case the sensitivity is reduced to a point that not even Earth’s

gravity would be detectable with reasonable statistical significance at a very-cold neutron

beam.

9.4. Future Developments

In the scope of this thesis several technologies were developed and extended. In each case

it is advisable to develop these further to allow for more general applications, enhance

accuracy, or enhance efficiency.

1Parallel alignment between the surface normal to the mirror and the gravitational vector.
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9.4. Future Developments

9.4.1. CR39-based Detection

In chapter 8 a process to detect very-cold neutrons with a spatially high resolution

based on established technologies is presented. The focus is put on the track identifica-

tion after optical scanning of exposed detectors. While succeeding in adding objective

tools to detect particles even for high intensities or large exposed areas, the scanning

procedure itself was not enhanced. The present system allows scanning detectors with

several magnifications, but only for high magnification as for example 50× track identi-

fication will succeed. Thus, the detector has to be scanned in A = (289× 217) µm steps.

For macroscopic areas exposed to neutrons several thousand pictures have to be taken

and processed. At the moment, especially the image capture process relies on human

interaction to put each picture into focus. This is not only time consuming but also

introduces human subjectivity and thus possible human bias. Applying state-of-the-art

software (Microscope Programming) and hardware (absolute distance measurements) a

system could be envisioned which automatically and reliably scans detectors for neutron

tracks.

Further, the presented machine vision based classification can surely be further enhanced.

In this thesis, the definition of different classes was not chosen by its strength to be

distinguish between each other but by functional considerations. Differentiating between

functional classes (Neutron-Points, Neutron-Inclined, Cracks, Dust, . . . ) offers a simple

way to interpret the result after the classification. An interesting prospect would be to

investigate whether other parameter/feature composition are more suitable for robust

classification. Thus, reducing the dependency on tuned prior probabilities. Also the

classifier presented in this thesis only uses a single classification layer. Adding additional

classification steps after the presented would further reduce the false positive rate and

thus enhance the accuracy.

9.4.2. Detector Coating

At the moment, the implemented coating facility is mainly used for sophisticated boron

coatings for CR39-based detectors and gas counters for ultra-cold neutron and very-cold

neutron detection. The developed process produces reliable clean coating but due to

the heat intake at the substrate limits the maximal coating time for CR39 and thus the

thickness of the coating. Especially to gain flexibility on detector efficiency this should

be addressed. For example, an active cooling/heating system at the substrate could offer
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exactly this advantage but would be rather complex due to vacuum conditions and the

fact that the substrate needs to be rotating to be homogeneously deposited on.

Also the beam/coating instrumentation could be substantially enhanced by additional

and more flexible sensors in and outside of the setup. The documentation process for

each deposition only captures rough characteristics of the process and most essential

details that are needed for a successful coating cannot be captured.
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10. Conclusion

In this thesis several aspects of the implementation of Lloyd’s mirror are discussed and

analyzed. The goal is to investigate the feasibility of Lloyd’s mirror especially in respect

to its application to fundamental questions of physics. In chapter 5 the theoretical found-

ations of high precision measurements in the form of a quantum mechanical description

of the diffraction phenomenon is presented. Namely the static solution ΨL,st(�r) and

an approximation ΨL,F(y, z) to the time-dependent solution. Both describe a quantum

mechanical particle passing an entrance slit and then transverse along a horizontal mir-

ror. The validity of these calculations is checked through the implementation of an

optical analogue.

Further, in section 5.6 several phase shifting effects are investigated. Firstly, it is invest-

igated what contributions can be expected from systematic effects like fluctuations in

the magnetic field, the reflection at a surface, or the gravitational field. It is concluded

that most effects can be suppressed sufficiently, or due to their time behavior can be

neglected. Secondly, in section 5.6.4 possible measurement subjects for example those

beyond the Standard Model of particle physics are discussed. In particular the sensitiv-

ities to different phase shifting effects for a specific implementation of Lloyd’s mirror is

calculated. Such effects are for example the chameleon field, axion particle, and gravit-

ational torsion which can be connected to dark matter or dark energy scenarios as well

as a neutron Casimir-Polder interaction. Limits set by other experiments, exclude the

accessible parameter space for the first two effects. While a small phase shift is predicted

in the last case, the semi classical approach maybe insufficient to estimate the effect of

a Casimir-Polder interaction and more elaborate means are advisable.

In chapter 6 the solutions presented in chapter 5 are used to estimate constraints and

to simulate the interferogram of Lloyd’s mirror for an implementation at the very-cold

neutron port at the PF2 at the Institut Laue-Langevin as shown in figure 10.1. The

interferogram is simulated for a set of parameters as defined in table A.3 in appendix A.4

and is presented in section 6.3.1.3.
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Figure 10.1.: Shown is a simulation of the interferogram of Lloyd’s mirror for integration time
of τ = 7day. The wavelength is set to be λ = 6.3 nm, the mirror length L = 0.315m, and the
distance between mirror and slit a = 53µm.

Following the considerations in chapter 6, the feasibility of an implementation at the PF2

can be positively assessed. This is strongly constrained by an expectedly low neutron

flux and, consequently, a comparably long measurement time for a single interferogram

on the order of several days.

In chapter 7 the raw beam parameters are discussed as well as an implementation of

a beam preparation setup to collimate and monochromize the beam as specified in

chapter 6. The presented measurements were performed during beam-time Test–2455

and 3–14–343 at the very-cold neutron beam at the PF2. The achieved beam spectral

bandwidth is ∆λ
λ

= (5.6±0.5)% at 6.7 nm while the divergence of the beam is constrained

to be γ < (2.7±0.1)mrad. Extrapolating the beam intensity after the beam preparation

section to the next component, which is the entrance slit S1 of the interferometer, while

satisfying the coherence constraint gives an intensity of

IS1 = (8.9± 0.4) · 10−3 #/s. (10.1)

This result is used at several points in this thesis, as for example for simulating the

interferogram and estimating the necessary measurement time. Further, it is used for

the estimate of the sensitivity of Lloyd’s mirror to effects beyond the Standard Model of

particle physics. To check whether the measured intensity represents an optimal beam

usage, the beam is traced throughout chapter 7 from the beam port beam downwards to

the last slit in front of the detector. In the scope of the beam shaping region a possible
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drop in the overall brilliance of the beam over the preparation setup is measured1. This

indicates that it the neutron intensity maybe increased as discussed in section 9.1.

Following the presentation of the beam preparation stage in section 7.2 characteristics

of the interferometer stage are presented. This includes a proposal for a robust imple-

mentation at the PF2. It addresses the problems of the alignment of slit S1 relative to

the mirror’s surface and the environmental stability at the interferometer position. For

example, the magnetic field variations over several days are measured. The conclusion is

that additional magnetic shielding is not required in a future implementation because of

the size of the induced phase shift but magnetic components should be avoided. Also, in

section 7.2.4 the background intensity at detector position II is captured using a CR39-

based detector. This measurement is used as an estimate for the background intensity

in a future experiment. It is determined to be

FBackground = (83± 8) · 10−6 #/s

mm2
(10.2)

which is an order of magnitude lower than the expected signal and thus does not inhibit

future measurements.

Finally, in chapter 8 a selected technology necessary to capture the full interferogram

is presented. In order to capture the interferogram 10B-coated CR39-based spatially

resolving detectors are used. In this thesis the focus is put on the development of a

system to accurately classify possible nuclear tracks which are visible after chemical

treatment and optical scanning of these detectors. In the scope of this thesis, a system

is implemented that automatically classifies “neutron” tracks to a high accuracy. This

is demonstrated with two examples as discussed in section 8.4. Furthermore, future

prospects in the development of CR39 detectors are discussed in chapter 9.

In conclusion, a measurement scenario with a feasible prospect to be realized at the

PF2 is developed cumulating in the simulation presented in chapter 6 section 6.3 and

a first experimental progress is presented in chapter 7. These arguments are based on

a theoretical description which is developed in chapter 5. Thus, Lloyd’s mirror does

represent a feasible prospects as a neutron optical instrument and a device which works

on the intersection between quantum mechanics and gravity.

New prospects to test novel hypothetical models are imaginable if the intensity at the

entrance slit of the interferometer can be further enhanced through measures as are

suggested and discussed in chapter 9.

1It is also possible that the drop is an artifact of the initial beam selection as explained in section 7.1.4.
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A. Supplemental Information

A.1. Collected Figures

A.1.1. Optical Lloyd’s Mirror

Figure A.1.: Shown is the setup of the optical Lloyd’s mirror as implemented at the Atomin-
stitut. As a light source a laser pointer with λ = (653± 0.3) nm is used. The green line is the
beam path for the interferometer and the red line is an alignment path using pentaprism. I is
the laser pointer, II is the main mirror, III is the cmos camera, IV are d = (155 ± 0.1)µm
spacers, V is the main mirror, and V I is the boron-steel sheet which builds up the slit on top
of the mirror. The small picture on the left side is the view from the cmos camera onto the
slit.
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A. Supplemental Information

A.1.2. Simulation Fit Residuals

Figure A.2.: Shown are the residuals of the fit shown in figure 6.15 for the 7 day measurement.

Figure A.3.: Shown are the residuals of the fit shown in figure 6.15 for the 21 day measurement.
Especially in the middle of the image systematic deviations between data and fit model are
visible. In this region the residuals are not normal distributed around zero.
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A.1. Collected Figures

A.1.3. CR39 Example

Figure A.4.: Stitched scan consisting of 25 single images for ID001. The green points that
form a grid are the coordinate reference points for each single picture. The red circles are
tracks classified as Systematic-tracks and thus are either cracks in the original coating, dust,
or other noise. The blue circles depict tracks classified as Neutrons-tracks.
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A. Supplemental Information

A.1.4. CR39Analyse.m

Shown are examples of the developed Mathematica package for the detection, classific-

ation, and the analysis of CR39 imaging plates.

Figure A.5.: Front-end that is used for the detection of tracks on an etched neutron detector.
Images of the detector are loaded to either manually select tracks or to run an automated
script to detect tracks.
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A.1. Collected Figures

Figure A.6.: The necessary threshold for the gray value scale and the tracks size ROI, which
are used to select tracks automatically can directly be investigated.

Figure A.7.: Selected tracks are saved together with their properties in a human readable text
file. Several function exist to view and analyze the track files.
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Figure A.8.: The most important low level analysis is binning and projection of the data.

Figure A.9.: The machine learning sub-package handles the classification of tracks according
to pre defined classes and prior probabilities.
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Figure A.8.: The most important low level analysis is binning and projection of the data.

Figure A.9.: The machine learning sub-package handles the classification of tracks according
to pre defined classes and prior probabilities.
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A.1. Collected Figures

Figure A.10.: The necessary training tracks are assigned pre defined classes in this front-end
for example images and are saved to a class file.

Figure A.11.: The track properties of all pre defined examples can be probed according to the
initially saved track properties. In red are Neutorn-Points and in black all other tracks and are
plotted for their FilledCircularity vs. the Mean intensity. Note that different CR39 detectors
and measurements are put together and thus a single title cannot be assigned.
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A. Supplemental Information

A.2. Neutron Energy Availability

This section gives a short summary of available neutron beams which complements the

section 3.3 for Very-cold neutron at the PF2 at the Institut Laue-Langevin.

Instrument λ [nm] F [#/s
cm2 ] δλ/λ Source

D11@ILL 0.45− 4 7 · 107 9% Laue-Langevin (2008)

D33@ILL 0.45− 25 108 10% Laue-Langevin (2008)

PF2-VCN@ILL 2− 400 4 · 105/nm −−− Laue-Langevin (2008) & Gelten-

bort (2013, priv. comm.)

H18@ILL 1.5− 3.0 −−− −−− Laue-Langevin (1986)

CG2@ORNL 0.4− 2.5 2 · 107 14% DeBeer-Schmitt, He and Littrell

(2017)

Table A.1.: Availability of Neutron energies and characteristic of sources and instruments.
The flux F is given at the sample position. If ‘Full’ is specified then the full beam without
monochromatization is captured. In the case of the PF2 beam, the wavelength differential is
given.

Instrument Length A [mm2] B [ #/s
cm2nm sterad

] Source

D11@ILL 39m 40× 55 2 · 1011 Laue-Langevin (2008)

D33@ILL 40m 40× 55 ∼ 2 · 1011 Laue-Langevin (2008)

PF2@ILL 7.6m 45× 70 Laue-Langevin (2008) & Gelten-

bort (2013, priv. comm.)

H18@ILL 12m 1.3 · 1010 Laue-Langevin (2008) & See ap-
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(2017)
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A.2. Neutron Energy Availability
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bort (2013, priv. comm.)
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CG2@ORNL 0.4− 2.5 2 · 107 14% DeBeer-Schmitt, He and Littrell

(2017)
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A.3. The H18 Beam at the Institut Laue-Langevin

Figure A.12.: Brilliance as a function of Neutron
energy for different beam-ports at the Institut Laue-
Langevin. The plot is taken from Laue-Langevin
(2008).

The beam port H18 is now per-

manently taken by the instrument

D17. Before this usage the beam has

been used for various free-space in-

terferometer experiments as for ex-

ample Anton Zeilinger et al. (1988).

The brilliance B is extracted from

this publication and is compared to

the brilliance taken from figure A.12

which is taken from Laue-Langevin

(2008).

Integrating over the single-slit inter-

ference patter gives the intensity that

is going through their object slit of

∆x = 0.09mm and the beam dia-

meter ∆y ≈ 60mm.

I = 5.08Neutrons/ s (A.1)

Considering the width of the slit it

can be concluded that the flux is

F(∆x,∆y) = (0.942± 0.004)
Neutrons

mm2 s
(A.2)

. Further, the upstream setup allows for a maximal divergence of ∆α = ±11 µrad.
Assuming an isotope angular distribution it follows that the radiance is

F(∆x,∆y ,∆α) = (2.96± 0.09) · 10−5 Neutrons

mm2 µrad s
(A.3)

Considering ∆λ
λ

≈ 3.6% at λ = (1.929± 0.002) nm yields a brilliance F∗ of

F∗ =
F(∆x,∆y ,∆α)

∆λ
= (7.0± 0.2) · 10−5 Neutrons

mm2 µrad s nm
. (A.4)
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Estimating the vertical divergence constrained to be 4.6mrad and thus overestimating

gives

B = 2.6 · 109 Neutrons

cm2 sterad s Å
(A.5)

which is slightly bigger but of the same order as the brilliance given in figure A.12

B = 1.3 · 109 Neutrons

cm2 sterad s, Å
. (A.6)

A.4. Constants and Calculation Parameter

Calculations in this thesis were done with the parameter values in table A.3 if not

specified otherwise. Table A.4 collects used natural constants and their corresponding

sources.

Name Value Information

εBiDim26 (68.3± 1)% Efficiency of the BiDim-26 detector at λ mean.

Value is linearly extrapolated from source to cover

the relevant range. The detector uses a gas mix-

ture of 500mbar 3He + 1.5 bar CF4. See Manzin

(2011).

ζBiDim26 (2× 2)mm Pixel size of the BiDim-26 detector. See Manzin

(2011).

S1 8.5 µm Opening of Slit S1

S2 500 µm Opening of Slit S2

∆S1,S2 0.35m Distance between S1 and S2

L 0.315m Length of the main mirror.

a 53 µm Distance between slit middle axis and mirror.

vmean (62.6± 0.9)m/s Mean of a Gaussian velocity distribution that is

used in simulating the interference pattern. Based

on the beam-time 2014, see Bricher (2015).

λmean (6.32± 0.4) nm Corresponding wavelength to the previously stated

value. See Bricher (2015).
∆λ
λ

6.7% Width of the Faussian velocity distribution.

See Bricher (2015)
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(A.5)

which is slightly bigger but of the same order as the brilliance given in figure A.12

B = 1.3 · 109 Neutrons

cm2 sterad s, Å
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A.4. Constants and Calculation Parameter

Table A.3.: Standard calculation parameter table. If not specified otherwise, these values were
used for calculations in this thesis.

Name Value Unit Uncertainty Source/Information

mu 1.66053904 · 10−27 kg 2 · 10−35 Unified atom mass

mn 1.674927471 · 10−27 kg 2.1 · 10−35 Neutron mass

mp 1.672621898 · 10−27 kg 2.1 · 10−35 Proton mass

µN = e�
2mp

5.050783699 · 10−27 J/T 3.1 · 10−36 Nuclear magneton
µn

µN
−1.91304272 − 4.5 · 10−7 Ratio neutron and nuclear

magnetic moment

c 299792458 m/s exact Speed of Light

h 6.626070040 · 10−34 J · s 8.1 · 10−42 Planck Constant

� = h
2π

1.054571800 · 10−34 J · s 1.3 · 10−42 Reduced Planck Constant

e 1.6021766208 · 10−19 C 9.8 · 10−28 Elementary Charge

kB 1.38064852 · 10−23 J/K 5.7 · 10−30 Boltzmann Constant

NA 6.022140857 · 1023 1/mol 1.2 · 1015 Avogadro Constant

µ0 4π · 10−7 N/A2 exact Vacuum permeability

Table A.4.: These constants were used for calculations in this thesis. All quantities are taken
from Mohr, Newell and Taylor (2015) and from Patrignani (2016) for particle properties.

Name Density Atom Mass N. Absorption Cross-Section

Copper 8.96 g
cm3 63.55 u 3.78(2) barn

10Boron 2.35 g
cm3 10 u 3835.0(9.0) barn

Boron 2.35 g
cm3 10.81 u 767.0(8.0) barn

Boron detector coating 2.35 g
cm3 − 3661.8 barn

Silicon 2.33 g
cm3 28.085 u 0.171(3) barn

Oxygen − 15.999 u 0.00019(2) barn

N− BK7 2.51 g
cm3 − —

Aluminum 2.6989 g
cm3 26.982 u 0.231(3) barn

Gold 19.30 g
cm3 196.967 u 98.65(9) barn

Table A.5.: Relevant quantities for elements and compounds which were used in this thesis at
standard conditions. The neutron velocity is set to be 2200m/s. Data is taken from Bruckner
(1999)&Dianoux (2003). The value for “Boron detector coating” is calculated for a mixture
of 95% 10B and 5% 11B using the NeutronsAndMatter Mathematica package. The density of
BK7 is given in AG (2016).
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Name N [ 1
cm3 ] V [neV] Information

BK7 2.16 · 1022 97.9 Calculated using the NeutronAnd-

Matter Mathematica package.

Aluminum 6.02 · 1022 54 Taken from Golub, Lamoureaux and

Richardson (1991).

Aluminumoxid 2.33 · 1022 147.33 Calculated using the NeutronAnd-

Matter Mathematica package.

Silicondioxid 2.43 · 1022 99.75 Calculated using the NeutronAnd-

Matter Mathematica package.

Berylliumoxide 7.25 · 1022 256.56 Calculated using the NeutronAnd-

Matter Mathematica package.

CR39 Coating 14.73 · 1022 5.5 Calculated using the Neutron-

AndMatter Mathematica package.

95% 10B and 5% 11B as is used for

the CR39 detector.

Titanium 5.6 · 1022 −49.75 Taken from Golub, Lamoureaux and

Richardson (1991).

Carbon 10 · 1022 180 Taken from Golub, Lamoureaux and

Richardson (1991).

Table A.6.: Optical potentials for frequently used materials calculated using values from Dian-
oux (2003) and using the NeutronAndMatter package.For the calculation V = 2π�2

m N̂a is used,

as stated in Golub, Lamoureaux and Richardson (1991). a is the positive scattering length, N̂
is the number density, and V is the optical potential..
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A.5. Beam Parameter Definition

Quantity Value Information

7 Day Simulation

λL (18.7± 0.3) µm Estimated plane wave period of Lloyd’s Mirror.

κ (0.64± 0.13) Visibility of the pattern for the first maxima.

y0 (101.8± 0.6) µm Mirror surface position.

B (5.8± 0.3)#/(s · bin) Background in the region 0mm < y < 0.1mm.

A (59.8± 6.2)#/(s · bin) Amplitude of the pattern.

τ1 (583± 234) 1/µm Rise parameter of the pattern.

τ2 (17± 6) 1/µm Visibility modulation.

τ3 (8.5± 0.6) 1/µm Overall intensity decay of the pattern.

21 Day Simulation

λL (18.7± 0.2) µm Estimated plane wave period of Lloyd’s Mirror.

κ (0.64± 0.07) Visibility of the pattern for the first maxima.

y0 (101.9± 0.3) µm Mirror surface position.

B (21.3± 0.6)#/(s · bin) Background in the region 0mm < y < 0.1mm.

A (194± 14)#/(s · bin) Amplitude of the pattern.

τ1 (828± 325) 1/µm Rise parameter of the pattern.

τ2 (12± 3) 1/µm Visibility modulation.

τ3 (9.6± 0.5) 1/µm Overall intensity decay of the pattern.

Table A.7.: Result of a fit on the simulation of Lloyd’s Mirror. This table completes the
information in table 6.5. The parameter τ1 has an expected high uncertainty. This does not
interfere with the fit as this part of the equation is only used as a cutoff. The shape is not as
important as the position which is defined by y0.

A.5. Beam Parameter Definition

The definition of beam characterizing parameters in this thesis can slightly differ form

these in specific literature as beam parameters are frequently adapted to take specific

properties of a research field into account. Note that the following quantity are only

exact if they are local and not averaged over the beam. If macroscopic parts of the

beam are used as for example for the bandwidth then it is assumed that the beam can be

approximated by a homogeneous beam, which does not have to be a good approximation.

For a similar definition see Hakamata (2006).
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Intensity Intensity is the number of something [#] (i.e. particle) per unit time with

[I] = #/time.

Flux Flux describes the rate of transport of something through a surface. The unit is

[F ] = #/time/area. Keep in mind that this quantity is directional and thus builds up a

vector field.

Radiance Radiance incorporates the angular dependency and has a unit of [R] =

#/time/projected area/solid angle.

Brilliance Brilliance incorporates the angular dependency and the bandwidth of the

beam. It has a unit of [B] = #/time/projected area/solid angle/bandwidth.

Bandwidth The spectral bandwidth is here defined as the full width at the half max-

imum value. The unit is given as [FWHM] = wavelength.

A.6. Function Definition

This section gives relations that are used in this thesis and their sources.

Collected Relations The integral

∞∫

−∞

eiku
2

du =

√
π

2|k|
(1 + i sgn(k)) (A.7)

for k ∈ R and with the sign function sgn(x) = x/|x|.

Fresnel Integrals In Arfken and Weber (2013) the Fresnel-integrals are given as follows

t∫

0

cos u2du =
π

2
FC

[π
2
t
]

(A.8)

t∫

0

sin u2du =
π

2
FS

[π
2
t
]
. (A.9)

C(u) and C(u) both have the same limit for u → ∞
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A.6. Function Definition

lim
u→∞

FC(u) = lim
u→∞

FS(u) = 1

2
. (A.10)

Further, the following integral is of interest

∞∫

0

eiη(x−x′)2dx′ =

(
1

2
+

i

2

)√
π

2η

(
1 + (1− i)FC

[√
2η

π
x

]
+ (1 + i)FS

[√
2η

π
x

])
.

(A.11)

Hankel-Functions The Hankel-functions which are used in this thesis are shown in

their integral representation

∞∫

−∞

eiκ(ξ+η2)

(ξ + η2)1/2
dη = i

π

2
ei

κ
2
ξH(1)

0

[κ
2
ξ
]

(A.12)

with ξ > 0 and κ > 0. See Wolfram Research for source.

A useful integral representation for two-dimensional problems is given in Schwinger et al.

(1998) as

∞∫

−∞

eik(ξ
2+η2)

1/2

(ξ2 + η2)1/2
dη = iπH(1)

0 [kξ] (A.13)

if ξ ≥ 0 and k ≥ 0.

Additionally, several relations for Hankel-functions can be found in the standard liter-

ature

2
dH(P )

n [x]

dx
= H(P )

n−1[x]−H(P )
n+1[x] (A.14)

2n

x
H(P )

n [x] = H(P )
n−1[x] +H(P )

n+1[x] (A.15)

for n = 1, 2, 3, . . . and together

dH(P )
n [x]

dx
=

nH(P )
n [x]

x
−H(P )

n+1[x]. (A.16)

To calculate |Ψ|2 = |Ψ∗Ψ| the complex conjugate of the Hankel-function. Note that the

Hankel-function are defined as linear combinations of the Bessel-functions
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H(1)
n (x) = Jn(x) + iYn(x) (A.17)

H(2)
n (x) = Jn(x)− iYn(x) (A.18)

thus it follows that

(H(1)
n (x∗))

∗
= H(2)

n (x). (A.19)

For negative n the following relations hold

H(1)
−n(x) = enπiH(1)

n (x) (A.20)

H(2)
−n(x) = e−nπiH(2)

n (x). (A.21)

A.7. Wave Function of Lloyd’s Mirror in Green’s

Formalism

In the following section a calculation of the wave function of Lloyd’s mirror using Green’s

function is presented. The result is used in section 5.5.2 and the following thesis. The

basic arguments presented here follow closely Morse and Feshbach (1953), partly Brukner

and Anton Zeilinger (1997) and Economou (2013).

Time-Independent Schrödinger-Equation For a time-independent problem the po-

tential force-free stationary Schrödinger equation

− �2

2m
∇2ψ(�r)− �2

2m
k2ψ(�r) = 0 (A.22)

can be solved with ψ(�r) = Aei
�k�r and that the time depended solution is given by

Ψ(�r, t) = ψ(�r)e−iωt. If a source term is added equation (A.22) becomes the inhomo-

geneous Helmholtz equation

∇2ψ(�r) + k2ψ(�r) = −4πρ(�r). (A.23)
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A.7. Wave Function of Lloyd’s Mirror in Green’s Formalism

If only a point source is considered ρ(�r) = δ(�r, �r ′) equation (A.23) can be solved by a

Green’s function G(�r, �r ′) if boundary conditions and initial values are given

∇2G(�r, �r ′) + k2G(�r, �r ′) = −4πδ(�r, �r ′). (A.24)

Time-Dependent Schrödinger-Equation If boundary conditions or potentials are time-

dependent the previous static approach is not sufficient. The time-dependent potential

force-free Schrödinger-equation is given as

�2

2m
∇2ψ(�r, t) + i�

∂

∂t
ψ(�r, t) = 0. (A.25)

Again a source term q(�r, t) is added and thus

�2

2m
∇2ψ(�r, t) + i�

∂

∂t
ψ(�r, t) = −4πq(�r, t) (A.26)

which can be solved by using a Green’s function G0(�r, �r
′, t, t′) which satisfies

�2

2m
∇2G(�r, �r ′, t, t′) + i�

∂

∂t
G(�r, �r ′, t, t′) = −4πδ(�r, �r ′)δ(t, t′). (A.27)

Force-Free Particles Green’s Function If the goal is to describe particles as it is

here it is convenient to solve first the problem of a force-free particle without boundary.

Technically the boundary can be set at �r → ∞ where it is required that G(�r, �r ′) vanishes.

Then the Green’s function becomes

G(�r, �r ′) = G0(�r, �r
′) = χ

ei|
�k||�r−�r ′|

|�r − �r ′|
(A.28)

with |�r − �r ′| =
√
(x− x′)2 + (y − y′)2 + (z − z′)2, as stated in Morse and Feshbach

(1953). For the time-dependent problem the Green’s function is given in Economou

(2013) by1

G0(�r, �r
′, t, t′) = χ0[d]

(
1

t− t′

)d/2

ei
m
2�

|�r−�r ′|2
t−t′ (A.29)

1It is used that �v = �r−�r ′

t−t′ . Note that G0 treats the propagation of a single particle in space. The

particle starts at �r ′ at time t′ and will reach the point �r at time t, thus this definition of �v is in this
case is justified. See Brukner and Anton Zeilinger (1997).
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for t > t′ > 0, using �p = ��k and E = �ω = �2
2m

�k2, with d the dimensionality of the

problem, and χ0[d] = − i
�

(
m

2πi�

)d/2
. The normalization constant χ is given as

χ3D = − i

�

(
m

2πi�(t− t′)

)3/2

. (A.30)

Wave Function Calculation — Static Case To calculate the wave function equa-

tion (A.23) and equation (A.24) are subtracted after they are multiplied by G(�r, �r ′) and

Ψ(�r) respectively

1

4π

(
G(�r, �r ′)∇′2Ψ(�r ′)−Ψ(�r ′)∇′2G(�r, �r ′)

)
= Ψ(�r ′)δ(�r − �r ′)−G(�r, �r ′)ρ(�r ′). (A.31)

By integrating over the volume V and note that
∫∫∫

Ψ(�r ′)δ(�r − �r ′)d3r′ = Ψ(�r) if �r is

restricted to V , we get

Ψ(�r) =

∫

V

d3r′ G(�r, �r ′)ρ(�r ′) (A.32)

+
1

4π

∫

V

d3r′
[
G(�r, �r ′)∇′2Ψ(�r ′)−Ψ(�r ′)∇′2G(�r, �r ′)

]
. (A.33)

To yield a solution Ψ(�r) that is compatible with the Schrödinger equation we set ρ(�r ′) =

0 and thus Term A.32 vanishes. Using greens theorem2 to express the volume integral

as a surface integral in Term A.33 we finally get

Ψ(�r) =
1

4π

∮

�S

[
G(�r, �r ′)∇′Ψ(�r ′)−Ψ(�r ′)∇′G(�r, �r ′)

]
d�S

′
. (A.34)

2Application of Gauss Theorem
∫∫∫ [

U(�r)∇2V (�r)− V (�r)∇2U(�r)
]
d3r =∮

[U(�r)∇V (�r)− U(�r)∇V (�r)] d�S where U(�r) and V (�r) a scalar function, d3r is the volume

element, and d�S is an element of the boundary surface of the volume considered. See for
example Morse and Feshbach (1953).

196



A. Supplemental Information

for t > t′ > 0, using �p = ��k and E = �ω = �2
2m

�k2, with d the dimensionality of the

problem, and χ0[d] = − i
�

(
m

2πi�

)d/2
. The normalization constant χ is given as

χ3D = − i

�

(
m

2πi�(t− t′)

)3/2

. (A.30)

Wave Function Calculation — Static Case To calculate the wave function equa-

tion (A.23) and equation (A.24) are subtracted after they are multiplied by G(�r, �r ′) and

Ψ(�r) respectively

1

4π

(
G(�r, �r ′)∇′2Ψ(�r ′)−Ψ(�r ′)∇′2G(�r, �r ′)

)
= Ψ(�r ′)δ(�r − �r ′)−G(�r, �r ′)ρ(�r ′). (A.31)

By integrating over the volume V and note that
∫∫∫

Ψ(�r ′)δ(�r − �r ′)d3r′ = Ψ(�r) if �r is

restricted to V , we get

Ψ(�r) =

∫

V

d3r′ G(�r, �r ′)ρ(�r ′) (A.32)

+
1

4π

∫

V

d3r′
[
G(�r, �r ′)∇′2Ψ(�r ′)−Ψ(�r ′)∇′2G(�r, �r ′)

]
. (A.33)
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Wave Function Calculation — Time-Dependent Case The treatment of the time

dependent case is more lengthly and can be seen rigorously in Morse and Feshbach

(1953). There the wave function is given as

Ψ(�r, t) =

t+∫

0

∮

�S

q(�r ′, t′)G(�r, �r ′, t, t′)

+
1

4π

�2

2m

t+∫

0

dt′
∮

�S

[
G(�r, �r ′, t, t′)∇′Ψ(�r ′, t′)

− Ψ(�r ′, t′)∇′G(�r, �r ′, t, t′)
]
d�S

′

+
i�
4π

∫

V

d3r
[
Ψ(�r ′, t′)G(�r, �r ′, t, t′)

]
t′=0

. (A.35)

Again q(�r ′, t′) is set to be zero to recover the physical solution that is only dependent

on initial conditions and boundary conditions

Ψ(�r, t) =
1

4π

�2

2m

t+∫

0

dt′

×
∮

�S

[
G(�r, �r ′, t, t′)∇′Ψ(�r ′, t′)−Ψ(�r ′, t′)∇′G(�r, �r ′, t, t′)

]
d�S

′

+
i�
4π

∫

V

d3rΨ(�r ′, 0)G(�r, �r ′, t, 0) (A.36)

where G(�r, �r ′, t, t′) = 0 for t < 0.

Boundary Conditions For different boundary conditions a solution can be built up as

a sum between solution G0(�r, �r
′, t, t′) and a term F (�r, �r ′, t, t′) covering the boundary

effects and we get

G(�r, �r ′, t, t′) = G0(�r, �r
′, t, t′) + F (�r, �r ′, t, t′). (A.37)

The same relation holds for the static case.
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Figure A.13.: Surface integration for a corner geometry. The thick dashed line is the reflecting
surface, the blue region is the position of the entrance slit, the red region will not be considered,
and the green arrows follows the integration path.

A.7.1. Slit and Reflecting Half-Plane — Static

To model Lloyd’s mirror geometry we start by modeling the mirror region as shown in

figure A.13. To find the relevant Green’s function we make use of the method of images3

and find
GL(r, r

′) = G0 − G0(|x− x′|, |y + y′|, |z − z′|)︸ ︷︷ ︸
GI

− G0(|x− x′|, |y − y′|, |z + z′|)︸ ︷︷ ︸
GII

+ G0(|x− x′|, |y + y′|, |z + z′|)︸ ︷︷ ︸
GIII

(A.38)

which does satisfy the boundary condition given by

GL(�r, �r
′) =



0 for z = 0 or y = 0

0 for z → ∞ or y → ∞.
(A.39)

3As described for acoustic waves in Y. A. Melnikov and M. Y. Melnikov (2012) and for time-dependent
matter waves in Brukner and Anton Zeilinger (1997)
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Figure A.13.: Surface integration for a corner geometry. The thick dashed line is the reflecting
surface, the blue region is the position of the entrance slit, the red region will not be considered,
and the green arrows follows the integration path.
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Thus, we assume perfect reflection at SD and SA. From the given Green’s function the

wave function can be calculated using

Ψ(�r) = +
1

4π

∮
d�S′ ·

[
G(�r, �r ′)grad′Ψ(�r ′)−Ψ(�r ′)grad′G(�r, �r ′)

]
. (A.40)

where Term A.40 describes the effect of the boundary and as was chosen GL(�r, �r
′)
∣∣
�r∈S =

0 the first part vanishes. Ψ(�r) is then given by

Ψ(�r) = − 1

4π

∮
d�S′ ·Ψ(�r ′)grad′GL(�r, �r

′). (A.41)

Following the boundary surface in figure A.13 the closed surface integral becomes

Ψ(�r) =
1

4π

∞∫

0

dy′
∞∫

−∞

dx′
[
Ψ(�r ′)

∂

∂z′
GL(�r, �r

′)

]

�r ′∈SA

(A.42)

− 1

4π

∞∫

0

dz′
∞∫

−∞

dx′
[
Ψ(�r ′)

∂

∂y′
GL(�r, �r

′)

]

�r ′∈SB

(A.43)

− 1

4π

0∫

∞

dy′
∞∫

−∞

dx′
[
Ψ(�r ′)

∂

∂z′
GL(�r, �r

′)

]

�r ′∈SC

(A.44)

+
1

4π

0∫

∞

dz′
∞∫

−∞

dx′
[
Ψ(�r ′)

∂

∂y′
GL(�r, �r

′)

]

�r ′∈SD

. (A.45)

If we presuppose that the mirror and the defining slit screen have an infinitely high

potential the wave function should then vanish on SA and SD except at the entrance slit

Ψ(�r) =




0 for �r ∈ SD ∧ �r ∈ SB ∧ �r ∈ SC

0 for �r ∈ SA ∧ b < y < a

1 for �r ∈ SA ∧ b > y > a

(A.46)

thus only Term A.42 is non-zero

Ψ(�r) =
1

4π

b∫

a

dy′
∞∫

−∞

dx′
[
∂

∂z′
GL(�r, �r

′)

]

z′=0

. (A.47)
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Substituting z− = z − z′ and z+ = z + z′ we get

[
∂
∂z′

GL(|�r − �r ′|)
]
z′=0

=
[

∂
∂z′

G0 −GI −GII +GIII

]
z′=0

= ∂
∂z
[−G0 (|x− x′|, |y − y′|, |z−|)]z−=z

+ [G0 (|x− x′|, |y + y′|, |z−|)]z−=z

− [G0 (|x− x′|, |y − y′|, |z+|)]z+=z

+ [G0 (|x− x′|, |y + y′|, |z+|)]z+=z

= 2 ∂
∂z

[G0 (|x− x′|, |y + y′|, |z|)

− G0 (|x− x′|, |y − y′|, |z|)] .

(A.48)

and can state that Ψ(�r) is given by the integral

Ψ(�r) =
1

2π

b∫

a

dy′
∂

∂z

∞∫

−∞

dx′G0

(√
(x− x′)2 + (y + y′)2 + z2

)

︸ ︷︷ ︸
ΨI

(A.49)

− 1

2π

b∫

a

dy′
∂

∂z

∞∫

−∞

dx′G0

(√
(x− x′)2 + (y − y′)2 + z2

)

︸ ︷︷ ︸
ΨII

. (A.50)

The part

ΨI =
χ

2π

b∫

a

dy′
∂

∂z

∞∫

−∞

dξ
ei|

�k|
√

ξ2+(y+y′)2+z2

√
ξ2 + (y + y′)2 + z2

. (A.51)

can be expressed with Hankel-function’s by substituting ξ = x−x′, η =
√

(y + y′)2 + z2,

and using the definition in equation (A.13) in appendix A.6 as

ΨI =
iχ

2

b∫

a

dy′
∂

∂z
H(1)

0

[
|�k|

√
(y + y′)2 + z2

]
(A.52)
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)

︸ ︷︷ ︸
ΨII
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a

dy′
∂
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�k|
√

ξ2+(y+y′)2+z2

√
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can be expressed with Hankel-function’s by substituting ξ = x−x′, η =
√

(y + y′)2 + z2,

and using the definition in equation (A.13) in appendix A.6 as

ΨI =
iχ

2

b∫

a

dy′
∂

∂z
H(1)

0
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|�k|

√
(y + y′)2 + z2

]
(A.52)
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Using Relation A.16 the derivative of the Hankel-function can be expressed as

d

dz
H(1)

0

[
|�k|

√
(y + y′)2 + z2

]
= −H(1)

1

[
|�k|

√
(y + y′)2 + z2

]
|�k|z√

(y + y′)2 + z2
. (A.53)

As ΨI = ΨII|y′→−y′ the time-independent solution Ψ(�r) is given by

ΨL(�r) = ΨI −ΨII (A.54)

= χ
iz|�k|
2

ei|
�k|z

b∫

a

dy′

×



H(1)

1

[
|�k|

√
(y − y′)2 + z2

]

√
(y − y′)2 + z2

−
H(1)

1

[
|�k|

√
(y + y′)2 + z2

]

√
(y + y′)2 + z2


 . (A.55)

Alternatively, this can also be expressed as

ΨL(�r) = χ
iz

4
|�k|2ei|�k|z

b∫

a

dy′

×
{(

H(1)
0

[
|�k|

√
(y − y′)2 + z2

]
+H(1)

2

[
|�k|

√
(y − y′)2 + z2

])

−
(
H(1)

0

[
|�k|

√
(y + y′)2 + z2

]
+H(1)

2

[
|�k|

√
(y + y′)2 + z2

])}
. (A.56)

A.7.1.1. Derivative for Static Solution

With the wave function of Lloyd’s mirror given in equation (A.55) in the static case we

can analyze its properties. A handy quantity is the derivative of the wave function in
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respect to y. Only considering the first term in equation (A.55) ΨL,I, exchanging the

derivative and the integral, and with equation (A.15) we get

∂

∂y
ΨL,I(�r) = χ

iz

4
|�k|2ei|�k|z

b∫

a

dy′
∂

∂y

H(1)
1

[
|�k|

√
(y − y′)2 + z2

]

√
(y − y′)2 + z2

(A.57)

= χ
iz

4
|�k|2ei|�k|z

b∫

a

dy′

×
{
−H(1)

1

[
|�k|√η

] 1

η3/2
(y − y′)

+
1

2
√
η

(
H(1)

0

[
|�k|√η

]
−H(1)

2

[
|�k|√η

])
|�k| 1

√
η
(y − y′)

}
(A.58)

= χ
iz

4
|�k|2ei|�k|z

b∫

a

dy′

×
{
−H(1)

1

[
|�k|√η

] 1

η3/2
(y − y′)

+
1
√
η


H(1)

1

[
|�k|√η

]

|�k|√η
−H(1)

2

[
|�k|√η

] |�k| 1
√
η
(y − y′)


 (A.59)

= χ
iz

4
|�k|2ei|�k|z

b∫

a

dy′H(1)
2

[
|�k|√η

] |�k|
η
(y − y′) (A.60)

= χ
iz

4
|�k|3ei|�k|z

b∫

a

dy′H(1)
2

[
|�k|

√
(y − y′)2 + z2

]
(y − y′)

(y − y′)2 + z2
(A.61)

where η = (y − y′)2 + z2 and H(1)
0 (f) =

2H(1)
1 (f)

f
−H(1)

2 (f) was used. Using Mathematica

the previous equation can be integrated and we get

∂

∂y
ΨL,I(�r) = χ

iz

4
|�k|3ei|�k|z




1

2|�k|
−

H(1)
1

[
|�k|

√
(y − y′)2 + z2

]

|�k|
2
√

(y − y′)2 + z2




∣∣∣∣∣∣∣∣

b

a

(A.62)
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and

∂

∂y
ΨL,II(�r) = χ

iz

4
|�k|3ei|�k|z




1

2|�k|
−

H(1)
1

[
|�k|

√
(y + y′)2 + z2

]

|�k|
2
√

(y + y′)2 + z2




∣∣∣∣∣∣∣∣

b

a

(A.63)

where the constant term can be dropped as it will cancel if the definite integral is

evaluated. For the probability density |ΨL|2 we can write by using equation (A.19)

∂

∂y
|ΨL|2 =

∂

∂y
|Ψ∗

LΨL| (A.64)

=

∣∣∣∣ΨL
∂

∂y
Ψ∗

L +Ψ∗
L
∂

∂y
ΨL

∣∣∣∣ (A.65)

=

∣∣∣∣
(

∂

∂y
ΨL,I(�r) +

∂

∂y
ΨL,II(�r)

)∗

ΨL

+ Ψ∗
L

(
∂

∂y
ΨL,I(�r) +

∂

∂y
ΨL,II(�r)

)∣∣∣∣ (A.66)

= χ2 z
2

16
|�k|2

∣∣∣(H2
− +H2

+

)
Ψ̂L +

(
H1

− +H1
+

)
Ψ̂∗

L

∣∣∣ (A.67)

with

Hn
± =

H(n)
1

[
|�k|

√
(y ± a)2 + z2

]

|�k|
2
√

(y ± a)2 + z2
−

H(n)
1

[
|�k|

√
(y ± b)2 + z2

]

|�k|
2
√

(y ± b)2 + z2
. (A.68)

Figure A.14 shows the the static probability density and the corresponding derivative.

A.7.1.2. Asymptotic Solution

Starting with the asymptotic expression for large z and vanishing δ

ΨAsymptotic = δCz

√
k

2π
e−iπ/4

{
eik

√
(a−y)2+z2

(
(a− y)2 + z2

)3/4 − eik
√

(a+y)2+z2

(
(a+ y)2 + z2

)3/4
}
. (A.69)

As (a− y) � z and (a+ y) � z the denominator can be approximated to be

(
(a− y)2 + z2

)3/4 ≈ z3/2 (A.70)
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Figure A.14.: Probability density of Lloyd’s mirror for the static case with the derivative
overlaid. The pattern was created for standard parameters with L = 0.34m.

and the square root in the exponential gives in first order

√
(a± y)2 + z2 ≈

√
a2 + z2 ± ay√

a2 + z2
+O(2). (A.71)

Thus, the asymptotic wave function becomes

ΨAsymptotic = D
1

z1/2
eik

√
a2+z2

(
e
−ik ay√

a2+z2 − e
ik ay√

a2+z2

)
(A.72)

= −2iD̂ sin

(
k

ay√
a2 + z2

)
≈ −2iD̂ sin

(
k
ay

z

)
(A.73)

which exactly resembles the plane wave solution.

A.7.1.3. Non-Normal Incident

What happens if the incident plane wave hits the entrance slit under a slight angle? We

use equation (A.50) and now use a plane wave in the slit of the following form

Ψ0 = eikzz+iky(y−y′) (A.74)
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Figure A.14.: Probability density of Lloyd’s mirror for the static case with the derivative
overlaid. The pattern was created for standard parameters with L = 0.34m.
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Figure A.15.: Asymptotic solution of Lloyd’s mirror for z � 1 and δ → 0 compared to the
plane wave solution.. The Asymptotic solution is plotted without the approximations in this
section.

with kz = |�k| cos (β) and ky = |�k| sin (β) the wave vector components. For the wave

function y and z lead only to a constant phase a can be dropped and thus only y′ is of

relevance

Ψ(�r) =
1

2π

b∫

a

dy′
∂

∂z

∞∫

−∞

dx′eikyy
′
G0

(√
(x− x′)2 + (y + y′)2 + z2

)

︸ ︷︷ ︸
ΨI

− 1

2π

b∫

a

dy′
∂

∂z

∞∫

−∞

dx′eikyy
′
G0

(√
(x− x′)2 + (y − y′)2 + z2

)

︸ ︷︷ ︸
ΨII

. (A.75)

Jumping ahead to the y′ integration we get

ΨL(�r) = ΨI +ΨII (A.76)

= χ
iz

4
|�k|2ei|�k|z

b∫

a

dy′eikyy
′

×
{(

H(1)
0

[
|�k|

√
(y − y′)2 + z2

]
+H(1)

2

[
|�k|

√
(y − y′)2 + z2

])

−
(
H(1)

0

[
|�k|

√
(y + y′)2 + z2

]
+H(1)

2

[
|�k|

√
(y + y′)2 + z2

])}
. (A.77)
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The resulting interferogram |Ψ|2 for normal incident and different angles are shown in

figure A.16 for positive angles and in figure A.17 for negative angles
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Figure A.16.: Lloyd’s mirror probability density for non-normal incident wave for positives
angles β. β1 = 156µrad and β2 = 2β1
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Figure A.17.: Lloyd’s mirror probability density for non-normal incident wave for negative
angles β. β1 = −468µrad and β2 = 2β1

A.7.1.4. Finite Mirror Length

If equation (A.56) is evaluated at a plane Sx,y,z=L perpendicular to the mirror and direc-

tion of motion, the wave function is the result of reflections in both propagation direc-

tions. Thus, it is strictly only valid for the infinite plane. Despite this we use Huygen’s

principle to calculate the approximate behavior if the mirror has a finite size as seen

in figure A.18. At the plane Sx,y,z=L every point is origin to a spherical wave and the

resulting wavefront is evaluated at a later distance LD.

206



A. Supplemental Information

The resulting interferogram |Ψ|2 for normal incident and different angles are shown in

figure A.16 for positive angles and in figure A.17 for negative angles
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Figure A.17.: Lloyd’s mirror probability density for non-normal incident wave for negative
angles β. β1 = −468µrad and β2 = 2β1

A.7.1.4. Finite Mirror Length

If equation (A.56) is evaluated at a plane Sx,y,z=L perpendicular to the mirror and direc-

tion of motion, the wave function is the result of reflections in both propagation direc-

tions. Thus, it is strictly only valid for the infinite plane. Despite this we use Huygen’s

principle to calculate the approximate behavior if the mirror has a finite size as seen

in figure A.18. At the plane Sx,y,z=L every point is origin to a spherical wave and the

resulting wavefront is evaluated at a later distance LD.
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Figure A.18.: Derivation of the effect of a finite-mirror size far away from the mirror end plane
Sx,y,z=L.

ΨL(y, z)|z<L ≈ k

2πi

∞∫

0

dy′
∞∫

−∞

dx′ ΨGreen(�r
′)
∣∣
SL

eik|�r|

|�r|
(A.78)

≈ A
ik2L

4

∞∫

0

dy′H(0)
1

[
k

√
(y − y′)2 + (z − L)2

]
(A.79)

×




y′+b∫

y′+a

dy′′
H(1)

1

[
k
√

y′′2 + L2
]

√
y′′2 + L2

−
y′−b∫

y′−a

dy′′
H(1)

1

[
k
√

y′′2 + L2
]

√
y′′2 + L2


 .

Figure A.19 shows a comparison between a wave function which was propagated by

Huygen’s principle after a mirror with length L and the static solution for Lloyd’s mirror

with a mirror of length Lp = L+ LD.

A.7.2. Slit and Reflecting Half-Plane — Time-Dependent

equation (A.55) does describes the diffraction integrated over all times. This makes it

impossible to transition to a finite mirror length as every point at the mirror contributes

to the wave function especially the points after a cut-off of the mirror. Thus, it is

necessary to treat the problem time-dependent to discriminate reflection at t1 and t2.
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Figure A.19.: Cut through the diffraction pattern behind the mirror evolved through Huygen’s
principle. The probability of the finite mirror is given by the superposition of spherical waves
at L = 0.34m propagated over LD = 0.1m. The probability density for the plane wave case
uses Lp = L+ LD.

Green’s Function Construction Remembering the static Green’s function GL(|�r−�r ′|)
in equation (A.38) we switch from G0(|�r − �r ′|) to G0(|�r − �r ′|, |t− t′|) and get

GL(|r − r′|, |t− t′|) = G0(|x− x′|, |y − y′|, |z − z′|, |t− t′|)︸ ︷︷ ︸
G0(|t−t′|)

− G0(|x− x′|, |y + y′|, |z − z′|, |t− t′|)︸ ︷︷ ︸
GI(|t−t′|)

− G0(|x− x′|, |y − y′|, |z + z′|, |t− t′|)︸ ︷︷ ︸
GII(|t−t′|)

+ G0(|x− x′|, |y + y′|, |z + z′|, |t− t′|)︸ ︷︷ ︸
GIII(|t−t′|)

.

(A.80)

Boundary Condition As in the static case the Green’s function satisfies the boundary

condition given by

GL(�r, �r
′, t, t′) =



0 for z = 0 or y = 0

0 for z → ∞ or y → ∞.
(A.81)
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Figure A.19.: Cut through the diffraction pattern behind the mirror evolved through Huygen’s
principle. The probability of the finite mirror is given by the superposition of spherical waves
at L = 0.34m propagated over LD = 0.1m. The probability density for the plane wave case
uses Lp = L+ LD.
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Boundary Condition As in the static case the Green’s function satisfies the boundary

condition given by

GL(�r, �r
′, t, t′) =



0 for z = 0 or y = 0

0 for z → ∞ or y → ∞.
(A.81)
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If we presuppose that the mirror and the defining slit screen have an infinitely high

potential the wave function should then vanish on SA and SD except at the entrance slit

Ψ(�r, t) =





0 for �r ∈ SD ∧ �r ∈ SB ∧ �r ∈ SC

0 for �r ∈ SA ∧ b < y < a

e−iω0tΘ[t] for �r ∈ SA ∧ b > y > a

(A.82)

where Θ[t] is the step function which is zero for t ≤ 0. The step function will be in the

following set to 1 as we restrict all calculation to t > 0.

Wave Function Construction By requiring that equation (A.36) satisfies the previous

boundary equations we get

Ψ(�r, t) =
1

4π

�2

2m

t+∫

0

dt′
∮

�S

Ψ(�r ′, t′)∇′GL(|�r − �r ′|, |t− t′|)d�S
′

+
i�
4π

∫

V

d3rΨ(�r ′, 0)GL(|�r − �r ′|, |t− 0|). (A.83)

Using Condition A.46 for Ψ(�r, t) this reduces further to

Ψ(�r, t) =
1

4π

�2

2m

t+∫

0

dt′
b∫

a

dy′
∞∫

−∞

dx′
[
∂

∂z′
GL(|�r − �r ′|, |t− t′|)

]

z′=0

+
i�
4π

∫

V

d3rΨ(�r ′, 0)GL(|�r − �r ′|, |t− 0|). (A.84)

With equation (A.48) the derivative of GL(�r, �r
′, t, t′) in respect to z′ gives

[
∂
∂z′

GL(|�r − �r ′|, |t− t′|)
]
z′=0

= 2 ∂
∂z

[G0 (|x− x′|, |y + y′|, |z|, |t− t′|)

− G0 (|x− x′|, |y − y′|, |z|, |t− t′|)] .
(A.85)
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and get

ΨL(�r, t) =
i�
2π

∫

V

d3rΨ(�r ′, 0)GL(|�r − �r ′|, |t− 0|)

︸ ︷︷ ︸
Ψ̂L,Inital

+
�2

4πm

t+∫

0

dt′
b∫

a

dy′
∂

∂z

∞∫

−∞

dx′ [G0 (|x− x′|, |y − y′|, |z|, |t− t′|)

− G0 (|x− x′|, |y + y′|, |z|, |t− t′|)] (A.86)

= Ψ̂L,Inital + Ψ̂L,D. (A.87)

First Summand — Initial Condition First we look at the term Ψ̂L,Initial which can be

expressed by

Ψ̂L,Initial =
i�
2π

∫

V

d3rΨ(�r ′, 0)GL(|�r − �r ′|, |t− 0|) (A.88)

=
( m

2πi�

)3/2 1

4π

1

t3/2

∞∫

0

dz′
∞∫

0

dy′
∞∫

−∞

dx′Ψ(�r ′, 0)

×
{
ei

m
2�t ((x−x′)2+(y−y′)2+(z−z′)2) − ei

m
2�t ((x−x′)2+(y+y′)2+(z−z′)2)

− ei
m
2�t ((x−x′)2+(y−y′)2+(z+z′)2) + ei

m
2�t ((x−x′)2+(y+y′)2+(z+z′)2)

}
(A.89)

By separating the exponent and using equation (A.11)

∞∫

0

ei
m
2�

(ξ−ξ′)2

t =

(
1

2
+

i

2

)√
π�
m

(
1 + (1− i)FC

[√
m

π�
ξ

]
+ (1 + i)FS

[√
m

π�
ξ

])

(A.90)

210



A. Supplemental Information

and get

ΨL(�r, t) =
i�
2π

∫

V

d3rΨ(�r ′, 0)GL(|�r − �r ′|, |t− 0|)

︸ ︷︷ ︸
Ψ̂L,Inital

+
�2

4πm

t+∫

0

dt′
b∫

a

dy′
∂

∂z

∞∫

−∞

dx′ [G0 (|x− x′|, |y − y′|, |z|, |t− t′|)

− G0 (|x− x′|, |y + y′|, |z|, |t− t′|)] (A.86)

= Ψ̂L,Inital + Ψ̂L,D. (A.87)

First Summand — Initial Condition First we look at the term Ψ̂L,Initial which can be

expressed by

Ψ̂L,Initial =
i�
2π

∫

V

d3rΨ(�r ′, 0)GL(|�r − �r ′|, |t− 0|) (A.88)

=
( m

2πi�

)3/2 1

4π

1

t3/2

∞∫

0

dz′
∞∫

0

dy′
∞∫

−∞

dx′Ψ(�r ′, 0)

×
{
ei

m
2�t ((x−x′)2+(y−y′)2+(z−z′)2) − ei

m
2�t ((x−x′)2+(y+y′)2+(z−z′)2)

− ei
m
2�t ((x−x′)2+(y−y′)2+(z+z′)2) + ei

m
2�t ((x−x′)2+(y+y′)2+(z+z′)2)

}
(A.89)
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and equation (A.7) this can be solved to be

Ψ̂L,Initial =
1

(2i)3/2
1

4π
(1 + i)

(
1

2
+

i

2

)2

(A.91)

× {(1 + (1− i)FCy + (1 + i)FSy) (1 + (1− i)FCz + (1 + i)FSz)

− (1− (1− i)FCy − (1 + i)FSy) (1 + (1− i)FCz + (1 + i)FSz)

− (1 + (1− i)FCy + (1 + i)FSy) (1− (1− i)FCz − (1 + i)FSz)

+ (1− (1− i)FCy − (1 + i)FSy) (1− (1− i)FCz − (1 + i)FSz)}

= 2(1− i)�
√
π

(m�t)
3/2

(FSy + iFCy) (FCz + iFSy) (A.92)

with Fξ = F
[√

m
π�tξ

]
and ξ = {y, z}.

Second Summand — Main Integration The second term Ψ̂L,D can be expressed as

Ψ̂L,D = −χ
i�

4πm

( m

2πi�

)3/2 ∂

∂z

b∫

a

dy′
t+∫

0

dt′
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1

t− t′

)3/2
∞∫

−∞

dx′

×
(
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m
2�

(x−x′)2+(y−y′)2+z2

t−t′ − ei
m
2�

(x−x′)2+(y+y′)2+z2

t−t′

)
e−iω0t′ . (A.93)

The x integration can be performed to be
∫∞
−∞ ei

m
2�

(x−x′)2

t−t′ = (1+ i)
√

π
2

√
2�(t−t′)

m
and thus

Ψ̂L,D = −χ
(1− i)

(4π)2
e−iω0t

∂

∂z

t+∫
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dt′
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t−t′ − ei
m
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)
. (A.94)
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Integrating the term with y − y′ over y we get

Ψ̂−
L,D = −(−1)3/4χ

(1− i)
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√
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t−t′ (A.95)
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×
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]
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t− t′

])
.

Substituting ξ = t− t′, dξ = −dt′, ξ(0) = t, and ξ(t+) = t− t+ which yields

Ψ̂−
L,D = − iχ

16π

√
�
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∂
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eiω0ξei

m
2�

z2

ξ

×
(
Erfi

[(
1

2
+

i

2

)√
m

�
a− y√

ξ

]
− Erfi

[(
1

2
+

i

2

)√
m

�
b− y√

ξ

])
. (A.97)

In the limit of t+ → t, using the derivative in respect to z, and using ω = �
2m

k2 this

becomes

Ψ̂−
L,D = −

√
m

π�
z

16π
e−iω0t

t∫

0

dξ
1
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− Erfi

[(
1

2
+

i

2

)√
m

�
b− y√

ξ

])
(A.98)

and the full solution is given as

Ψ̂(t) = Ψ̂L,Initial + Ψ̂−
L,D − Ψ̂+

L,D. (A.99)

As Ψ̂L,Initial is strongly suppressed4 in relation to Ψ̂−
L,D − Ψ̂+

L,D and is dropped in future

calculations.

4In the relevant parameter space for this experiment, this term is smaller by more than 50 orders of
magnitude.
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Integrating the term with y − y′ over y we get
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Erfi
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2
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1
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×
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2
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2

)√
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�
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]
− Erfi
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2

)√
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�
b− y√
t− t′
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.

Substituting ξ = t− t′, dξ = −dt′, ξ(0) = t, and ξ(t+) = t− t+ which yields
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+
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In the limit of t+ → t, using the derivative in respect to z, and using ω = �
2m

k2 this

becomes

Ψ̂−
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π�
z

16π
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+
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ξ
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and the full solution is given as

Ψ̂(t) = Ψ̂L,Initial + Ψ̂−
L,D − Ψ̂+

L,D. (A.99)

As Ψ̂L,Initial is strongly suppressed4 in relation to Ψ̂−
L,D − Ψ̂+

L,D and is dropped in future

calculations.

4In the relevant parameter space for this experiment, this term is smaller by more than 50 orders of
magnitude.
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A.7. Wave Function of Lloyd’s Mirror in Green’s Formalism

A.7.2.1. Time-Dependent — Time-Independent Transition

Using equation (A.93) we will now try to transition from the time-dependent case to the

static case. The first question to answer is, does Ψ̂L,D(t) settle if t → ∞.

Ψ̂L,D = −χ
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4πm

( m
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with ∆x = x−x′, ∆y = y− y′, and ∆ŷ = y+ y′. Substituting while taking t+ → t gives

ξ = t− t′, dξ = −dt′, ξ(0) = t, ξ(t) = 0, and thus

Ψ̂L,D = χ
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Taking in addition the limit t → ∞ of Ψ̂ξ the integral becomes solvable and we get

lim
t→∞
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∞∫
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= (1 + i)
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. (A.103)
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Where E = �ω0 = �
2m

k2
0 is used to express the argument of the exponential. The full

solution is given by
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∆x2+∆ŷ2+z2

√
∆x2 +∆ŷ2 + z2
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=
χ

8π2

∂

∂z

b∫
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dx′
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eik
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2
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)
(A.105)

The term limt→∞ (e−iω0t) is constant and can be joined in the normalization χ. The

previous equation does indeed resemble the static case before spatial integration.

A.8. Calculation of the Phase Shifts in Lloyd’s Mirror

In S. A. Werner (1994) the general formalism of quantum phase-sifts in a Mach-Zehnder

type interferometer is used to calculate the phase shift for gravity, rotation and due to

the topology in a perfect-silicon crystal neutron interferometer. The same formalism

can be applied here as interference in Lloyd’s mirror originates from the interference

of two paths and thus is topological identical to a Mach-Zehnder type interferometer.

Using this formalism the phase shift due to the Casimir–Polder interaction of the mirror

coated with an electrical conducting material and the neutron is calculated.

A.8.1. General Phase Shift Calculation

Following S. A. Werner (1994) the phase shift ϕ(�r, t) in a two-path interferometer in

one path is given by the line integral in space-time as

ϕ(�r, t) =
1

�

∫
L dt′ (A.106)
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where L = �p · v− Ĥ is the Lagrangian, Ĥ the Hamiltonian of the system, �p the canonical

momentum, and �v = d�s
dt

the classical group velocity.

The phase shift in both paths can be expressed as

ϕI/II(�r, t) =
1

�

�r∫

�r0

�pI/II · d�s−
1

�

t∫

t0

ĤI/IIdt
′ (A.107)

The phase shift caused by a potential U(�r, t) is given by the difference between the phase

difference between an interferometer and the same interferometer without potential.

Thus, the phase shift is

∆ϕU = ϕI(�r, t)− ϕII(�r, t)− (ϕI(�r, t)− ϕII(�r, t))|U(�r,t)=0 (A.108)

=
1

�

�r∫

�r0

∆�pI · d�s−
1

�

t∫

t0

∆ĤIdt
′

− 1

�

�r∫

�r0

∆�pII · d�s+
1

�

t∫

t0

∆ĤIIdt
′ (A.109)

If the Hamiltonian Ĥ is time-independent the time integration drops out and the phase

shift due to the potential becomes the integral along the interferometer path through

the potential region R(U)

∆ϕU =
1

�

∫

R(U)

∆�p · d�s (A.110)

with the change of the kinetic momentum ∆�p in R(U).

A.8.2. Phase Shift due to the Casimir-Effect

Gebhart, Klatt and Buhmann (2016) propose a Casimir–Polder potential for a neutron

in front of an electrical perfect conducting surface due to its magnetic moment. The

proposed potential is

UCasimir, PF =
�2

64πy3
γ2µ0 (A.111)

= ξC
1

y3
= ξCV(y) (A.112)
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with γ = gne0/(2m), ξC = �2γ2µ0/(64π), and the g-factor of the neutron gn. An

alternative to this potential the so called plasma model is given in the same publication

but will not further discusses as justified in section 5.6.3.5.

The geometry of the problem is shown in figure A.20 where the Casimir–Polder potential

expands from the mirror in the region transversed by the neutrons.

Figure A.20.: Definition of relevant quantities that are used for the calculation of phase shifts
in Lloyd’s mirror as proposed in Ivanov (2016, priv. comm.).

As stated in appendix A.8.1 and following an analog calculation for the chameleon

potential in Ivanov (2016, priv. comm.), the phase shift in Lloyd’s mirror due to the

Casimir–Polder potential and the geometry is given by the closed line integral along the

beam path. With �p = ��k and using Stokes integral theorem as given in Lang and Pucker

(2016) equation (A.110) can be expressed as

∆ϕCasimir =

∮

I+II

�q(�r) · d�r =
∫∫

A

�n (∇× �q(�r)) dA (A.113)

=

∫∫

R(U)

dzdy

(
∂qy(�r)

∂z
− ∂qz(�r)

∂y

)∣∣∣∣
x=0

(A.114)
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where �n is the normal vector of area A which is enclosed by path I and II. Due to energy

conservation the momentum �q in the region of the potential R(U) is connected to the

free-momentum �k by

�k 2 = �q 2 +
2m

�2
UCasimir(�r). (A.115)

By rearranging for |�q| and Taylor-expand around U(�r) = 0 one gets

|�q| =
√
k2 − 2m

�2
UCasimir = |�k| − mUCasimir

�2|�k|
− m2U2

Casimir

2�4|�k|3
+O(U3

Casimir) (A.116)

≈ |�k| − m

�2|�k|
UCasimir (A.117)

where terms of order O(U2
Casimir) and higher can be neglected for

(
��k

)2

� mUCasimir/2.

The change in kinetic momentum is then given by

∆qx = 0 (A.118)

∆qy = − m

�2|�k|
UCasimir(y)

ky

|�k|
(A.119)

∆qz = − m

�2|�k|
UCasimir(y)

kz

|�k|
(A.120)

where the term ki
|�k|

states the relative magnitude of the component and ∆qx as the

potential cannot produce a change in momentum in x-dimension.

Thus, and by restricting the problem to the yz-plane equation (A.114) becomes

∆ϕCasimir =

∫∫

R(U)

dzdy

(
∂qy(�r)

∂z
− ∂qz(�r)

∂y

)∣∣∣∣
x=0

(A.121)

= − m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂z
UCasimir(y)

ky

|�k|

)

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣
x=0

(A.122)

+
m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂y
UCasimir(y)

kz

|�k|
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x=0

=
m

�2|�k|
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dzdy

(
∂V(y)
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kz

|�k|
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(A.123)
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By canceling the y-derivative with the corresponding integral and evaluate the result at

path I or path II and using equation (A.124) the previous equation becomes

∆ϕCasimir =
m

�2k
ξC

L∫

0

dz

(
V(y)kz

k

∣∣∣∣
I

− V(y)kz
k

∣∣∣∣
II

)
. (A.124)

where kz = k cos (α). To evaluate the integral one follows the contour of the area R(U)

enclosed by the two interfering paths as shown in figure A.21.

Figure A.21.: Contour that is used for the calculation of phase shifts in Lloyd’s mirror as
proposed in Ivanov (2016, priv. comm.).

In the enclosed area the integration along the mirror direction can be split in three parts.

The parametrization for beam path I is

y(z) = a+ ŷ−a
L
z

dz = L
ŷ−a

dy

cos (α) = L√
L2+(ŷ−a)2




Cz1 & Cz2& Cz3 (A.125)
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and for beam path II is

y(z) = a− a+ŷ
L
z
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a+ŷ

dy
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(A.126)

and one yields for Cz1 , Cz2 and Cz3
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(A.128)

=

a+ ŷ−a
L
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a

dy
L

a− ŷ
cosαIV(y) +

a−a+ŷ
L

l∫

a

dy
L

a+ ŷ
cosαIIV(y) (A.129)

a+ ŷ−a
L

2l∫

a−a−ŷ
L

l

dy
L

a− ŷ
cosαIV(y)−

−a+a+ŷ
L

2l∫

−a+a+ŷ
L

l

dy
L

a+ ŷ
cosαIIV(y) (A.130)

ŷ∫

a+ ŷ−a
L

2l

dy
L

a− ŷ
cosαIV(y)−

ŷ∫

−a+a+ŷ
L

2l

dy
L

a+ ŷ
cosαIIV(y). (A.131)
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Connecting the integrands of Term A.129, Term A.130 and in Term A.131 and reformu-

lated by using l = La/(ŷ + a) yields

�2k∆ϕCasimir

mξC
=

ŷ∫

a

dy
L

a− ŷ
cosαIV(y) +

a−a+ŷ
L

l∫

a

dy
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a+ ŷ
cosαIIV(y)

−
ŷ∫

−a+a+ŷ
L

l

dy
L

a+ ŷ
cosαIIV(y) (A.132)

=
cosαIL

a− ŷ

ŷ∫

a

dyV (y) +
cosαIIL

a+ ŷ

0∫

a

dyV (y)

− cosαIIL

ŷ + a

ŷ∫

0

dyV (y) (A.133)

=
cosαIL

ŷ − a

ŷ∫

a

dyV (y)− cosαIIL

ŷ + a




a∫

ymin

dyV (y) +

ŷ∫

ymin

dyV (y)


 . (A.134)

As the idealized potential diverges for y = 0, the lower integration limit has to be set at

a small distance ymin from the mirror. Then the integral can be solved as

y+∫

y−

V(y)dy =
1

2

(
1

y2−
− 1

y2+

)
(A.135)

and equation (A.134) becomes

∆ϕCasimir = L2mξC
�2k


 a+ ŷ

a2ŷ2
√

L2 + (ŷ − a)2
−

2 1
y2min

+ 1
a2

− 1
ŷ2

(ŷ + a)
√
L2 + (a+ ŷ)2


 . (A.136)

For L � (a− ŷ) and L � (a+ ŷ) this can be simplified to

∆ϕCasimir =
mγ2µ0L

128πk

(
a3 + ŷ3

a2ŷ2(a2 + ŷ2)
− 1

(ŷ + a)y2min

)
. (A.137)
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cosαIV(y) +

a−a+ŷ
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A.8.3. Phase Shift due to a Magnetic Field

In Helmut Rauch and Samuel A. Werner (2015) the potential energy of a neutron in an

magnetic field �B is stated as

UMag = −�µ · �B(�r) (A.138)

with �µ = �σµn, �σ the Pauli matrices, and µn the magnetic moment of the neutron. Note

that the phase shift due to an magnetic field in a two beam neutron interferometer

as given in Helmut Rauch and Samuel A. Werner (2015) and presented in H. Rauch,

Zeilinger et al. (1975) does describe a situation where the field acts only in one beam

path. As the magnetic field is present in both paths in Lloyd’s Mirror the previously

sketched formalism is used to derive the phase shift due to a magnetic field.

Following the same argument as made in appendix A.8.2 the momentum can be expressed

as

|�q| ≈ |�k| − m

�2|�k|
UMag (A.139)

where terms of order O(U2
Mag) and higher are neglected.

For ∂
∂z

�B �= 0∨ ∂
∂y

�B �= 0: By construction, the interferometer area that is encompassed

by the two beam paths is perpendicular to the x-dimension. Thus, the phase shift

calculation is restricted to the yz-plane and the geometry is shown in figure A.21. By

using equation (A.138) the equation (A.114) becomes

∆ϕMag =

∫∫

R(U)

dzdy

(
∂qy(�r)

∂z
− ∂qz(�r)

∂y

)∣∣∣∣
x=0

(A.140)

= − m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂z
UMag

ky

|�k|

)∣∣∣∣∣
x=0

+
m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂y
UMag

kz

|�k|

)∣∣∣∣∣
x=0

(A.141)

Testing different magnetic fields in equation (A.141) it is clear for which fields a phase

shift can be expect in this configuration. A phase shift is expected if

∆ϕMag



= 0 for ∂

∂z
UMag = 0 ∧ ∂

∂y
UMag = 0

�= 0 for ∂
∂z
UMag �= 0 ∨ ∂

∂y
UMag �= 0.

(A.142)
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This situation is analog to the case of gravity where no phase shift is expected if the beam

path plane is perpendicular to gravitation. Only if a small angle between gravity and

the x-dimension is present a phase shift is non-zero as shown insection 5.6.3.2. Further,

if components of the setup are magnetic or neighboring experiments produce stray fields

non-negligible inhomogeneous fields could be present.

It is assumed that indeed an inhomogeneous magnetic field

�B =




Bx(y)

0

0


 (A.143)

is present. The potential energy is given as

UMag,± = ∓µnBx (y) . (A.144)

The phase shift is then given by equation (A.113)

∆ϕMag,± =

∫∫

R(U)

dzdy

(
∂qy(�r)

∂z
− ∂qz(�r)

∂y

)∣∣∣∣
x=0

(A.145)

= − m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂z
UMag,±(y)

ky

|�k|

)

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣
x=0

+
m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂y
UMag,±(y)

kz

|�k|

)∣∣∣∣∣
x=0

(A.146)

=
m

�2|�k|

∫∫

R(U)

dzdy

(
∂

∂y
UMag,±(y)

kz

|�k|

)∣∣∣∣∣
x=0

(A.147)

The derivative in respect to y can be canceled using the corresponding integral and the

previous equation becomes

∆ϕMag,± = ∓mµn

�2k

∫

I,II

dz

(
µnBx(y)

kz
k

∣∣∣∣
I

− µnBx(y)
kz
k

∣∣∣∣
II

)
. (A.148)
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Using the same parametrization as in appendix A.8.2 gives

−�2k∆ϕMag,+

mµn

=

l∫

0

dz

(
Bx(y)

kz
k

∣∣∣∣
I

− Bx(y)
kz
k

∣∣∣∣
II

)
+

2l∫

l

dz

(
Bx(y)

kz
k

∣∣∣∣
I

− Bx(y)
kz
k

∣∣∣∣
II

)

+

L∫

2l

dz

(
Bx(y)

kz
k

∣∣∣∣
I

− Bx(y)
kz
k

∣∣∣∣
II

)
. (A.149)

Jumping directly to the result as it is derived in appendix A.8.2 and by exchanging the

the Casimir potential energy by the magnetic potential energy gives

−�2k∆ϕMag,+

mµn

=
cosαIL

ŷ − a

ŷ∫

a

dyBx(y)−
cosαIIL

ŷ + a




a∫

0

dyBx(y) +

ŷ∫

0

dyBx(y)


 . (A.150)

Assuming Bx(y) = B0 + by and dropping the constant B0 gives

∆ϕMag,± = ∓mµn

�2k


 y2 − a2

a2y2
√

L2 + (y − a)2
+

a2 + y2

(y + a)
√
L2 + (a+ y)2


 . (A.151)

For L � (a− y) and L � (a+ y) this can be simplified to

∆ϕMag,± = ∓ m

�2k
µnb

ayL

a+ y
(A.152)

which features the same structure as the gravitational phase shift discussed in sec-

tion 5.6.3.2.

For ∂
∂x

�B �= 0: If a magnetic field changes only in x-direction the potential energy is

given as

UMag,± = ∓µnB(x) (A.153)

and the change in kinetic momentum for each component n is given by

∆qn,± = ∓ m

�2|�k|
µnB(x)

kn

|�k|
. (A.154)

As in the last paragraph the situation is analog to gravity acting in the interferometer. If

the area enclosed by path I and path II is oriented perpendicular to gravity no phase shift

is expected. Indeed we see that ∆ϕMag = 0 if the yz-plane is chosen. Still, the gradient
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should have an effect due to the slight deflection Lx of the neutron in the gradient field

which is analog to the vertical drop due to gravity as discussed in section 5.6.3.2. The

general phase shift is specified by equation (A.113) and the xy-plane is used for the

calculation. The geometry is shown in figure A.22. This gives

∆ϕMag,Vert,± =

∫∫

R(U)

dxdy

(
∂qy(�r)

∂x
− ∂qx(�r)

∂y

)∣∣∣∣
z=0

(A.155)

= − m

�2|�k|

∫∫

R(U)

dxdy

(
∂

∂x
UMag(x)

ky

|�k|

)∣∣∣∣∣
x=0

+
m

�2|�k|

∫∫

R(U)

dxdy

(
∂

∂y
UMag(x)

kx

|�k|

)

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣
x=0

(A.156)

= − m

�2|�k|

∫∫

R(U)

dxdy

(
∂

∂x
UMag(x)

ky

|�k|

)∣∣∣∣∣
x=0

(A.157)

By canceling the x-derivative with the corresponding integral, evaluating the result at

path I or path II, and by using equation (A.124) the previous equation becomes

∆ϕMag,Vert,± = ∓ m

�2k

∫

I,II

dy

(
µnBx(x)

ky
k

∣∣∣∣
I

− µnBx(x)
ky
k

∣∣∣∣
II

)
. (A.158)

where ky = k cos (α). To evaluate the integral one follows the contour of the area R(U)

enclosed by the two interfering paths as shown in figure A.22. In contrast to figure A.21,

figure A.22 shows a view of the setup from the direction of the beam port.

In the enclosed area the integration along the mirror direction can be split in several

regions. The parametrization for beam path I is

x(y) = Lx

a−ŷ
(y − a))

dy = a−ŷ
Lx

dx

cos (α) = Lx√
L2
x+(ŷ−a)2




Cz1& Cz2 & Cz3 (A.159)
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Figure A.22.: The integration contour that is used for the calculation of phase shifts in Lloyd’s
mirror for a magnetic field varying parallel to gravity.
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and for beam path II is

x(y) = Lx

ŷ+a
(a− y)

dy = −a+ŷ
Lx

dx

cos (α) = Lx√
L2
x+(ŷ+a)2





Cz1

x(y) = Lx

a+ŷ
(a+ y)

dy = a+ŷ
Lx

dx

cos (α) = Lx√
L2
x+(ŷ+a)2





Cz2& Cz3

. (A.160)

For Cz1 , Cz2 and Cz3 one yields

�2k∆ϕMag,−

mµn

=

ŷ∫

0

dy

(
Bx(x)

ky
k

∣∣∣∣
I

− Bx(x)
ky
k

∣∣∣∣
II

)
(A.161)

=

a∫

0

dy

(
Bx(x)

ky
k

∣∣∣∣
I

− Bx(x)
ky
k

∣∣∣∣
II

)
+

ŷ∫

a

dy

(
Bx(x)

ky
k

∣∣∣∣
I

− Bx(x)
ky
k

∣∣∣∣
II

)

(A.162)

= −

2Lxa
a+ŷ∫

Lxa
a+ŷ

dx
a+ ŷ

Lx

cosαIIBx(x) +

0∫

Lxa
a+ŷ

dx
a+ ŷ

Lx

cosαIIBx(x) (A.163)

Lx∫

0

dx
a− ŷ

Lx

cosαIBx(x)−
Lx∫

2Lxa
ŷ+a

dx
a+ ŷ

Lx

cosαIIBx(x) (A.164)

The integration over path II in Term A.163 and the Term A.164 can be connected

�2k∆ϕMag,−

mµn

=

Lx∫

0

dx
a− ŷ

Lx

cosαIBx(x)−
Lx∫

0

dx
a+ ŷ

Lx

cosαIIBx(x) (A.165)

=

(
a− ŷ

Lx

cosαI −
a+ ŷ

Lx

cosαII

) Lx∫

0

dxBx(x) (A.166)

=


 a− ŷ√

L2
x + (ŷ − a)2

− a+ ŷ√
L2
x + (ŷ + a)2




︸ ︷︷ ︸
∆I/II

Lx∫

0

dxBx(x). (A.167)
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a+ŷ∫

Lxa
a+ŷ
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ŷ+a

dx
a+ ŷ
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∆I/II is just the path difference between path I and path II. Assuming that the magnetic

field has a linear gradient of the form B(x) = B0 + bx the integral can be solved. Note

that the constant part B0 would have dropped out in equation (A.157) and is thus not

further considered for the phase shift. The integral can be solved as

Lx∫

0

B(x)dx = B0Lx +
1

2
bL2

x (A.168)

and equation (A.167) becomes

∆ϕMag,± = ∓mµn

�2k
bL2

x

2


 a− ŷ√

L2
x + (ŷ − a)2

− a+ ŷ√
L2
x + (ŷ + a)2


 . (A.169)

This phase shift is very small and can be neglected in all future considerations.
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B.1. Developed Software

— CR39Analyse

Mathematica package which handles datasets of scanned CR39 detectors. Images

which are taken with an optical microscope are scanned for possible nuclear tracks.

Tracks which are due to the nuclear reaction of neutrons in a converting boron

layer are identified using a random forrest algorithm. The package handles image

and data stitching to cover big area detectors and rudimentary analysis. After

identifying possible tracks each track will get a dataset unique identifier. Results

are saved in a rudimentary database format using the FileIO package.

— LloydMonteCarlo

Mathematica package to simulate the interference pattern of Lloyd’s mirror con-

sidering several systematic effects. The probability density is calculated for the

chosen model, beam characteristics are considered as for example the wavelength

distribution, and from the resulting distribution a CR39 detector is simulated using

MonteCarlo rejection drawing.

— FileIO

Mathematica package that implements a rudimentary database for config files and

tracks flies which are produced by the CR39Analyse package.

— NeutronsAndMatter

Mathematica package which calculates neutron absorption and scattering through

matter for elements, molecules, and compounds.

— BiDimAnalysis

Mathematica package which interprets the raw data from the Bidim26 detection

system. This includes ROIs and ToF spectra.
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— KurAnalysis

Mathematica package which interprets the plain text files captured by the Kurri

on-line detection system.

— BeamTimeSupport

Mathematica package which handles measurement metadata, complex measure-

ment procedures, and automatically builds a measurement database.

B.2. Supervised Theses

— Matthias Heumesser

Diploma Thesis, Kollimationssystem für ein Lloyd-Materiewellen-Interferometer,

2016

— Martin Mock

Bachelor Thesis, Aufbau und Erweiterung eines Vakuumsystems zur Erzeugung

hoher elektrischer Felder für das q-Bounce Experiment, 2016

— Dominik Blöch

Project Thesis, Realisierung und Analyse eines Temperatursensor-Arrays für das

Lloyd-Experiment, 2016

— Patrick Kappl

Bachelor Thesis, Vorbereitung einer Strahlzeit für ein Lloyd-Interferometer mit

sehr kalten Neutronen, 2015

— Andreas Scheicher

Project Thesis, Transmissions Optimierung und 3He basierte Detektion von sehr

kalten Neutronen zur Implementierung eines Lloyd-Interferometers 2015

— David Bricher

Project Thesis, Velocity spectrum analysis of Very-cold neutrons at a Lloyd-Mirror

Interferometer experiment, 2015

— Alexander Leopold

Project Thesis, Homogeneity considerations for the production of spatially resolving

neutron detectors for the qBounce experiment on the µm-scale via a Physical Vapor

Deposition unit, 2014
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B.2. Supervised Theses

— Markus Spannring

Bachelor Thesis, Untersuchung des Überschlagverhaltens zwischen zwei planparal-

lelen Platten bei bekanntem Abstand und in Abhängikeit vom Druck, 2013

— Markus Spannring

Project Thesis, Kalibrierung der Logicbox, 2013

— Michael Iro

Bachelor Thesis, Construction of an apparatus for measuring strong electric fields

at small distances and low pressure for the qBounce-Experiment, 2013

— Lukas Schrangl

Project Thesis, Systematische Untersuchung hoher elektrischer Felder zwischen

Neutronenspiegeln für das qBounce-Experiment, 2011

— Jakob Micko

Project Thesis, Electic field studies of a square electrode configuration for qBounce,

2018
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Abstract

The Lloyd’s mirror as described by Humphrey Lloyd 
in 1831 is a simple but powerful instrument in optical 
studies. Today’s foremost applications are the optical 
inspection of flat surfaces and as a tool in underwater 
acoustics.This thesis discusses and investigates the 
feasibility of an implementation of Lloyd’s mirror 
with very-cold neutrons. 

Due to current open questions in physics as for 
example the apparent incompatibility of general 
relativity and quantum mechanics, the phenomenon 
of dark energy and dark matter, and matter antimat-
ter asymmetry, novel experimental insights into yet 
unexplored parameter spaces are needed. Lloyd’s 
mirror realized with matter wave especially very-cold 
neutrons could offer such new insights as proposed 
in Pokotilovski (2011) and in Pokotilovski (2013). 

In this thesis the quantum mechanical behavior of 
neutrons that transverse a region in front of a mirror 
is studied theoretically to infer the requirements of 
an experimental realization. It is concluded with a 
simulation of the expected interferogram to estimate 
the required measurement time. In accordance with 
the theoretical studies, the results of an experimental 
realization of the required beam preparation section 
at the very-cold neutron beam at the PF2 at the In-
stitut Laue-Langevin are presented. Finally, a spatial 
detection mechanism using boron-based CR39 imag-
ing plates adapted to the needs of this experiment is 
demonstrated.

Kurzfassung

Lloyd’s Spiegel wie er von Humphrey Lloyd 1831 
beschrieben wurde ist ein vielseitiges optisches 
Instrument. Heutzutage findet es vor allem in den 
Gebieten der Unterwasserakustik und der optischen 
Oberflächenanalyse Verwendung. In dieser Arbeit 
wird die Machbarkeit einer Umsetzung von Lloyd’s 
Spiegel mit sehr kalten Neutronen untersucht. 

Aufgrund offener Fragen wie z.B. der scheinbaren 
Inkompatibilität von Allgemeiner Relativitätsthe-
orie und Quantenmechanik, dem Phänomen der 
Dunklen Materie und der Dunklen Energie, und der 
Antimaterie-Materie Asymmetrie, werden neuartige 
Experimente benötigt, die Einblick geben in bisher 
nicht untersuchte Parameterbereiche. Eine Um-
setzung von Lloyd’s Spiegel mit sehr kalten Neu-
tronen könnte einen solchen Einblick eröffnen, wie 
in Pokotilovski (2011) und in Pokotilovski (2013) 
vorgeschlagen. 

In dieser Arbeit wird das quantenmechanische Ver-
halten von Neutronen untersucht, die eine Region 
mit einem vertikal ausgerichteten Spiegel durch-
queren, um Bedingungen einer experimentellen 
Umsetzung abzuleiten. Darauf aufbauend wird eine 
Simulation des erwarteten Interferogram vorgestellt, 
um die benötigte Messzeit abzuschätzen. In Über- 
einstimmung mit den theoretischen Überlegungen 
wird ein Neutronenoptik Aufbau, wie er am Institut 
Laue-Langevin umgesetzt wurde und welcher den 
Neutronenstrahl für das Interferometer aufbereitet, 
vorgestellt. Abschließend werden Entwicklungen 
einer ortsaufgelösten Detektion von Neutronen 
mithilfe von Bor-beschichteten CR39 Plättchen 
präsentiert, wie sie für dieses Experiment benötigt 
werden.


