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Abstract

Many phenomena in magnetism can be described using classical models, yet mag-

netism is a quantum mechanical effect. In addition to thermal fluctuations, quantum

fluctuations arise due to the quantum uncertainty of the ground state. These fluctua-

tions are enhanced by low dimensionality and low spin. Spin chains show interesting

excitations associated with quasiparticles. Model materials for spin chains can be

realized in compounds where the interchain interactions are weak enough. This the-

sis presents neutron scattering studies of two model materials for spin chains with

different spin symmetry.

The spin-1
2

Heisenberg antiferromagnetic chain CuSO4*5D2O has a main ex-

change of J ∼ 3 K, which permits to study its excitation spectrum up to temper-

atures of ten times the exchange. The spin-1
2

Heisenberg magnet has been studied

widely both theoretically and experimentally. The excitation spectrum of the spin-1
2

Heisenberg antiferromagnet consists of quasiparticles called spinons, and calculations

for it exist for T = 0 and as a function of temperature. A quantitative comparison

between experimental data and theoretical models across a range of temperatures is

presented. The excitation spectrum of CuSO4*5D2O is excellently described by the

excitation spectrum of a spin-1
2

Heisenberg antiferromagnetic chain at finite temper-

atures. Energy-temperature scaling is observed at temperatures up to 2J . For these

temperatures the Luttinger liquid description of the spin-1
2

Heisenberg antiferromag-

netic chain is valid. A spinon continuum is confirmed at all measured temperatures.

Therefore, even at ten times the main exchange (T ≈ 10 J), CuSO4*5D2O shows the

behavior of a quantum magnet, and not of a classical system at infinite temperatures,

for which one would expect single spin flips.

The Ising chain is one of the most studied models in magnetism, one model com-

pound for it is RbCoCl3. Optical spectroscopy measurements suggest a lower gap

than for similar compounds, which makes it better suited for high resolution neu-

tron spectroscopy. Magnetic correlations along the chains arise in RbCoCl3 below

80 K. A gapped continuum is observed, which arises from isolated antiferromagnetic

Ising chains. Below the first magnetic ordering temperature TN1 ≈ 28 K bound

states are observed, which arise due to correlations which form between the chains.

Strong diffuse scattering leads to the conclusion that disorder is still present. At the

second magnetic ordering transition, at TN2 ≈ 14 K, the bound states split as the

correlations between the chains change. Fits indicate that the correlations change

continuously as a function of temperature. Above TN2 the excitation spectrum of

RbCoCl3 can be described by a spin-1
2

Ising chain with an XY-component which is

treated as a perturbation. Below TN2 the main features are reproduced correctly,

but deviations from the details indicate that additional terms in the Hamiltonian

may be necessary.

This thesis was carried out at the Institut Laue-Langevin, the Laboratory for

Neutron Scattering and Imaging at the Paul Scherrer Institute and ETH Zürich.
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Kurzfassung

Obwohl viele Phänomene im Magnetismus anhand klassischer Modelle beschrieben

werden können ist Magnetismus ein quantenmechanischer Effekt. Zusätzlich zu

thermischen Fluktuationen können Quantenfluktuationen auftreten, welche von der

Unsicherheit des Grundzustandes herrühren. Diese Fluktuationen werden durch

niedrige Dimensionalität und Spinquantenzahl verstärkt. Spinketten zeigen interes-

sante Anregungen, die in Zusammenhang mit Quasiteilchen stehen. Modellmateri-

alien für Spinketten können in Verbindungen mit ausreichend schwacher Zwischen-

kettenwechselwirkung realisiert werden. Diese Doktorarbeit präsentiert die Ergeb-

nisse der Untersuchung zweier Modellmaterialien für Spinketten unterschiedlicher

Spinsymmetrie mittels Neutronenstreuung.

Der eindimensionalen Spin-1
2

Heisenberg-Antiferromagnet CuSO4*5D2O hat eine

Wechselwirkungsenergie von J ∼ 3 K, was Untersuchungen des Anregungsspek-

trums bis zu Temperaturen von zehn mal der Wechselwirkungsenergie (T ≈ 10 J)

möglich macht. Spin-1
2

Heisenberg-Magnete wurden theoretisch und experimentell

umfassend untersucht. Das Anregungsspektrum eines Spin-1
2

Heisenberg Antifer-

romagneten besteht aus Quasiteilchen die Spinonen genannt werden, und theo-

retische Ergebnisse dafür existieren für T = 0 und als Funktion der Temperatur.

Ein vollständiger quantitativer Vergleich zwischen experimentellen Daten und the-

oretischen Modellen wird präsentiert. Das Anregungsspektrum von CuSO4*5D2O

wird hervorragend durch das Anregungsspektrum einer Spin-1
2

Heisenberg antiferro-

magnetischen Kette bei endlichen Temperaturen beschrieben. Energie-Temperatur

Scaling wird bis 2J beobachtet. In diesem Bereich ist die Beschreibung der Spin-1
2

Heisenberg antiferromagnetischen Kette als Luttinger-Flüssigkeit gültig. Ein Spin-

onenkontinuum ist bei allen gemessen Temperaturen vorhanden. Deshalb zeigt

CuSO4*5D2O sogar bei zehn mal der Wechselwirkung (T ≈ 10 J) das Verhalten

eines Quantenmagneten, und nicht das eines klassischen Systems bei unendlichen

Temperaturen, für welches man das Umklappen einzelner Spins erwarten würde.

Die Isingkette ist eines der wohl am meisten untersuchten Modelle des Mag-

netismus, eine Modellverbindung dafür ist RbCoCl3. Optische Spektroskopie zeigt

eine kleinere Energielücke als für ähnliche Verbindungen, was dieses Material besser

geeignet für hochauflösende Neutronenspektroskopie macht. Unter 80 K treten mag-

netische Korrelationen entlang der Ketten auf. Ein Kontinuum mit einer Lücke wird

beobachtet, welches von isolierten antiferromagnetischen Ising-Ketten herrührt. Un-

terhalb der ersten magnetischen Ordnungstemperatur TN1 ≈ 28 K werden gebundene

Zustände beobachtet, welche aus den Korrelationen zwischen den Ketten resultieren.

Starke diffuse Streuung führt zu der Schlussfolgerung dass noch immer Unordnung

vorhanden ist. Beim zweiten magnetischen Ordnungsübergang bei TN2 ≈ 14 K

spalten sich die gebundenen Zustände auf, da sich die Korrelationen zwischen den

Ketten ändern. Fits deuten darauf hin dass sich die Korrelationen kontinuierlich als

Funktion der Temperatur ändern. Oberhalb von TN2 kann das Anregungsspektrum

vii



von RbCoCl3 durch eine Spin-1
2

Isingkette mit einer XY-Komponente, welche als

Störung behandelt wird, beschrieben werden. Unterhalb von TN2 werden die groben

Eigenschaften korrekt wiedergegeben, Abweichungen von Details deuten aber darauf

hin, dass mehr Terme im Hamiltonian gebraucht werden.

Diese Doktorarbeit wurde am Institut Laue-Langevin, dem Labor für Neutronen-

streuung und Imaging am Paul Scherrer Institut und der ETH Zürich durchgeführt.

viii



Contents

Abstract v

Kurzfassung vii

Contents ix

List of Figures xi

List of Tables xv

Introduction 1

1 Magnetism 3

1.1 A short introduction to magnetism . . . . . . . . . . . . . . . . . . . 3

1.2 Quantum magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Neutron scattering 13

2.1 Neutron Scattering Cross-Section . . . . . . . . . . . . . . . . . . . . 13

2.2 Nuclear Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Magnetic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Form factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Principle of detailed balance . . . . . . . . . . . . . . . . . . . 18

2.3.3 Fluctuation-dissipation theorem . . . . . . . . . . . . . . . . . 18

2.3.4 Static structure factor . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Polarized neutron scattering . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Neutron scattering instruments . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Triple-Axis Spectrometer . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Time of Flight Spectrometer . . . . . . . . . . . . . . . . . . . 22

3 Multispinons at finite temperatures in the spin-1
2

Heisenberg anti-

ferromagnetic chain CuSO4*5D2O 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Heisenberg materials . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 CuSO4*5D2O . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



CONTENTS

3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Detailed Balance . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Multiple Scattering . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Removing incoherent scattering . . . . . . . . . . . . . . . . . 33

3.3.4 Calculating the dynamic susceptibility χ′′ . . . . . . . . . . . . 34

3.3.5 Increased intensity at h → 0 for increasing temperature . . . . 34

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Low-temperature data analysis . . . . . . . . . . . . . . . . . 37

3.4.2 Finite-temperature data analysis . . . . . . . . . . . . . . . . 40

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 The quasi-1 dimensional Ising antiferromagnet RbCoCl3 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Ising materials . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Excitations in Ising-like antiferromagnetic

chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Magnetic and crystallographic structure of RbCoCl3 . . . . . . . . . . 81

4.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Magnetic structure . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Excitations in RbCoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.3 Results compared to the in-chain next nearest neighbor (nnn)

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.4 Temperature dependence of the weights . . . . . . . . . . . . . 109

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Summary and Outlook 115

Bibliography 119

Acknowledgments 129

x



List of Figures

1.1 Two examples of frustration . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Schematic representations of spinons . . . . . . . . . . . . . . . . . . 10

1.3 Boundaries for the two-spinon continuum . . . . . . . . . . . . . . . . 11

2.1 The scattering process . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Magnetic form factors of Cu2+ . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Schematic outline of a triple-axis spectrometer . . . . . . . . . . . . . 20

2.4 Convolution of the resolution ellipsoid and the scattering function . . 21

3.1 Structure of CuSO4*5D2O . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Illustration of the principle of detailed balance . . . . . . . . . . . . . 31

3.3 Illustration of the process used to remove multiple scattering . . . . . 32

3.4 Fit to the incoherent scattering in CuSO4*5D2O . . . . . . . . . . . . 33

3.5 Comparison of the dynamic susceptibility and structure factor . . . . 34

3.6 Difference between the structure factor with h > 0.5 and h < 0.5 . . . 35

3.7 CuSO4*5D2O data at the lowest and highest measured temperatures 36

3.8 CuSO4*5D2O dynamic structure factor and susceptibility at different

temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Energy resolution as a function of h . . . . . . . . . . . . . . . . . . . 38

3.10 Theoretical and experimental low temperature data for CuSO4*5D2O 39

3.11 Comparison of experimentally and theoretically obtained structure

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 Energy/temperature scaling for CuSO4*5D2O . . . . . . . . . . . . . 41

3.13 Dynamic structure factor calculated by Schulz compared to cuts from

CuSO4*5D2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 Dynamic structure factor calculated by Starykh compared to cuts

from CuSO4*5D2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.15 Scaling relation by Barthel compared to cuts from CuSO4*5D2O . . . 44

3.16 Comparison between numerical and experimental CuSO4*5D2O data 45

3.17 Comparison between experimental CuSO4*5D2O data and conformal

field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.18 Temperature dependence of the CuSO4*5D2O dynamic susceptibility 48

3.19 Temperature dependence of the CuSO4*5D2O dynamic susceptibility 49

xi



LIST OF FIGURES

3.20 Comparison between experimental CuSO4*5D2O data and QMC data

for T = 0.099(4) J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.21 Comparison between experimental CuSO4*5D2O data and QMC data

for T = 0.263(8) J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.22 Comparison between experimental CuSO4*5D2O data and QMC data

for T = 0.532(7) J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.23 Comparison between experimental CuSO4*5D2O data and QMC data

for T = 1.06(2) J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.24 Comparison between experimental CuSO4*5D2O data and QMC data

for T = 2.04(6) J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.25 Linear interpolation of the dynamic susceptibility . . . . . . . . . . . 57

3.26 Comparison between experimental CuSO4*5D2O data and scaling re-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.27 Comparison between experimental CuSO4*5D2O data and scaling re-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.28 Temperature dependence of the long-wavelength dynamics . . . . . . 60

3.29 Long-wavelength dynamics of CuSO4*5D2O for different wave vectors 62

3.30 Fits for the CuSO4*5D2O long-wavelength dynamics . . . . . . . . . 62

4.1 Splitting of the energy levels of a free Co2+ ion . . . . . . . . . . . . . 68

4.2 Phase diagram of the Ising chain in a magnetic field . . . . . . . . . . 69

4.3 Sketch of solitons and the resulting dispersion . . . . . . . . . . . . . 72

4.4 Basis states for the perturbation theory from the pure Ising limit . . 74

4.5 Excitation continuum of the isolated chain model . . . . . . . . . . . 74

4.6 Excitation spectrum of the interchain coupling model . . . . . . . . . 75

4.7 Comparison between the isolated chain model and the interchain cou-

pling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Excitation spectrum of the in-chain next nearest neighbor (nnn) model 77

4.9 Comparison between the interchain coupling model and the in-chain

next nearest neighbor (nnn) model . . . . . . . . . . . . . . . . . . . 78

4.10 Excitation spectrum of the exchange mixing model . . . . . . . . . . 79

4.11 Comparison between the in-chain nnn model and the exchange mixing

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Three RbCoCl3 single crystals . . . . . . . . . . . . . . . . . . . . . . 81

4.13 Crystal structure of RbCoCl3 . . . . . . . . . . . . . . . . . . . . . . 82

4.14 Diffraction pattern of a RbCoCl3 single crystal . . . . . . . . . . . . . 83

4.15 Integrated intensity of diffraction scans on RbCoCl3 . . . . . . . . . . 84

4.16 Temperature dependence of the magnetic correlations in RbCoCl3 . . 84

4.17 Magnetic structure in the intermediate temperature phase . . . . . . 85

4.18 Monte Carlo simulation of the magnetic structure and Bragg diffrac-

tion pattern at intermediate temperatures . . . . . . . . . . . . . . . 86

4.19 Magnetic structure in the low temperature phase . . . . . . . . . . . 88

xii



LIST OF FIGURES

4.20 Monte Carlo simulation of the magnetic structure and Bragg diffrac-

tion pattern at low temperatures . . . . . . . . . . . . . . . . . . . . 89

4.21 Excitations in RbCoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.22 Excitations in the three different phases of RbCoCl3 . . . . . . . . . . 94

4.23 Evolution of peak splitting of RbCoCl3 . . . . . . . . . . . . . . . . . 94

4.24 Temperature dependence of the integrated intensity of RbCoCl3 . . . 95

4.25 Temperature dependence of the peak position for RbCoCl3 . . . . . . 95

4.26 Temperature evolution of excitations in RbCoCl3 above TN1 . . . . . 96

4.27 Changes across the RbCoCl3 phase transition at TN1 ≈ 28 K . . . . . 97

4.28 Changes across the RbCoCl3 phase transition at TN2 ≈ 14 K . . . . . 98

4.29 Comparison between experimental data for RbCoCl3 at 2 K and the

in-chain nnn model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.30 Fits of the in-chain nnn model to RbCoCl3 data at T > TN1 . . . . . 101

4.31 Fits of the in-chain nnn model to RbCoCl3 data at TN1 > T > TN2 . 103

4.32 Fits of the in-chain nnn model to RbCoCl3 data at TN2 < T < TN1 104

4.33 Fits of the in-chain nnn model to RbCoCl3 data at TN2 > T . . . . . 106

4.34 Fits of the in-chain nnn model to RbCoCl3 data at T < TN2 . . . . . 107

4.35 Temperature dependence of the weights for staggered fields . . . . . . 109

5.1 Excitation spectrum of an Ising-like chain in a transverse magnetic field117

xiii



LIST OF FIGURES

xiv



List of Tables

3.1 Parameters for equations (3.4) and (3.7) . . . . . . . . . . . . . . . . 26

3.2 Sample temperatures measured during the experiment . . . . . . . . . 31

3.3 Parameters for equations (3.4) and (3.6) from fits . . . . . . . . . . . 46

3.4 Spectral weight for the experimental data . . . . . . . . . . . . . . . . 61

4.1 Lattice parameters for RbCoCl3 at different temperatures . . . . . . . 82

4.2 Parameters from fits with the in-chain next nearest neighbor model . 100

4.3 Multiplicity and relative weights for the intermediate phase of CsCoCl3102

4.4 Multiplicity and relative weights for the intermediate phase of RbCoCl3102

4.5 Multiplicity and relative weights for the low temperature phase of

CsCoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Multiplicity and relative weights for the low temperature phase of

RbCoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Weights for the staggered fields in different magnetic phases . . . . . 113

xv



LIST OF TABLES

xvi



Introduction

Spin chains are particularly suited to study manifestations of quantum mechanics at

a macroscopic level, since they are “simple” enough to be accessible for theoretical

analysis and at the same time show a wide variation of interesting behavior. Ideal

spin chains do not show order, but have an exotic excitation spectrum consisting of

fractional excitations. The isotropic Heisenberg Hamiltonian is the basis for such

studies. The low dimensionality and the quantum nature of spin-1
2

enhance quantum

fluctuations, which are present even at T = 0. These fluctuations suppress order, and

enhancing them can lead to quantum phase transitions. These transitions take place

at quantum critical points, and are driven by parameters other than temperature,

e.g. by pressure or magnetic field. One of the simplest examples of a quantum phase

transition is the Ising chain in a transverse magnetic field [1].

Neutron scattering is a powerful probe to study the spin correlations and excita-

tions in model materials. Neutrons are uncharged, a bulk probe, and are scattered

by nuclear forces. The neutron energy is also of the same order as many excitations

in condensed matter. Furthermore, neutrons have a magnetic moment so that they

also interact with the magnetic moment of unpaired electrons in atoms. Neutrons

are specially suited to investigate the magnetic properties of materials, since they

directly capture the Fourier transformation of the spin-spin correlation function, and

inelastic neutron scattering reflects the correlated fluctuations of a sample [2].

It is a big challenge to find good model materials for spin chains. In real materials,

one deviation from the ideal one-dimensional model is a weak magnetic exchange

J ′ in the other two dimensions. This deviation from ideal one-dimensionality can

lead to three-dimensional order at low temperatures. The ratio J ′/J can be used

as a measure of the low-dimensionality of a system. For temperature dependent

studies, the main exchange J should be of a size that enables studies over a big

enough temperature range without needing to worry about crystallographic phase

transitions or thermal expansion. Crystal anisotropy leads to deviations from the

isotropic Heisenberg model. It can lower spin symmetry, and lead to the XY- and

Ising-cases.

Inelastic neutron scattering requires big single crystals. The feasibility of growing

such crystals is an additional constraint on possible model compounds. Only a few

“simple” and “pure” model materials for quantum magnets are known [3].

CuSO4*5D2O is an excellent model material for the spin-1
2

Heisenberg antiferro-
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magnetic chain. It has spin-1
2

and low anisotropy. The low ratio of interchain to

in-chain interaction makes it very nearly one-dimensional, and its low main exchange

J ∼ 3 K allows measurements up to temperatures of 10 times the main exchange

without having to worry about thermal expansion effects. In this thesis the contin-

uous excitation spectrum of CuSO4*5D2O, which consists of fractional excitations

called spinons, is studied as a function of temperature.

The second model material studied in this thesis is RbCoCl3. In this compound

large crystal field anisotropy reduces spin dimensionality. RbCoCl3 is an Ising-like

quasi-one dimensional compound. It has been studied less than related compounds,

and optical spectroscopy predicted a lower energy scale. Studying the excitation

spectrum of RbCoCl3 as a function of temperature helps to determine the Hamil-

tonian and the corresponding parameters, describe the bound states arising in the

ordered phase, and answering the question if the quantum critical point can be

reached experimentally.

Thesis Outline

This thesis is composed of five chapters.

Chapter 1 is a brief introduction to the theory of magnetism and introduces the

concept of quantum magnetism.

Chapter 2 is an introduction to neutron scattering, the technique used in this

thesis, and presents the types of neutron scattering instruments used.

Chapter 3 is a study of the excitation spectrum of the spin-1
2

Heisenberg antifer-

romagnetic chain CuSO4*5D2O as a function of temperature. It also contains

an introduction to the theory of excitations in a Heisenberg chain.

Chapter 4 is a study of the magnetic structure and excitations of the Ising-like

antiferromagnetic chain RbCoCl3. In this chapter also the theory of excitations

in Ising-like antiferromagnetic chains is treated.

Chapter 5 contains a summary and outlook.

2



Chapter 1

Magnetism

Magnetism is a fundamental quantum mechanical effect, yet many observed phe-

nomena can be understood using classical models. In the case of low-dimensional

and frustrated spin-1
2

antiferromagnets, novel types of macroscopic ground states de-

velop due to the quantum nature of the spin-1
2
. These are entangled ground states

without an ordered moment, but with well-defined magnetic excitations, and cannot

be explained by classical models.

This chapter is a short introduction to magnetism. Before quantum magnetism

is introduced, the origin of the magnetic moments, magnetic exchange and order is

described.

This chapter follows the book by Blundell [4]. This book is the main source for this

chapter, and where no other citation is given in this chapter, the book by Blundell

was used.

1.1 A short introduction to magnetism

The most fundamental object in magnetism is the magnetic moment. A current I

going around a loop of area dS induces a magnetic moment µ:

µ =

∫
dµ = I

∫
dS = γL,

where γ is the gyromagnetic ratio. The gyromagnetic ratio for the electron is

γ = − e
2me

. A current going around a loop can be seen as a charge (e.g. an electron)

moving on an orbit which coincides with this loop. L is the angular momentum of

such a charge. Since the magnetic moment is perpendicular to the plane of the loop,

it is either parallel or antiparallel to the angular momentum of the charge going

around the loop. The magnetic moment of the electron is called the Bohr magneton

and is given by

µB =
e~

2me

= 9.274× 10−24Am2,
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1.1 A short introduction to magnetism

Since the electron has a negative charge, its magnetic moment is antiparallel to its

angular momentum. The component of the angular momentum along a fixed axis

(usually one chooses the z -axis) is ml~, which is the eigenvalue of the z -component

of L. Then the magnetic moment along the z -axis is µl = −mlµB.

The electron also possesses an intrinsic magnetic moment which is called the

“spin”, characterized by the spin quantum number s. For electrons s is equal to
1
2
. Since the value of any component of the angular momentum can only take 2s+ 1

possible values, the component of angular momentum along a particular axis for

s = 1
2

is ~
2

or −~
2
. These alternatives are often referred to as “up”and “down”. The

magnetic moment associated with the spin angular moment is µs = −gµBms, where

g is a constant close to 2 called the g-factor. The energy of an electron in a magnetic

field B is

E = gµBmsB = −µsB.

This means that the energy levels of an electron in a magnetic field are split

(Zeeman splitting).

The total spin and orbital angular momentum, S =
∑

isi and L =
∑

ili, are zero for

filled electron shells. The spin-orbit interaction couples the spin and orbital angular

momentum to the total angular momentum. The ground state configuration of

electrons in an atom is predicted by Hund’s rules. Hund’s rules make no prediction

about excited states. Also, the ground state may differ because of the environment

of the magnetic ion.

Magnetic susceptibility

The magnetization M of a material and the applied magnetic field H are related by

the magnetic susceptibility χ. It is a measure of the ability of a material to become

magnetized. If χ < 0, a material is diamagnetic. This means that an applied

magnetic field induces a magnetic moment which opposes the applied field. This

effect is weakly present in all materials. A material with χ > 0 is paramagnetic.

This means that an applied magnetic field aligns non-zero magnetic moments in the

material. Paramagnetism is usually much stronger than diamagnetism.

Magnetic exchange

To establish long range order, a magnetic exchange J is needed. If one considers the

coupling between two electrons, their combined wave functions can either be a spin

singlet state with s = 0, or a spin triplet state with s = 1. The exchange integral

J = −ES − ET

2
= −

∫
φ∗1(r1)φ∗2(r2)Hφ1(r2)φ2(r1)dr1dr2, (1.1)
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where H is an effective Hamiltonian given in equation 1.2, φ1 and φ2 are the wave

functions of the two electrons, and r1 and r2 their spatial coordinates, calculates the

energy difference between the energy of the spin singlet state ES and the spin triplet

case ET.

The difference between a singlet and a triplet state can be parametrized using

S1·S2, and the Hamiltonian can be written as

H =
1

4
(ES + 3ET)− (ES − ET) S1 · S2. (1.2)

Using equation (1.1) the spin-dependent part of the Hamiltonian can be simplified

to

H = 2JS1 · S2. (1.3)

With the interaction in (1.3) applied to all neighboring spins, one obtains the

Heisenberg Hamiltonian

H =
∑
i,j

Ji,jSi · Sj,

where Ji,j is the exchange constant between two spins i and j. A negative J leads

to alignment of spins (where the triplet state s = 1 is favored), and a positive J

leads to anti-alignment of spins (where the singlet state s = 0 is favored). There are

several kinds of exchange interactions: Direct exchange arises from the overlap

of neighboring magnetic orbitals. Often there is not enough overlap between neigh-

boring magnetic orbitals, so some kind of indirect exchange is needed. Superex-

change is an indirect exchange between non-neighboring magnetic ions mediated

by non-magnetic ions. Because superexchange depends strongly on the overlap of

the orbitals between the magnetic and non-magnetic ions, its sign depends on the

angle of the bond. The RKKY interaction, or itinerant exchange, occurs in met-

als. A localized magnetic moment polarizes conduction electrons, which polarize a

neighboring magnetic moment. Double exchange occurs in systems with mixed

valency. If electrons hop between magnetic ions, it is favorable for the spins to be

aligned. The Dzyaloshinsky-Moriya (DM) interaction is an exchange interac-

tion between the excited states of one ion and the ground state of another ion. It

usually gives rise to a small ferromagnetic component in an antiferromagnetically

ordered system.

Magnetic order

With decreasing temperature thermal fluctuations become smaller, and below a

characteristic temperature the magnetic interactions are strong enough to establish

a magnetic long range order. Some magnetic structures are: Ferromagnetism: J

< 0. In this state all spins are aligned parallel. This causes a spontaneous magneti-
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1.2 Quantum magnetism

zation even in the absence of an external magnetic field. Antiferromagnetism: J

> 0. In this state, the spins are aligned antiparallel, and no net magnetization oc-

curs. It can be considered as consisting of two magnetic sublattices where the spins

on each sublattice are parallel to each other, but the magnetizations of the two

sublattices are opposite. A special case of antiferromagnetism is ferrimagnetism.

Here the two sublattices have unequal magnetic moments, and the system has a

net magnetization. Another ordered structure is helimagnetism, where spins are

aligned neither parallel nor antiparallel, but with an angle 6= π between them.

Order parameters

When the system enters an ordered phase at a temperature TC, it is said to undergo

a phase transition. Often a certain physical property, called the order parameter, is

different above and below TC. The order parameter is zero for T > TC and non-zero

for T < TC. The order parameter for ferromagnetism is the magnetization.

The order parameter has a dimensionality D, which is in this case the dimension-

ality of the spins themselves. It is important not to confuse the dimensionality d of

the lattice and D of the order parameter.

Systems with D = 3 are called Heisenberg magnets, D = 2 are called XY magnets,

and D = 1 are called Ising magnets. For Ising systems the Hamiltonian is H =∑
i,j Ji,jS

z
i S

z
j .

Spin waves

Spin waves are collective excitations in simple, long-range ordered three dimensional

Heisenberg magnets which are quantized as magnons. Spin waves can be described

by linear spin wave theory [5, 6]. Magnons are Goldstone bosons and have spin-1

[5, 7, 8]. This means that a single magnon can interact with a neutron in an inelastic

neutron scattering experiment [4]. Magnons were first observed by Brockhouse [9]

using neutron scattering.

1.2 Quantum magnetism

Even though many phenomena in magnetism can be understood using classical mod-

els, it is a quantum mechanical effect. In addition to thermal fluctuations, quantum

fluctuations need to be considered. Quantum fluctuations arise from the quantum

uncertainty of the ground state, and can be enhanced by, for example, low spin, low

dimensionality, or frustration [1]. The materials studied in this thesis have low spin

and low dimensionality, and are examples of quantum magnets.
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Low dimensional magnetism

The Mermin-Wagner theorem states that for dimensions smaller than three, ther-

mal fluctuations prohibit magnetic long range order in an isotropic system at finite

temperatures [10]. The one dimensional spin-1
2

Heisenberg antiferromagnetic chain

shows no long range order even at 0 K. What makes one dimensional systems inter-

esting are their excitations.

One dimensional magnetic systems, also known as spin chains, can be realized in

crystals with sufficiently weak interchain interaction. These can be Heisenberg, XY

or Ising-systems. These systems show three dimensional order at finite temperatures

if the interchain interactions are strong enough. Still, above the temperature where

three dimensional order sets in, the behavior of one dimensional magnetic systems

can be observed in spin chain materials. An overview of some magnetic model

systems is given by de Jongh and Miedema in reference [11].

The spin number and spin dimensionality depends on the ion carrying the unpaired

spin. A recent example is SrX2V2O8 where X = Co, Mn. While SrCo2V2O8 is

an antiferromagnetic Ising chain with effective spin-1
2
, SrMn2V2O8 is a Heisenberg

antiferromagnetic chain with spin-5
2

[12]. Cobalt is a good source for Ising like

interactions. Other Ising chains are for example members of the ACoX3 family with

A = Rb, Cs, Tl and X = Br, Cl [11]. Ising chains are interesting, because an

Ising chain in a transverse magnetic field is a simple realization of a quantum phase

transition. One example is the ferromagnetic Ising chain CoNb2O6[13] discussed in

the following section about quantum phase transitions.

Examples of spin-1
2

Heisenberg antiferromagnetic chains are KCuF3 [14, 15],

CuCl2*2N(C5D5) [16, 17] or SrCuO2 [18, 19]. The excitation spectra of these chain

materials have been probed using neutron scattering.

Quantum phase transitions

When phase transitions are driven by temperature, thermal fluctuations destroy the

order. But it is also possible that phase transitions occur at zero temperature. Such

phase transitions are called quantum phase transitions, and are driven by variables

other than temperature, e.g. by pressure or magnetic field. The fluctuations which

destroy the order are then quantum fluctuations. A quantum critical point is the

point where a quantum phase transition will occur. The probably simplest theo-

retical model for a quantum phase transition is the Ising chain in a magnetic field

transverse to the Ising axis [20], for example the ferromagnetic Ising chain CoNb2O6

[13]. At a certain critical field strength the magnetic order is destroyed, and the

spins align with the magnetic field. In this example the critical field is the quantum

critical point.

The dimer system TlCuCl3 is an example where a quantum phase transition can

be induced by pressure [21]. Recently spin excitations across the quantum critical

point have been studied using neutron scattering, where it was observed that quan-
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Figure 1.1: Two examples of frustration. Left: geometric frustration on a tri-
angular antiferromagnetic lattice. Right: Frustration due to competing
nearest neighbor and next nearest neighbor exchange on a spin chain.

tum and thermal fluctuations behave “largely independently near a quantum critical

point”[22].

An example of a two-dimensional system is the frustrated spin ladder BiCu2PO6.

In this material a quantum phase transition can be triggered by introducing non-

magnetic impurities, i.e. substituting the Cu2+ (S = 1/2) ions by Zn2+ (S = 0)

[23].

Other examples of systems undergoing quantum phase transitions are cuprate

superconductors [24] and the transition from a superfluid to a Mott-insulator [25].

Frustration

In some lattices the ground state is not unique, because it is impossible to satisfy

all interactions. Geometric frustration arises due to the geometry of the lattice, a

common example for geometric frustration is a triangular lattice with antiferromag-

netic nearest neighbor interaction, see Figure 1.1. Examples are CuFeO2 [26–28] or

CsVCl3 [29–32] and VX2 (X = Cl,Br,I) [29, 33]. There exists no ground state which

satisfies all constraints [4]. Frustration can also occur in three dimensions. One ex-

ample is the pyrochlore lattice with nearest neighbor antiferromagnetic interactions

[34], e.g. in ZnCr2O4 [35, 36].

Another well known example for geometric frustration is the Kagome lattice

with antiferromagnetic interactions as e.g. SrCr8Ga4O19 [37] or herbertsmithite

ZnCu3(OH)6Cl2 [38], where recently a spinon continuum was observed using neu-

tron scattering [39].

Frustration can also arise due to competing nearest and next nearest neighbor

interactions, as is the case for a spin chain with ferromagnetic nearest neighbor and

antiferromagnetic next nearest neighbor coupling, see Figure 1.1. This may lead to

a helical structure as for example in LiCuVO4 [40], or the Heisenberg two-leg ladder

BiCu2PO6 which is frustrated by strong antiferromagnetic next nearest neighbor

coupling along the legs [41].

Frustration can lower the ordering temperature and even suppress long range order.

It has been connected to spin ice, as in the pyrochlore Dy2Ti2O7 [42]. Frustrated
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materials often show non-collinear configurations at low temperatures, which makes

them good candidates for magnetoelectric materials. Examples are CuFeO2 [43], or

TbMnO3 [44, 45] and LiCuVO4 [46].

Excitations in spin chains

Spin chains only show order if the interchain interactions are strong enough. What

makes them interesting is not their ground state but their excitations. In Ising

chains an excitation is associated with flipping a spin. Flipping a spin creates two

domain walls, one on each side of the flipped spin.

The excitation spectrum does not only depend on the dimensionality of the spin,

but also on the spin quantum number. Haldane predicted that one dimensional

Heisenberg antiferromagnets of integer spin have an excitation gap, while the exci-

tation spectrum of a one-dimensional half-integer spin Heisenberg antiferromagnet

is gapless [47, 48]. This Haldane gap has been observed in the spin-1 antiferromag-

netic Heisenberg chain CsNiCl3 using neutron scattering [49, 50]. In this compound

a multiparticle continuum has been observed using unpolarized neutron scattering

[51, 52]. The origin of this continuum is still under investigation.

The excitation spectra of a spin-1
2

Heisenberg antiferromagnetic chain are not

gapped. Haldane stated that all one dimensional magnets with a gapless linear

spectrum are Tomonaga-Luttinger liquids (TLL) [53]. A Tomonaga-Luttinger liquid

(often called Luttinger liquid) is a theoretical model which describes interacting

fermions in a one dimensional system [54, 55]. The ground state of a TLL is quantum

critical, and TLL theory predicts universal properties for the great variety of one-

dimensional systems. The physical properties measured in an experiment can be

calculated using conformal field theory. But these theoretical predictions are only

valid at sufficiently low energy and temperature [56, 57]. It was shown by Lake et

al. that the Heisenberg spin-1
2

antiferromagnetic chain KCuF3 can be described as a

Luttinger liquid for an extensive range of temperature, energy and momentum. The

work on KCuF3 shows the limits of conformal field theory, and how the dynamics of

this spin-1
2

Heisenberg antiferromagnetic chain are captured by the description as a

TLL [57, 58].

On the other hand the excitation spectra of Ising chains are gapped, independent

of the spin quantum number, because of the anisotropy. Such a gapped spectrum

was for example observed in the Ising like chain CsCoCl3 [59, 60]. These excitations

are called solitons.

Solitons

The domain wall introduced above is a “semi-classical”picture, and if this domain

wall satisfies certain conditions it is called a soliton. “Essentially, solitons are quan-

tized excitations of a classical, continuous system which are not scattered by [other]

solitons or other quasi-particles: they can be retarded or accelerated during the col-
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1.2 Quantum magnetism

Figure 1.2: Schematic representations of spinons in a spin-1
2 antiferromagnetic

Ising and Heisenberg chain. An incident neutron acts on the singlet state
and flips a spin which is surrounded by two domain walls. Each of these
walls is a spinon carrying spin-1

2 . For better visibility in the Heisenberg
case the two- and four spinon cases are drawn separately and labeled by
c2,4. ∆ is the anisotropy, σx,y are the Pauli spin matrices. Figure courtesy
of M. Mourigal [73].

lision, but the velocity (and shape) at the end of the collision is the same as before

” [61]. Solitons have been studied in several Ising chains, amongst others in sev-

eral members of the family ACoX3, with A = {Rb, Cs, Tl} and X = {Br, Cl}, for

example CsCoBr3 [59, 62–64], CsCoCl3 [59, 60] and TlCoCl3 [65–67]. The in-chain

coupling of these compounds is around 2J = 12.8 - 14.7 meV. In this thesis another

member of this family, RbCoCl3, is studied. It has been studied less, and optical

spectroscopy measurements have indicated the energy scale 2J to be lower [3]. The

lower energy scale of RbCoCl3, and the better resolution of high resolution neutron

spectroscopy, is expected to lead to a better understanding of the excitation spec-

trum of the Ising-like antiferromagnetic chain. Solitons are studied in the spin-1
2

Ising chain RbCoCl3 in chapter 4, where a more thorough description of solitons is

given.

Spinons

Spinons are a special case of solitons reserved for spin-1
2

chains 1. Each of these

domain walls corresponds to a spinon carrying spin-1
2
. Spinons are semions 2 [71, 72].

In Heisenberg spin chains spinons are gapless. The kink is not as sharp as for an

Ising chain. Therefore, in the Heisenberg limit the spin flip consists of a series of

1The quasiparticles arising from excitations in the spin- 12 Ising-like chain RbCoCl3 are also
spinons, but in order to conform with the terminology used in the literature and avoid confusion
the term solitons is used for these excitations.

2Semions are anyons. Anyons have fractional statistics, so they are neither fermions nor bosons.
Anyons are quasiparticles which only occur in physical systems with less than three dimensions
[68–70].

10



Magnetism

two, four and higher even numbered spinons [72]. A sketch of spinons in the Ising

and Heisenberg limit is shown in Figure 1.2.
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Figure 1.3: Boundaries for the two-spinon continuum. Because only pairs of
spinons can be observed by neutron scattering, a continuum between the
lower boundary (blue) and upper boundary (red) is observed [4, 74].

An inelastic magnetic neutron scattering experiment gives rise to excitations with

a total spin of 1, so two spinons interact with a neutron in an inelastic neutron

scattering experiment. This means that only pairs of spinons can be observed by

neutron scattering. Therefore experimental data show a continuum between the

lower and upper two-spinon boundaries ~ω = π
2
|J sin(2πq)| and ~ω = π

∣∣J sin
(

2πq
2

)∣∣
shown in Figure 1.3 [4, 74].

Spinons are, for example, the basic excitations of KCuF3 and have been studied

at finite temperatures up to 200 K, which is about half the in-chain coupling [58,

75]. But spinons have been observed before, a continuum assumed to arise from

spinon excitations has already been observed in the seventies in the spin-1
2

Heisenberg

antiferromagnetic chain CuCl2*2N(C5D5) [16, 17].

Mourigal et al. established, by absolute normalization of their data and by com-

paring them to the excitation spectrum of the two- and four-spinon structure factor

calculated by Caux [76], that two- and four-spinon states account for 99(8) % of the

measured spectral weight [72]. These measurements were done at 100 mK.

In this thesis the excitation spectrum of CuSO4*5D2O is studied at temperatures

from the Millikelvin range up to ten times the exchange. The results by Mourigal et

al. allow a normalization of the data even at finite temperatures, thus enabling the

quantitative and qualitative comparison of experimental data with theoretical calcu-

lations. Additional advantages of CuSO4*5D2O over other known model systems for

the spin-1
2

Heisenberg antiferromagnetic chain are its good one dimensionality, low

main exchange and vanishing anisotropy [11, 72, 77, 78]. Spinons in CuSO4*5D2O

are studied in chapter 3, there exact calculations for the excitation spectrum of the
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spin-1
2

Heisenberg antiferromagnetic chain are introduced as well.

In this thesis the excitation spectrum of two spin-1
2

chains is studied using neutron

scattering.

CuSO4*5D2O is an excellent model material for the spin-1
2

Heisenberg antiferro-

magnetic chain. Its low exchange interaction permits measurements at temperatures

up to ten times the exchange. Earlier results by Mourigal et al. [72] make absolute

comparison between experiment and theory possible. The excitation spectrum of

CuSO4*5D2O, which consists of fractional excitations called spinons, is studied as a

function of temperature.

RbCoCl3 is a quasi-one dimensional spin-1
2

Ising system. It has been studied less

than other members of the ACoX3 family, and optical spectroscopy measurements

indicate a lower energy scale 2J . A lower energy scale is connected to a lower

critical magnetic field. The magnetic structure and excitation spectrum of RbCoCl3
are studied. Open questions are if the energy scale is low enough to reach the

quantum critical point, and to understand the excitation spectrum, especially the

bound states arising in the ordered phase.
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Chapter 2

Neutron scattering

Neutrons carry no electric charge and are therefore a good bulk probe. Thermal

neutrons, at 293 K, have an energy, 25.2 meV, and a wavelength, λ= 1.8 Å, similar to

many excitations in condensed matter. Neutron scattering can discriminate between

isotopes of the same element, and is sensitive to light atoms, even in the vicinity of

heavier ones. Because of their magnetic moment, neutrons are well suited to study

magnetic materials and can also be polarized.

The main disadvantage of neutron scattering is the low available neutron flux.

This results in long counting times and the need for large single crystals as samples.

This chapter is inspired by books about neutron scattering by Lovesey [79, 80],

Squires [81] and Sivia [82]. These books also offer more detail than this short intro-

duction.

2.1 Neutron Scattering Cross-Section

In a neutron scattering experiment, an incoming neutron with wave vector ki is

scattered into a final state with wave vector kf . The scattering process is illustrated

by the scattering triangle shown in Figure 2.1.

The wave vector transfer Q is given by

Q = ki − kf , Q2 = k2
i + k2

f − 2cos(2θ)kikf .

For elastic scattering there is no energy transfer between sample and neutron, and

~ω = 0 and ki = kf . For inelastic scattering the energy transfer is given by

~ω = Ei − Ef =
(~ki)2

2mn

− (~kf )2

2mn

,

where mn is the mass of the neutron. The fundamental quantity measured in such

an experiment, the cross section σ, is defined as the rate of scattered neutrons per

unit of incident flux Ψ.
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2θki

kf

k

-kfQ

ki

Figure 2.1: The scattering process. An incoming neutron with wave vector ki is
scattered by the sample into an outgoing neutron with a wave vector kf .
The scattering process is illustrated by the scattering triangle. Q is the
wave vector transfer.

The partial differential cross-section is denoted by

d2σ

dΩdEf
.

It gives the fraction of neutrons with incident energy Ei scattered into an element

of solid angle dΩ with an energy between Ef and Ef+dEf . Its dimension is area per

unit energy.

The partial differential cross-section can be written as

(
d2σ

dΩdEf

)
λi→λf

=
kf
ki

( mn

2π~2

)2

|〈kfλf |V (Q)|kiλi〉|2 δ (~ω − (Ef − Ei)) ,

where |λi〉 and |λf〉 are the states of the sample before and after scattering. V(Q)

is the Fourier transform of the scattering potential.

When the incoming neutron beam is unpolarized, and a random distribution of

the nuclear spins is assumed, the partial differential cross-section for a monoatomic

sample can be split into a coherent and an incoherent term:

(
d2σ

dΩdEf

)
=

(
d2σ

dΩdEf

)
coherent

+

(
d2σ

dΩdEf

)
incoherent

.

Coherent scattering is related to the correlated motion of the atoms in the sample,

therefore it tells us about collective excitation modes such as magnons and phonons.

Incoherent scattering, on the other hand, is related to the independent behavior of

atoms in the sample. It provides information about local dynamics, such as diffusion

of single atoms.
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2.2 Nuclear Scattering

Compared to a typical neutron wavelength, nuclear forces are short ranged. There-

fore one can look at nuclear neutron scattering as s-wave scattering from a pointlike

scatterer. The interaction is then described by the Fermi pseudopotential

V (Q) =
2π~2

mn

bδ(r−R),

where r is the position of the neutron, R the position of the nucleus and b is

the scattering length. The magnitude of b describes the strength of the scattering,

and its sign indicates whether the incident and outgoing waves are in or out of

phase. The scattering length also depends on the composition of the nucleus and

the relative orientation of the neutron spin to the spin of the nucleus. Therefore,

scattering lengths are isotope specific. The average scattering length is b =
∑

i fibi
and its variance is b2 =

∑
i fib

2
i , where fi is the fraction of the isotope with the

scattering length bi in the target.

The partial differential cross sections for coherent and incoherent scattering for a

mono-atomic sample are as follows:

(
d2σ

dΩdEf

)
coherent

=
σcoh
4π

kf
ki
Scoh,(

d2σ

dΩdEf

)
incoherent

=
σinc
4π

kf
ki
Sinc,

where the cross sections are σcoh = 4πb
2

and σinc = 4π(b2 − b2
) and the scattering

functions are

Scoh =
1

2π~
∑
jj′

∫ ∞
−∞

dt e−iωt
〈
eiQrj(t)e−iQrj′ (0)

〉
,

Sinc =
1

2π~
∑
j

∫ ∞
−∞

dt e−iωt
〈
eiQrj(t)e−iQrj(0)

〉
,

where the brackets 〈〉 denote the thermal average. The elastic coherent scattering

contains Bragg peaks if the arrangement of scattering centers in the sample is peri-

odic and if the momentum transfer Q is equal to a reciprocal lattice vector G = Q

= ki - kf . For a monochromatic incoming beam this corresponds to Bragg’s law:

nλ = 2dsin(θ) =
4π

G
sin(θ),

where d is the spacing between two adjacent lattice planes. Using Bragg’s condi-

tion, the coherent elastic differential cross section is given by

15



2.3 Magnetic Scattering

(
dσ

dΩ

)elastic
coherent

= N
(2π)3

V

∑
G

δ (Q−G) |FN(G)|2

where V is the volume of the nuclear unit cell, FN(G) =
∑

j bje
iQrje−Wj is the

static nuclear structure factor which contains information on the atomic positions

within a unit cell and e−Wj is the Debye-Waller factor. It is the mean square dis-

placement of the j-th atom and describes the reduction of the scattering amplitude

due to thermal vibrations of the atoms about their equilibrium position.

2.3 Magnetic Scattering

Neutrons have no charge, but they do have a magnetic dipole moment ~µn = −γµn~σ,

where µn is the nuclear magneton, γ = 1.913 is the gyromagnetic ratio of the neutron,

and ~σ the Pauli spin operator. Neutron beams can be polarized.

Through its magnetic moment a neutron can interact with the magnetic moment

of the sample via dipole-dipole interaction. The magnetic interaction potential can

be written as

Vm = −µnB,
where the magnetic field B has two contributions

B = BS + BL,

where BS and BL are the respective contributions from the spin and angular

momentum of the electron. For half filled electron shells or quenched angular mo-

mentum (which is, for example, the case for Cu2+ ions studied in this thesis) the

spin angular momentum is the only contribution.

One can write the cross section as

(
d2σ

dΩdEf

)
λiσi→λfσf

= (γr0)2kf
ki
|〈σfλf |σM⊥|σiλi〉|2 δ(Eλi − Eλf + ~ω), (2.1)

where r0 = e2

mec2
is the classical electron radius and

M⊥(Q) = Q̂×
(
M(Q)× Q̂

)
is the component of the Fourier transformation of the sample magnetization per-

pendicular to the scattering vector Q. This means that only the component perpen-

dicular to Q contributes to the scattering amplitude.

The partial differential cross section is
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(
d2σ

dΩdEf

)
=
kf
ki

(
γr0gf(Q)

2

)2

e−2W (Q)
∑
α,β

(
δα,β − Q̂αQ̂β

)
Sαβ(Q, ω)

with the dynamic structure factor

Sαβ(Q, ω) =
1

2π~
∑
jj′

eiQ(rj−rj′ )
∫ ∞
−∞

dte−iωt
〈
Sαj (t)Sβj′ (0)

〉
,

where α, β = x, y, z are Cartesian coordinates. Since in this thesis no data from

polarized neutron scattering are used, the indices α and β can be omitted. The

dynamic structure factor is the Fourier transformation of the time-dependent spin-

spin correlation function, and is measured by neutron scattering. g is the Lande

factor and f(Q) is the form factor, which is introduced in section 2.3.1.

As for nuclear scattering, a periodic arrangement of magnetic moments leads to

Bragg scattering for elastic magnetic scattering. In this case magnetic Bragg peaks

occur for Q = Gm = G ± k, where Gm corresponds to the magnetic unit cell, and(
dσ

dΩ

)el
mag

= (γro)
2N

(2π)3

Vm

∑
G

δ(Q−Gm)
∣∣∣Q̂× (FM(Q)× Q̂)

∣∣∣2 ,
where FM(Q) =

∑
j
gj
2
fj(Q) 〈Sj〉 eiQrje−2Wj(Q) is the magnetic structure factor

and f(Q) the magnetic form factor.

2.3.1 Form factor

The form factor is determined by the distribution of magnetization in a single atom

and can be written as

f(Q) =

∫
drsd(r)eQr,

where sd(r) is the normalized density of the unpaired electrons. The form factor

can be analytically approximated by the spherical Bessel function within the dipole

approximation (spherical symmetry). Parameters for an analytical approximation

of the form factors were calculated by P. J. Brown [83].

Because magnetic neutron scattering occurs principally in the outer electron or-

bitals, the magnetic form factor falls off with increasing Q, while nuclear scattering

from the short-ranged nuclear potential is constant. The atomic form factor for X-

rays falls off slower than the magnetic one for neutrons since the relevant interaction

is a long-range electromagnetic one. Figure 2.2 shows the magnetic form factors for

Cu2+ for neutron and X-ray scattering.
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Figure 2.2: Magnetic form factors for Cu2+ for neutron and X-ray scattering [83].

2.3.2 Principle of detailed balance

During a scattering experiment, the energy loss or gain of a neutron can be measured.

In thermal equilibrium, lower energy states in the sample are occupied with a higher

probability than higher energy states, therefore it is more probable that the neutron

will lose rather than gain energy in the scattering process. At very low temperatures

one can neglect neutron energy gain, since higher energy levels (above ground state)

are hardly populated.

The principle of detailed balance can be expressed in terms of the scattering func-

tion S(Q, ω) as:

S(−Q,−ω) = e
− ~ω

kBT S(Q, ω). (2.2)

This principle is also valid for nuclear scattering. A short derivation of this equa-

tion is given in Squires [81].

2.3.3 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem connects the dynamic structure factor, which is

measured in neutron scattering experiments, with the imaginary part of the gener-

alized magnetic susceptibility χ(Q, ω) by

S(Q, ω) =
(

1− e−
~ω

kBT

)−1

χ′′(Q, ω), (2.3)

[84, 85].
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2.3.4 Static structure factor

One can obtain the static structure factor S(Q) and the static susceptibility χ′(Q)

by an integral transformation of the dynamic structure factor

S(Q) =
1

π

∫ ∞
0

dω
(

1 + e
− ~ω

kBT

)
S(Q, ω) (2.4)

χ′(Q) =
2

π

∫ ∞
0

dω
1

ω

(
1− e−

~ω
kBT

)
S(Q, ω) (2.5)

[86, 87].

2.4 Polarized neutron scattering

A useful property of neutron scattering is that we can determine both a neutron’s

momentum and spin state. Polarized neutron scattering allows one to distinguish

between nuclear and magnetic scattering [88]. In an externally applied field the spin

of a neutron can be either parallel (spin up) or anti-parallel (spin down) to the field,

and the polarization can be expressed as

P =
N+ −N−
N+ +N−

=
F − 1

F + 1
,

where N+ neutrons have spin up and N− have spin down. The flipping ratio

F = N+

N−
can be measured experimentally.

Instead of only one cross-section (2.1) one measures now non-spin-flip and spin-flip

cross sections. The structure factor would then be denoted by Sαβ(Q, ω), where the

indices α, β denote the polarization of the spin of the incident and outgoing neu-

tron with respect to a quantization axis. Non-spin-flip scattering is only sensitive

to components of magnetization parallel to the neutron spin, while spin-flip scatter-

ing is only sensitive to components of magnetization perpendicular to the neutron

spin. This means that if the polarization is parallel to the scattering vector Q, the

magnetization in the direction of the polarization will not be observed because the

magnetic interaction vector will be zero, and all magnetic scattering will be spin flip

[88–90].
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2.5 Neutron scattering instruments

2.5 Neutron scattering instruments

2.5.1 Triple-Axis Spectrometer

Several experiments for this thesis were performed on triple-axis spectrometers

(TAS). Figure 2.3 shows a schematic outline of a triple-axis spectrometer. The

kf

Sample

Detector

A4

A6

ki

Q ki

kf

Q

q

G

Source

Monochromator

Analyser

A2

Figure 2.3: Schematic outline of a triple-axis spectrometer. The three axes the
instrument can rotate about are at the positions of the monochromator,
the sample and the analyser.

name of this instrument derives from the fact that it has three axes. The first axis

is at the location of the monochromator which selects neutrons with a certain wave

length. The neutrons are then scattered by the sample, which is at the location of

the second axis, and a certain direction of the outgoing beam is chosen. The anal-

yser, at the third axis, selects neutrons with a certain wavelength which are then

counted in the detector.

Any scattering process has to satisfy energy and momentum conservation,

Q = ki − kf = G + q, (2.6)

~ω =
~2

2mn

(
k2
i − k2

f

)
, (2.7)

where G is a reciprocal lattice vector of the sample and ~ω(q) the energy of an

excitation of wave-vector q.

Since in real experiments the beams are not perfectly monochromatic and colli-

mated, one measures a volume of phase space around the selected values Q0 and
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Figure 2.4: Illustration of the convolution of the resolution ellipsoid and the
scattering function. In (a) a dispersion is shown. The blue shaded
area illustrates the spectral width of the mode. The resolution ellipsoid
is shown with no overlap between the dispersion and the ellipsoid. The
resolution ellipsoid and dispersion have a partial overlap in (b) and a big
overlap in (c) [23].

ω0. The measured signal is then described by a convolution of the resolution func-

tion R (∆Q = Q−Q0,∆ω = ω − ω0) and the scattering function S (Q, ω) [85] as

illustrated in Figure 2.4.

Both analytical methods and numerical calculations are used to compute the res-

olution function for a given instrumental configuration. [91–93]. The volume and

form of the resolution ellipsoid can be calculated by two methods. The first method,

called the Cooper-Nathans method, considers the geometry of the triple axis spec-

trometer but neglects spatial effects such as the size of the sample [94]. The second

method by M. Popovici [95] considers such elements additionally to the considera-

tions already made for the Cooper-Nathans method. In this thesis fits of resolution

convoluted functions are used in chapter 4 and the resolution ellipsoid was calculated

using the Popovici method.

The advantages of triple-axis spectrometers are that constant-Q or constant-E

scans can be made and that polarization analysis can be used. The disadvantages

are that both monochromator and analyzer can give rise to higher order effects. This

can be minimized e.g. by using an appropriate filter or wisely choosing the incident

and outgoing energy. A good overview over spurious peaks is given in chapter 6

of reference [85]. By restricting the measurements along certain directions it is

possible that something important might be missed. Usually, before doing a triple-

axis experiment, information about the sample is collected using different techniques

[96].
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2.5 Neutron scattering instruments

Instruments used for this thesis are:

• The thermal triple-axis spectrometer IN22 at ILL

• The thermal triple-axis spectrometer EIGER at SINQ, PSI.

2.5.2 Time of Flight Spectrometer

Unlike triple-axis spectrometers, neutron time-of-flight spectrometers (ToF) exploit

the particle property of the neutron. At pulsed sources the high peak flux and

time structure are used optimally by the ToF technique. Choppers can be used

to obtain a pulsed structure at steady state (reactor) sources. Before the beam is

scattered by the sample, a wavelength is selected using a chopper (as for LET and

IN5) or crystal monochromator. After interacting with the sample, the neutrons are

detected by a large array of detectors placed equidistant from the sample. Some

neutrons exchange kinetic energy with excitations in the sample and change their

velocity. This reduces (for energy gain) or increases (for energy loss) the flight time

of the neutron compared to elastic scattering. Energy and momentum transfer can

then be written as

~ω(t) =
mn

2
L2
t2f − t2i
t2i t

2
f

,

Q =
mn

~
L

√
t2f + t2i − 2titfcos (2θ)

t2i t
2
f

,

where L is the distance between the sample and the detector, ti is the flight time

for the distance L corresponding to an initial energy Ei, and tf is the flight time of

the scattered neutrons [97]. Time-of-flight spectrometers may be divided into two

classes: Direct geometry spectrometers, in which the incident energy Ei is fixed, and

indirect geometry spectrometers, where a fixed energy is selected after scattering

with the sample.

Generally, ToF are better suited for measurements over a broad range in (Q, ω)

space, while triple-axis spectroscopy is advantageous for detailed investigations at

well defined (Q, ω) points. This distinction is becoming less valid with recent de-

velopments in ToF and TAS instrumentation. Multi-chopper spectrometers offer

good control over the resolution by selecting the incident energy via the phase of

the choppers, and control the resolution of the incident energy via the transmission

width of the choppers [98].

For this thesis experiments were performed on the direct geometry time-of-flight

spectrometers IN5 at ILL and LET at ISIS.
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Chapter 3

Multispinons at finite

temperatures in the spin-12
Heisenberg antiferromagnetic

chain CuSO4*5D2O

Since 1931, when Hans Bethe presented the so called Bethe ansatz to calculate the

eigenfunction of the one dimensional Heisenberg system [99], the interest in the

Heisenberg model has not faded. The spin-1
2

Heisenberg model has been studied

widely, both theoretically [71, 74, 76, 86, 100–106] and experimentally [14, 16–18,

107–109].

What makes the spin-1
2

Heisenberg antiferromagnetic chain interesting is its ex-

citation spectrum. It consists of fractional excitations called spinons [4, 71]. The

excitation spectrum has been calculated for temperature T = 0 and as a function of

the temperature [76, 86, 103–106].

We used inelastic neutron scattering to study the evolution of the excitation spec-

trum as a function of the temperature. CuSO4*5D2O is an excellent model material

for the spin-1
2

Heisenberg antiferromagnetic chain. Because its main exchange is

only 3 K [11, 72, 77], it is possible to study excitations up to ten times the exchange

without needing to worry about thermal expansion effects.

3.1 Introduction

3.1.1 Theoretical background

In 1931 Bethe presented the Bethe ansatz to calculate the eigenfunction of the

one dimensional Heisenberg system [99]. The excitation spectrum of the spin-1
2

Heisenberg antiferromagnet was first determined by des Cloizeaux and Pearson in

1962 [74]. In this section theoretical calculations for the excitation spectrum, which

consists of quasi-particles called spinons, are presented.

23
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Calculations for the excitations spectrum

For T = 0 Müller [103] calculated the dynamical structure factor for the one di-

mensional isotropic Heisenberg antiferromagnet as a function of momentum q and

energy ω. q is given in units of 2π. The dynamical structure factor approximates

the two-spinon continuum by introducing a cutoff at the upper two-spinon boundary

S(q, ω) =
AM√

ω2 − ε2l (q)
Θ (ω − εl(q)) Θ (ε(q)u − ω) ,

where AM is a constant, Θ is the Heaviside step function and εl and εu are the

lower and upper boundaries of the continuum and given by

εl =
π

2
|J sin q| , and

εu = π
∣∣∣J sin

q

2

∣∣∣ .
Schulz [104] used field theoretical techniques to calculate the structure factor at

the antiferromagnetic zone center q = 0.5 for finite temperatures,

S(0.5, ω) =
e~ω/kBT

e~ω/kBT − 1

ASchulz

T
=
(

Γ2
(

1
4
− i ω

4πT

)
Γ2
(

3
4
− i ω

4πT

)) , (3.1)

where ASchulz is a constant.

In equation (3.1) the structure factor S(q, ω) ·T depends only on the dimensionless

ratio ω/T .

Using conformal field theory, Starykh [105, 110, 111] adds logarithmic corrections

due to umklapp scattering processes

S(0.5, ω) =
e

~ω
kBT

e
~ω

kBT − 1

AStarykh

πT
22∆−3/2 sin(2π∆)

(
ln
T0

T

)1/2

·

Γ2 (1− 2∆)=
(

Γ2
(
∆− i ω

4πT

)
Γ2
(
1−∆− i ω

4πT

)) , (3.2)

where ∆ = 1
4

(
1− 1

2 ln
T0
T

)
is a temperature dependent scaling dimension and T0

is the high-energy cutoff. AStarykh is again a constant. Equations (3.1) and (3.2) are

given for small temperatures. This usually means T < J .

Another scaling relation for finite temperatures is given by Barthel [112] and has

the form

S(0.5, ω) =
e

~ω
kBT

e
~ω

kBT − 1

aω̃

1 + bω̃3
, (3.3)
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where a and b are two parameters which are determined by data fitting and ω̃ = ω
T

.

Barthel [106] used a method called time-dependent density matrix renormalization

group simulations (t-DMRG) to calculate the structure factor for one dimensional

quantum systems. In this thesis we will not use results by Barthel other than

equation (3.3).

Two- and four-spinon states

Calculations of the dynamic structure factor over the whole spectrum show that

two-spinon states explain only 72.89 % of the total integrated intensity [113]. Caux

and Hagemans calculated the exact structure factor for two- and four-spinon states.

They have shown that four-spinon states carry the majority of the missing first

momentum sum rule, namely 27(1) % [76].

Calculations of the excitation spectrum: Conformal field theory results

by Werner and Klümper

Werner and Klümper [114] calculate the line shapes of dynamical correlation func-

tions for a one-dimensional antiferromagnetic Heisenberg model. The correlation

function for finite systems can be calculated by diagonalizing the spin Hamiltonian.

The Bethe ansatz and conformal field theory are used.

The numerical results for finite systems were fitted with a theoretical prediction

for the imaginary part of the susceptibility given by

χ′′(0.5, ω) = χ′′CFT (0.5, ω)
(Λ2 − ω2)

α

2Λ2α
Θ(Λ− |ω|), (3.4)

where energies are given in units of the exchange J. The upper continuum edge Λ

and the exponent α are given in in Table 3.1.

The susceptibility obtained from conformal field theory, χCFT , is given for T = 0

by

χ′′CFT (q, ω) ≈
{

0 for ω < v|q − 0.5|,
[ω2 − v2(q − 0.5)]

x−1
otherwise,

(3.5)

where v is the velocity of the low-lying spin excitations and given in units of J ,

and x is a scaling dimension. For small temperatures the susceptibility obtained

from conformal field theory is given by

χ′′CFT (q, ω) = =
(

sin(πx)v1−2xχ0(πT )2x−2Fx

(
ω − v(q − 0.5)

2πT

)
Fx

(
ω + v(q − 0.5)

2πT

))
(3.6)

with

Fx(k) = 2x−1Γ(1− x)
Γ
(
x
2
− ik

2

)
Γ
(
1− x

2
− ik

2

) .
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The temperature T is given in units of J. The value of the scaling dimension x de-

pends on the strength of the anisotropy and is given as x = 1
2

for the isotropic Heisen-

berg chain at low temperatures. It increases to x ∼ 1 around T∗ ≈ 0.7 J [114]. This

temperature marks a crossover from a strongly-interacting low-temperature regime

to a diffuse regime, which connects continuously to a high-temperature interacting

fermion regime. The crossover at T > T∗ is introduced by Werner and Klümper

[114] because the condition T � ω is then no longer fulfilled. χ0 is a constant, and

independent of T. It is weakly dependent on frustration.

For intermediate temperatures the upper limit of the continuum is approximately

described by

χ′′(q, ω) ≈ L−(φ)− L+(φ) (3.7)

with

L± =
K cos (φ)− (Λ± ω) |sin (φ)|

K2 + (Λ± ω)2 .

The parameters α and Λ are the same as those introduced in equation 3.4. K is

given in units of J and originally called Γ by Werner and Klümper [114] but renamed

here to avoid confusion. The parameters for q = 0.5 are summarized in Table 3.1.

Temperature K from [114] φ from [114] Λ from [114] α from [114] x from [114]

∞ 0.375 -0.87 2.15 - ∼ 1
2 J 0.5+ -0.825* 2.25+ - ∼ 1
J 0.941 -0.804 2.31 - ∼ 1
J
2

- - 3.3+ 1.6+ 0.5
0.3 J - - 3.25+ 0.75+ 0.5
0 J - - 3.25+ 0.5+ 0.4

Table 3.1: Parameters for equations (3.4) and (3.7) for q = 0.5 from [114]. * Interpo-
lated. + From Figures in [114].

Calculations of the excitation spectrum: Quantum Monte Carlo and max-

imum entropy data by Rahnavard, Grossjohann and Brenig

Rahnavard, Grossjohann and Brenig [86, 115] used quantum Monte Carlo and max-

imum entropy methods to calculate the dynamic structure factor of the antiferro-

magnetic spin-1
2

Heisenberg chain at finite temperatures.

In order to assess the quality of their calculations, Grossjohann and Brenig [86]

compared their QMC results with the scaling relations
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S(0.5) = Ds

(
ln
Ts
T

) 3
2

, (3.8)

χ′(0.5) =
Dχ

T

(
ln
Tχ
T

) 1
2

, (3.9)

with DS = 0.094(1), TS = 18.3(5), Dχ = 0.32(1) and Tχ = 5.9(2) for T = 1
4
.

These parameters were obtained by Starykh [105]. T, TS and Tχ are given in units

of J .

Spin diffusion

The question whether the long-wavelength dynamics in Heisenberg chains can be de-

scribed by spin diffusion has long been discussed. Experimental studies of model ma-

terials for a spin-1
2

Heisenberg antiferromagnetic chain were performed using NMR

[116], EPR [117], muon spin relaxation [118–120] and by measuring the thermal

conductivity [121]. The results were the observations of spin transport as diffusive

[117, 121], diffusive even at low temperatures [116, 118], or purely ballistic [119, 120].

Sirker et al. predict spin diffusion to be present in integrable 1-dimensional systems

[122, 123]. Monte Carlo calculations of the dynamic structure factor by Grossjohann

and Brenig [124] for T ≤ 0.25 agree well with the predictions by Sirker [122].

According to Marshall and Lowde [125] the dynamic susceptibility arising from

spin diffusion can be described by

χ′′(q, ω) ≈ ASD
χ′(q)

g2µ2
B

Gω

ω2 +G2
, (3.10)

where G = G(q). The static susceptibility χ′(q) is calculated using equation (2.5).

3.1.2 Heisenberg materials

Compounds with sufficiently weak interchain interaction can serve as spin chain

model materials. The spin numbers and spin dimensionality, i.e. whether the system

is Ising, XY or Heisenberg like, depends on the ion carrying the unpaired spin. In

this section model materials with Heisenberg-like interactions are discussed.

Ions giving rise to Heisenberg-like interactions

In order to obtain Heisenberg-like interactions, the ions carrying the unpaired spins

must have a very small single-ion anisotropy. In addition a cubic symmetry would be

preferable, but crystal field splitting can change this symmetry. S-state ions as Mn2+,

Fe3+, Gd3+ and Eu2+ are the most likely sources of Heisenberg compounds, since

crystal field splitting is not important for these ions [11]. Examples are SrMn2V2O8,
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a Heisenberg antiferromagnetic chain with spin 5
2

[126], or RbMnF3 with S = 5
2

[127, 128] and Vf2 with S = 5
2

[11, 129].

Another good example of an ion giving rise to Heisenberg interaction is Cu2+. A

free Cu2+ ion carries L = 2 and S = 1
2
, but the orbital momentum is quenched. Also

the g-value anisotropy is usually small and there are no zero field splittings [130].

Model materials for spin-1
2

Heisenberg antiferromagnetic chains are e.g. KCuF3 [14,

15], CuCl2*2N(C5D5) [16, 17], SrCuO2 [18, 19] and CuSO4*5D2O which is studied

in this thesis.

Also other ions like Ni2+ and Cr3+ can give rise to Heisenberg systems, e.g. KNiF3

[131, 132] and CsNiCl3 [133, 134] which have both S = 1.

Earlier experiments on Heisenberg chains

Already in the seventies a continuum-like spectrum with a linearly dispersing low-

energy onset characteristic for spinon excitations was observed with inelastic neutron

scattering in the spin-1
2

antiferromagnetic Heisenberg chain CuCl2*2N(C5D5) [16,

17].

One of the best studied model materials is KCuF3. It shows good agreement

with the Müller ansatz, [14, 15], and with the structure factors calculated by Schulz

[58, 135], Caux [76] and Barthel [75, 106, 112].

Another model system for a spin-1
2

Heisenberg antiferromagnetic chain is SrCuO2

which shows good agreement with the Müller ansatz [18, 19]. A study comparing

experimental data from SrCuO2 with the two- and four-spinon structure factor by

Caux [76] accounts for only 80 % of the predicted intensity. The remaining discrep-

ancy of 20 % was attributed to the Debye-Waller factor [136].

The two- and four-spinon continuum is observed not only in spin 1
2
-Heisenberg

antiferromagnetic chains. Evidence for it was also found in the frustrated ferromag-

netic spin-1
2

chain LiCuVO4 by Enderle et al. [137].

3.1.3 CuSO4*5D2O

CuSO4*5D2O crystallizes in the triclinic structure (space group P1) shown in Figure

3.1.

The lattice parameters reported in the literature are a = 6.141 Å, b = 10.736 Å,

c = 5.986 Å, α = 82.27◦, β = 107.43◦ and γ = 102.67◦ [140].

The copper ions carry spin-1
2

and occupy two inequivalent positions in the elemen-

tary cell at r1 = [0,0,0] and r2 = [1
2
,1
2
,0]. They constitute two different magnetic

subsystems Cu2+
1 and Cu2+

2 [141, 142]. The copper ions of one subsystem have a

much stronger exchange than those of the other subsystem, and form nearly isolated

chains with an exchange interaction of approximately 3 K as determined by neutron

scattering [11, 72, 77]. The other subsystem remains paramagnetic down to at least

100 mK [77, 78]. Using a Bonner-Fisher relation [143] one can derive the intrachain

exchange per chain from the maximum of the specific heat capacity [77, 144]. No
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c

b
a

Figure 3.1: Structure of CuSO4*5D2O [138]. The copper ions from the Cu2+
1

subsystem are shown dark blue, and those from the Cu2+
2 subsystem light

blue. Sulphur is shown yellow, oxygen red and deuterium pink. The chains
run along the crystallographic a-direction. This plot is made with VESTA
[139].

phase transition occurs down to 100 mK. This provides an upper limit of 103 for the

intrachain to interchain ratio [11].

CuSO4*5D2O is a good model material for the spin-1
2

Heisenberg antiferromagnetic

chain [11], since it has low interchain exchange [72] and a vanishing anisotropy

judging from NMR data [78]. A big advantage of CuSO4*5D2O over other model

materials for the spin-1
2

Heisenberg antiferromagnetic chain is that, because of its

low main exchange, it can be heated up to ten times its exchange without thermal

expansion effects.

Large single crystals can be grown from solution, which is an advantage for neutron

scattering. Because of the large incoherent cross section of hydrogen, CuSO4*5D2O

is used instead of CuSO4*5H2O.

A previous inelastic neutron scattering study was performed by Mourigal [72].

Measurements on CuSO4*5D2O at 100 mK were compared to the Müller ansatz.

The data are not well described by the Müller ansatz, the low energy part of the

measured spectrum is underestimated by the Müller ansatz while the high energy

part is overestimated. With accurate normalization of their data, and by comparing

their data to the two- and four-spinon structure factor calculated by Caux [76],

Mourigal et al. were able to show that two- and four-spinon states account for

99(8)% of the measured spectral weight [72].
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3.2 Experiment

3.2 Experiment

The experimental data analyzed in this section were obtained by M. Enderle and

B. F̊ak on the direct geometry Time-of-Flight (ToF) spectrometer IN5 at the Insti-

tut Laue-Langevin [145, 146]. The measurements cover the energy range between

−1.3 meV and +1.3 meV and the temperature range between 50 mK and 32 K. In

order to obtain temperatures in the mK range an orange cryostat with a dilution

insert was used [147]. The sample, a CuSO4*5D2O single crystal, was grown by A.

Klöpperpieper at Universität des Saarlandes in Saarbrücken.

The crystal was aligned with the (100) and (011) reciprocal axes horizontal. In

this orientation, the q1D ≈ (0.901, -0.345, -0.263) axis, which is parallel to the a-axis,

is very close to the scattering plane. Its projection on the horizontal plane is (1,

-0.302, -0.302) (given in reciprocal lattice units r.l.u.). The sample was aligned at a

wavelength of λ = 5 Å with choppers at 12000 rpm. After some initial measurements,

the bulk of the measurements were performed at λ = 6 Å with choppers at 16900

rpm, (ratio 4
5
) and q1D ⊥ ki [145].

3.3 Data reduction

First the data were prepared for data analysis using Lamp [148, 149] and Horace

[150]. After the data were loaded in Lamp the distance correction and normalization

to monitor was done. Then the data were normalized to incoherent scattering before

a flat background was subtracted. The background was determined at the lowest

measured temperature, in this case 50 mK, far away from the magnetic signal. The

data were then transformed from time-of-flight to energy. For this step the position

of the elastic peak was fixed in time-of-flight. As a last step a mask, created from the

incoherent scattering, was applied in order to cut out the direct beam and defective

detector tubes. Calculations show that corrections due to the Debye-Waller factor

are less than 2.5 % of the inelastic intensity. Therefore no corrections for the Debye-

Waller factor were made.

Corrections for crystal tilt relative to the horizontal plane and for the form factor

were performed in Horace. The projection axes were chosen to be u = (1, -0.302,

-0.302), v = (0, 0, 1) and w = u×v. u and v may be perpendicular to each other,

but it is not necessary. The data were then integrated perpendicular to the chain

direction, along v and w, and cuts were made. These cuts were then labeled with

h. For example a cut labeled with h ∈ [0.74, 0.76] is integrated between 0.74 and

0.76 in the first component h·u. The cuts were afterwards loaded in Matlab. There,

the temperatures measured close to the sample were checked using detailed balance,

see section 3.3.1, and multiple and incoherent scattering were removed, see sections

3.3.2 and 3.3.3.
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Figure 3.2: Illustration of detailed balance. Cut at h ∈ [0.745, 0.755] at T =
3.18(5) K. This means that the data are integrated over the interval 0.745
to 0.755 in the first component of h·u, and over the whole range in the
second and third component which are parallel to v and w, see section 3.3.
Once plotted as S(h,-ω) and once as e−~ω/kBTS(h,ω) with T = 3.18(5) K.

3.3.1 Detailed Balance

The actual sample temperature can be found using detailed balance by comparing

the data for both sides of equation (2.2) in section 2.3.2. This was done by fitting the

right hand side of equation (2.2) to the left hand side and varying the temperature T,

an example for the comparison is shown in Figure 3.2. Since in the case studied here

the reversal of Q (or h) has no effect, one can compare S(h,-ω) and e−~ω/kBTS(h,ω).

The resulting actual sample temperatures are given in Table 3.2.

Measured T T from detailed balance Error Temp T [J ≈ 3 K [72]]

50 mK 150 mK 20 mK ∼ 0.05 J
100 mK 150 mK 20 mK ∼ 0.05 J
300 mK 297 mK 11 mK ∼ J /10
800 mK 793 mK 25 mK ∼ J /4
1.6 K 1.6 K 0.02 K ∼ J /2
3.2 K 3.18 K 0.05 K ∼ J
6.4 K 6.15 K 0.18 K ∼ 2 J
12.8 K 12.4 K 0.47 K ∼ 4 J
32 K 31.5 K 0.55 K ∼ 10 J

Table 3.2: Sample temperatures measured during the experiment, and calculated us-
ing detailed balance.

31



3.3 Data reduction

3.3.2 Multiple Scattering

To remove multiple scattering, two cuts are needed. One cut with h ∈ [0, 1] (i.e.

the data are integrated over the u-direction in addition to the v- and w-directions),

called “cut 1 ”, and a second cut with a small h-interval where one can clearly

distinguish between multiple and magnetic scattering. In CuSO4*5D2O multiple

scattering is very pronounced close to 0.4 meV. A thin cut at h = 0 or 1 enables one

to easily distinguish between multiple and magnetic scattering, since the magnetic

signal approaches zero there. But neither data at h = 0 nor 1 are available, and

the quality of the cuts decreases close to h = 0 or 1. A cut with h ∈ [0.11, 0.12],

which from now on will be referred to as “cut 2 ”, is close enough to h = 0 to clearly

discern multiple scattering, and the data are of a sufficient quality.

Cut 1 was then scaled so that the peak close to 0.4 meV has the same height as

the same peak in cut 2. The scaling is described by equation 3.11

ynew = Scut1
Icut2

Icut1

, (3.11)

where Scut1 is S(ω) from cut 1, Icut1 is the height of the peak close to 0.4 meV

from multiple scattering in cut 1 and Icut2 is the height of the peak close to 0.4 meV

from multiple scattering in cut 2. Icut2
Icut1

is a scaling factor which is determined only

at T = 0.15(2) K. The errorbar was calculated using

enew =

√√√√((Scut1 · dIcut1

Icut1

)2

+

(
dScut1

Icut1

)2
)
· I2

cut2 + (dIcut2)2 ·
(
Scut1

Icut1

)2

. (3.12)
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Figure 3.3: Illustration of the process used to remove multiple scattering.
Panel (a) shows a cut from data at 0.15(2) K at h ∈ [0,1] (cut 1 ) and
the same cut scaled to the height of the cut at h ∈ [0.11, 0.12] (cut 2 ).
This scaled cut is then subtracted from the data with all other h-values
to remove multiple scattering. (b) Cut from data at 0.15(2) K and h ∈
[0.495 0.505] before and after multiple scattering was removed.
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Cut 1 and 2 and ynew, the scaled cut 1 at T = 0.15(2) K, are shown in Figure

3.3 (a). ynew was then subtracted from all other cuts at T = 0.15(2) K in order

to remove the multiple scattering. A cut before and after multiple scattering is

removed is shown in Figure 3.3 (b). For higher temperatures cut 1 was made for each

temperature and then scaled with the scaling factor found at the lowest temperature,

T = 0.15(2) K, to get ynew for each temperature. The ynew determined for each

temperatures is then subtracted from the other cuts at higher temperatures.

3.3.3 Removing incoherent scattering

After multiple scattering, the incoherent scattering was removed as well. At the

lowest temperature, in a cut where magnetic and incoherent scattering can be well

separated, here h ∈ [0.74,0.76], the incoherent scattering was fitted with an asym-

metric Gaussian and an asymmetric Lorentzian. This fit is shown in Figure 3.4.

The resulting peak was then subtracted from the data at all temperatures and

values of h. This method is not perfect, and some remnants of incoherent scattering

often remain. For the sake of clarity these remnants are often cut out from plots.
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Figure 3.4: Fit to the incoherent scattering. Fit with an asymmetric Gaussian
and Lorentzian to the incoherent peak at T = 0.15(2) K.
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3.3 Data reduction

3.3.4 Calculating the dynamic susceptibility χ′′

For further data analysis, the imaginary part of the dynamic susceptibility χ′′ =

= (χ) is needed. It can be determined using the fluctuation-dissipation theorem

introduced in section 2.3.3.

S(h,ω) and χ′′(h,ω) calculated using equation 2.3 at 3.18(5) K are shown in Figure

3.5.
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Figure 3.5: Comparison of the dynamic susceptibility and structure factor
S(h,ω) and χ′′(h,ω) at h ∈ [0.745, 0.755] and 3.18(5) K (T ≈ J).

3.3.5 Increased intensity at h → 0 for increasing tempera-

ture

With increasing temperature the intensity at the antiferromagnetic zone center (h

= 0.5) decreases while it increases at the antiferromagnetic zone boundaries close

to h = 0 and h = 1. At 31.5(6) K the intensity close to h = 0 is strongly increased

compared to h = 1, as can be seen in Figure 3.7 (b). The difference between the

intensity at h = 0 and h = 1 is plotted in Figure 3.6 for three different temperatures.

Since the difference in intensity at h = 0 and h = 1 does not depend on temperature,

it is unlikely to originate from the sample and can be neglected for data analysis.

Since the data are otherwise symmetric with respect to the antiferromagnetic zone

center at h = 0.5, we evaluate the data with h ≥ 0.5.

34



Multispinons in CuSO4*5D2O

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

Energy h̄ω [meV]

S
(0

.1
1,

ω
)−

S
(0

.8
9,

ω
) 

[m
eV

−
1  p

er
 C

u 1]

 

 

 (d)0.15 K
1.6 K
32 K

Student Version of MATLAB

Figure 3.6: Difference between the structure factor with h > 0.5 and h < 0.5
for different temperatures (a) 0.15(2) K (T ≈ 0.05 J ), (b) 1.60(2) K (T ≈
J/2) and (c) 31.5(6) K (T ≈ 10 J ) . (d) Cuts through this difference for
the three temperatures. Errorbars were left out for better visibility.
The difference in intensity between h → 0 and h → 1 does not depend
on temperature, so it is unlikely to originate in the sample. The higher
intensity can be explained as a remnant of the direct beam, and can be
ignored in the data analysis.
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3.4 Results

Measurements were taken between T = 0.15(2) K (T ≈ 0.05 J ) and T = 31.5(6) K,

which is about 10 times the exchange interaction. Figures 3.7 (a) and (b) show the

experimental data at the highest and lowest measured temperatures, normalized as

will be described in section 3.4.1.

Figure 3.7: Data at the lowest and highest measured temperatures. Dynamic
structure factor S(h, ω) S(h, ω) at T = 0.15(2) K (≈ 0.05 J) and S(h, ω)
at T = 31.5(6) K (≈ 10 J).

At T = 0.15(2) K the signal is well defined, and most weight is observed around the

antiferromagnetic zone center. The onset of the intensity, as well as the decrease of

intensity at high energy transfers, depend on h. At 31.5(6) K, the intensity decreases

at the antiferromagnetic zone center and increases below the lower boundary εl of

the two-spinon continuum. The onset of intensity at high temperatures becomes
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Figure 3.8: Dynamic structure factor and susceptibility at different temper-
atures. (a) S(h, ω) and (b) χ′′(h, ω) at h ∈ [0.745, 0.755].

independent of h. The intensity increases close to to h → 1 and h → 0. The higher

intensity at h → 0 can be explained as a remnant of the direct beam, see section

3.3.5.

Figure 3.8 shows the structure factor S(h, ω) and the dynamic susceptibility χ′′(h,ω)

for different temperatures. The changes in S(h, ω) and χ′′(h,ω) from one tempera-

ture to another are smooth, especially for the dynamic susceptibility χ′′(h,ω), and

no sharp transition for T of the order of J is evident.

3.4.1 Low-temperature data analysis

We compared the data at T = 0.15 K (≈ 0.05 J) with the exact two- plus four-

spinon structure factor calculated by Caux [76], for which Mourigal has shown that

it accounts for 99(8) % of the full spectral weight [72]. To do this, the method used

by Mourigal to quantify the two- and four-spinon contributions in CuSO4*5D2O [72]

was employed.

To compare theory and experiment, the theoretical two-and four-spinon structure

factor S̃yy2+4(h, ω) was convoluted with the resolution function described by a two-

dimensional Gaussian, whose full widths at half maximum (FWHM) are the energy

resolution σω and momentum resolution σh. The integral of the resolution function

over energy and momentum was normalized to one. The convoluted structure factor

Syy2+4(h, ω) was normalized to 1
3
S(S+1). The convoluted and normalized calculated

two- and four-spinon structure factor Syy2+4,norm(h, ω) was then fitted to the data. In

neutron scattering only the components of the magnetization perpendicular to the

scattering vector are observable [81]. Therefore the structure factor observed in our

experiments is S(h, ω) = Syy(h, ω) + Szz(h, ω).

From global and iterative fits we obtained J = 0.2595 ± 4.1*10−4 meV, the scaling

factor A2+4 = 8.4869*10−5 ± 6.5*10−7 with 2∗A2+4 ·Syy2+4,norm(h, ω) = S(h, ω)Exp and

σh = 0.0773 ± 0.0032 (in r.l.u.). The energy resolution σω(h) was determined with

iterative fits, it is given in meV and depends on h. This h-dependence can be fitted
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Figure 3.9: Energy resolution as a function of h. The energy resolution σω(h) is
a function of h which may be described by an asymmetric Lorentzian.

with an asymmetric Lorentzian and is shown in Figure 3.9. The values obtained

from this Lorentzian are used for the convolution of the theoretical structure factor.

Figure 3.10 shows a color plot comparing the experimentally obtained S(h, ω) =

S(h, ω)Exp/A2+4 = Syy(h, ω) + Szz(h, ω) with the theoretical resolution-convoluted

two- and four-spinon structure factor 2Syy2+4,norm(h, ω) by [76].

Figure 3.11 shows fits of the resolution-convoluted theoretical two- and four-spinon

structure factor 2Syy2+4(h, ω) to the measured structure factor S(h, ω) = Syy(h, ω) +

Szz(h, ω). The parameters for the convolution are the ones found in this section.

The values obtained for J, A2+4, σh and σω(h) in this section are kept for com-

parison between theory and experiment at higher temperatures. Since the two- and

four-spinon states account for 99(8) % of the spectral weight, we can normalize the

experimental data at higher temperatures and obtain S(h, ω)Exp/A2+4 = S(h, ω).

The value obtained for J (0.2595(4) meV) is between the one determined by Mouri-

gal [72] using neutron scattering (0.252(17) meV) and the one found by Miedima

[77] using specific heat measurements (0.276 meV).
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Figure 3.10: Theoretical and experimental low temperature data. Left side
(h < 0.5): Resolution-convoluted two- and four-spinon structure fac-
tor 2Syy2+4,norm(h, ω), calculated by Caux [76] and right side (h > 0.5):
S(h, ω) = S(h, ω)Exp/A2+4 measured on IN5 at 0.15(2) K = 0.05(1) J .
Here J = 0.2595 ± 4.1*10−4 meV, σh = 0.0123(5), and σω depends on
h. The h-dependence of σω(h) is shown in Figure 3.9.
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Figure 3.11: Comparison of experimentally and theoretically obtained struc-
ture factors. Comparison of the experimentally determined normalized
S(h, ω) = S(h, ω)Exp/A2+4 at 0.15(2) K = 0.05(1) J , blue points, to
the convoluted and normalized two- plus four-spinon structure factor
2Syy2+4,norm(h, ω) from Caux [76] (red line). Here J = 0.2595(4) meV, σh
= 0.0123(5), and σω(h) depends on h, its h-dependence is shown in Fig-
ure 3.9. Cuts are at (a) h ∈ [0.445, 0.455] with σω(0.45)= 0.0234 meV
and (b) h ∈ [0.745, 0.755] with σω(0.75) = 0.0183 meV.
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3.4.2 Finite-temperature data analysis

Various theoretical calculations for the excitation spectrum of the spin-1
2

Heisenberg

antiferromagnetic chain at finite temperatures are summarized in section 3.1.1. In

this section, the experimental data are compared to theoretical calculations by Schulz

[104], Starykh [105, 110, 111], Barthel [106, 112], Werner and Klümper [114] and

Rahnavard and Brenig [115]. The data are also compared to a sum rule used by

Starykh [105], and Grossjohann and Brenig [86], and the long-wavelength dynamics

is studied.

The experimental data studied in this section are normalized by A2+4, i.e.

S(h, ω) = S(h, ω)Exp/A2+4 is used.

Scaling relations

The data are compared to the dynamic structure factors given by equation (3.1) by

Schulz [104], equation (3.2) by Starykh [105, 110, 111] and equation (3.3) by Barthel

[106, 112]. In order to do this, equations (3.1), (3.2) and (3.3) are convoluted with

the instrument resolution and normalized as described in section 3.4.1.

Figures 3.12 and 3.13 compare the convoluted structure factor given by equation

(3.1) to cuts at h ∈ [0.495, 0.505]. The constant ASchulz, which compares several

prefactors into one, is determined by fits to be 0.65(2).

Equation (3.1) when multiplied by T is a scaling relation, since it then only depends

on the dimensionless entity ω/T. The main Figure in 3.12 shows this scaling relation.

The experimental data for temperatures between 0.15(2) K = 0.05(1) J and 6.2(2)

K = 2.04(6) J and energies from 0.2 to 0.5 meV lie on a curve with the same

proportionality constant ASchulz. The dynamic structure factor calculated by Schulz

[104] reproduces the shape of the continuum at 0.15(2) K = 0.05(1) J and also at

higher temperatures correctly. The changes of the dynamic structure factor with

increasing temperature are also described by this equation. But with increasing

temperature the deviations between experiment and theory become bigger.

The inset of Figure 3.12 shows a cut at h ∈ [0.495, 0.505] and 0.15(2) K = 0.05(1)

J compared to equation (3.1).

The dynamic structure factor calculated by Starykh [105, 110, 111] and given by

equation (3.2) is compared to experimental data in Figure 3.14. The high energy

cutoff T0 is set to πJ which is the upper spinon boundary for q = 0.5. Equation (3.2)

is convoluted with the resolution function and normalized as described in section

3.4.1 and AStarykh is equal to one.

The theoretical structure factor calculated by Starykh [105, 110, 111] follows the

shape of the continuum for temperatures up to 0.25 J , but agreement between

equation (3.2) and experiment is not as good as for equation (3.1) given by Schulz. At

T = 0.160(2) K = 0.532(7) J the change in curvature of the experimental structure

factor is not described by the theoretical structure factor calculated by Starykh

[105, 110, 111].
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Figure 3.12: Energy/temperature scaling for CuSO4*5D2O.
Inset: Cut at 0.15(2) K = 0.05(1) J with h ∈ [0.495, 0.505] compared
to equation (3.1). This dynamic structure factor calculated by Schulz
[104] agrees with the experimental dynamic structure factor. The best
agreement is found between 0.2 and 0.5 meV.
Main Figure: Comparison of T·S(h, ~ω

kBT) measured on IN5 with h ∈
[0.495, 0.505] and energies between 0.2 and 0.5 meV to the scaling relation
given by equation (3.1). The experimental data lie on a curve given by
the scaling relation for temperatures between 0.15(2) K = 0.05(1) J and
6.2(2) K = 2.04(6) J with the same proportionality constant ASchulz.
The Gamma function used for this scaling is from reference [151]. For
all other calculations the Gamma function from Mathematica has been
used.
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Figure 3.13: The dynamic structure factor calculated by Schulz [104] com-
pared to cuts from data at h ∈ [0.495, 0.505] at different temperatures.
(a) 0.30(1) K = 0.099(4) J , (b) 0.79(3) K = 0.263(8) J , (c) 1.60(2) =
0.532(7) J , (d) 3.18(5) K = 1.06(2) J and (e) 6.2(2) K = 2.04(6) J .
Deviations between the theoretical and experimental structure factor be-
come bigger with increasing temperatures.
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Figure 3.14: Dynamic structure factor calculated by Starykh [105, 110, 111]
compared to cuts from data at h ∈ [0.495, 0.505] for different temper-
atures: (a) 0.15(2) K = 0.05(1) J , (b) 0.30(1) K = 0.099(4) J , (c) 0.79(3)
K = 0.263(8) J and (d) 0.160(2) K = 0.532(7) J .
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Figure 3.15: Scaling relation calculated by Barthel [112] compared to cuts
from data at h ∈ [0.495, 0.505] for different temperatures: (a) 0.15(2) K
= 0.05(1) J and (b) 0.30(1) K = 0.099(4) J .
The values obtained for the parameters at T = 0.15(2) K = 0.05(1) J
are: a = -0.9(1) and b = 5(1)*10−4.

Equation (3.3) given by Barthel [112] is also compared to the data. No temperature

independent parameters a and b could be found by global fits at temperatures smaller

than J . Therefore the parameters were fitted at the lowest measured temperature

and the obtained values are a = -0.9(1) and b = 5(1)*10−4. Equation (3.3) does not

describe the data for temperatures above 0.15(2) K = 0.05(1) J , see Figure 3.15.

Conformal field theory results by Werner and Klümper

In this section we compare results by Werner and Klümper [114] with our data. Their

numerical results from exact diagonalization of finite chains are compared with our

experimental data in Figure 3.16. In order to compare numerical and experimental

data, the numerically calculated data sets were convoluted with the resolution func-

tion and scaled with a scaling factor. This scaling factor was obtained by fitting the

numerical data by Werner and Klümper [114] to the normalized experimental data.

For the resolution convolution the parameters used were the ones obtained at low

temperatures. Agreement is good for all three temperatures. Most noteworthy is

the agreement between numerical data for T → ∞, and the experimental data for

T = 31.5(6) K = 10.46(18) J . We expect therefore for CuSO4*5D2O even for T �
10 J good agreement with this numerical data.

Equations (3.4) and (3.7), which result from conformal-field theory, are also com-

pared with cuts at h ∈ [0.495, 0.505] from our data. In order to do this, equations

(3.4) and (3.7) are convoluted with the instrument resolution, as described in sec-

tion 3.4.1. This leads to the resolution-convoluted theoretical dynamic susceptibility

χ′′WK(h, ω). Equations (3.4) and (3.5) are compared with data at T = 0.15(2) K in

Figure 3.17 (a). At T = 0.79(3) K and 1.60(2) K the data are compared to equations

(3.4) and (3.6). Data at T = 0.79(3) ≈ 0.25 J are compared to parameters for T =
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Figure 3.16: Comparison between numerical and experimental data. χ′′(h, ω)
calculated numerically by Werner and Klümper [114] for finite chains,
compared to cuts at h ∈ [0.495, 0.505] from our data. In (a) the numerical
data were calculated at T = 0.3 J while the experimental data were taken
at T = 0.79(3) K = 0.263(8) J . Experimental and theoretical data in
(b) are at T ≈ 1 J (T = 3.18(5) K), and the theoretical data in (c)
are calculated for T → ∞ and compared with experimental data at the
highest measured temperature T = 31.5(6) K = 10.46(18) J .

45



3.4 Results

0.3 J given in reference [114]. χ0 is a constant and can be obtained by calculating

the limit of equation (3.6) for temperatures approaching zero and then equating this

result to equation (3.5). This was done with Mathematica and the resulting value

is χ0 = 0.16. The comparison between data at T = 0.79(3) K and 1.60(2) K, and

equations (3.4) and (3.6), are shown in Figures 3.17(b) and (c).

For temperatures above the crossover temperature T*, x is locked at 1 [114].

Substituting this into equation (3.6) leads to the sine term to be zero, but the limit

for x→ 1 makes sense, therefore x = 0.999 is used. The data at temperatures higher

than T* are then fitted using equations (3.4) and (3.6), Λ and α are allowed to vary

freely. The constant χ0 is kept fixed to 0.16.

Equations (3.4) and (3.5) show good agreement with the experimental data at T =

0.15(2) K. The dynamic susceptibility given by equations (3.4) and (3.6) reproduces

the general shape of the experimental data for temperatures smaller or equal to J ,

but the intensity is underestimated by this calculation. T = 3.18(5) K is described

correctly by equations (3.4) and (3.6) if Λ is allowed to vary freely. The experimental

data at this temperature are described less good by equations (3.4) and (3.6) if Λ is

fixed to the value given in Table 3.1. The resulting parameters are given in Table

3.3 and the fit is shown in Figure 3.17 (d). For T ≥ 6.2(2) K, using equations (3.4)

and (3.6) no parameters were found which could describe our data.

Temperature [K] Λ from fit α from fit x

3.18(5) 2.505(43) 0.17(4) 0.999

Table 3.3: Parameters for equations (3.4) and (3.6) from fits to the data at T = 3.18(5)
K. x = 0.999 is used as an approximation for x = 1 found in reference [114].

No agreement was found between the experimental data and equation 3.7, neither

with the parameters given by Werner and Klümper [114], which are summarized

in Table 3.1, nor by fitting the parameters. We were unable to obtain fits for

higher temperatures than T ≈ J using the equations from the paper by Werner and

Klümper [114].

Temperature dependence and breakdown of conformal field theory

Even though the dynamic susceptibility calculated by Werner and Klümper [114]

using conformal-field theory agrees with the experimental data for T = 0 and low

temperatures, and their numerical results also agree with our experimental data,

there are some discrepancies between their results and the experimental data.

One concerns the cut-off parameter Λ given in table 3.1. According to Werner

and Klümper, this parameter varies with temperature. In Figure 3.18, the high

energy behavior of the dynamic susceptibility χ′′(h, ω) is compared at different tem-

peratures for h ∈ [0.495, 0.505] and h ∈ [0.745, 0.755]. Plotting the experimentally

obtained T·χ′′(h, ω) reveals that the intensity falls to zero at similar energies for all

temperatures. Even though it seems in Figure 3.18 (a) and (c) as if the continuous
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Figure 3.17: Comparison between experimental and conformal field theory
data. The resolution-convoluted χ′′WK(h, ω) calculated using equation
(3.4) given by Werner and Klümper compared to scans at h ∈ [0.495
0.505] with
(a) T = 0.15(2) = 0.050(7) J calculated using equations (3.4) and (3.5)
and the parameters for T = 0, summarized in table 3.1.
(b) T = 0.79(3) = 0.263(8) J , and (c) T = 1.60(2) = 0.532(7) J , both
calculated using equations (3.4) and (3.6). For these equations Werner
and Klümper give parameters for T = 0.3 J and 0.5 J .
(d) A fit to the data at T = 3.18(5) = 1.06(2) J calculated using equations
(3.4) and (3.6). The obtained parameters are given in table 3.3.
At higher temperatures, using equations (3.4) and (3.6), no parameters
were found which could describe the data.
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Figure 3.18: Temperature dependence of the dynamic susceptibility. (a) Dy-
namic susceptibility χ′′(h, ω) and (b) T·χ′′(h, ω) for different temper-
atures and h ∈ [0.495, 0.505] and (c) χ′′(h, ω) and (d) T·χ′′(h, ω) for
different temperatures and h ∈ [0.745, 0.755].

scattering goes to zero at smaller energies for increasing temperatures, a closer look

at (b) and (d) shows that this is not the case. This means that all the intensity is

contained within the upper boundary of the two spinon continuum [72], and also

suggests that the cutoff parameter Λ, as used by Werner and Klümper in equations

(3.4) and (3.7) and summarized in table 3.1, does not change with temperature.

The peak positions for cuts of the dynamical susceptibility χ′′(h, ω) at different

temperatures for h ∈ [0.495, 0.505] and h ∈ [0.745, 0.755] are compared in Figure

3.19. In Figure 3.19 (a) the peak positions move to higher energies for increas-

ing temperatures. In Figure 3.19 (b) the position of the maximum moves to lower

energies with increasing temperature. The peaks move to different values of en-

ergy transfer for different values of h with increasing temperatures, because with

increasing temperature the intensity becomes more homogeneous within the upper

boundary for the spinon continuum, and the intensity below the lower boundary

of the spinon continuum increases, see Figure 3.7. Werner and Klümper [114] pre-

dict the shifting of the peak at h = 0.5 to higher energy transfer with increasing

temperature, as is visible in the experimental data.
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Figure 3.19: Temperature dependence of the dynamic susceptibility
(a) T·χ′′(h, ω) for different temperatures and h ∈ [0.495, 0.505] and
(b) T·χ′′(h, ω) for different temperatures and h ∈ [0.745, 0.755].

Quantum Monte Carlo (QMC) and maximum entropy data by Rahnavard

and Brenig

The Quantum Monte Carlos and maximum entropy data from Rahnavard and Brenig

[115] are resolution-convoluted as described for the data from Caux [76] in section

3.4.1. The experimental data are scaled with 1
A2+4

(see section 3.4.1), so that the ex-

perimentally obtained structure factor is S(h, ω) = S(h, ω)Exp/A2+4. The resolution-

convoluted structure factor calculated by Rahnavard and Brenig is called SRB(h, ω).

Their results are compared to our normalized data in Figures 3.20 - 3.24.

Experimental data at T = 0.099(4) J are compared to QMC data at T = 0.1 J

by Rahnavard and Brenig [115] in Figure 3.20. The shape of the structure factor

is generally reproduced correctly by the Monte Carlo data. For most values of h,

the calculated structure factor 2SRB(h, ω) correctly describes the intensity, and the

decrease in intensity with increasing energy. The wobbles in the Quantum Monte

Carlo data arise from the uncertainty when SRB(h, τ) (calculated with quantum

Monte Carlo) is transformed into SRB(h, ω) because of the analytical continuation

of imaginary time data.

In Figure 3.21 experimental data at T = 0.263(8) J are compared to QMC data at

T = 0.25 J . The intensity and its decrease with increasing energy transfer, as well as

the general shape of the structure factor, are well reproduced by 2SRB(h, ω). Already

the peaks in the cuts appear broader, which can be explained by the intensity below

εl increasing, this is well described by 2SRB(h, ω).

Figure 3.22 shows a comparison between experimental data at T = 0.532(7) J and

QMC data at T = 0.5 J . At this temperature the intensity below the lower boundary

of the two-spinon continuum εl increases further. The Monte Carlo data agree with

the experimental data, but the width of 2SRB(h, ω) at T = 0.5 J is bigger than the

width of the experimental structure factor. The intensity at negative energy transfer

increases as well. This means that at this temperature the neutrons not only transfer
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Figure 3.20: Comparison between experimental and QMC data for T =
0.099(4) J . (a) Left side (h <0.5): 2SRB(h, ω) calculated by Rahnavard
and Brenig [115] for T = 0.1 J and right side (h >0.5): S(h, ω) measured
on IN5 at 0.30(1) K = 0.099(4) J . (b) Cut at h ∈ [0.545 0.555], (c)
cut at h ∈ [0.695, 0.705] and (d) cut at h ∈ [0.845, 0.855] for the same
temperature.
The blue points are the experimentally determined S(h, ω) = Syy(h, ω)+
Szz(h, ω), which are compared to the results from Rahnavard and Brenig
(red line).

50



Multispinons in CuSO4*5D2O

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

 (b) (b)

Energy h̄ω [meV]

S
(h

,ω
) 

[m
eV

−
1  p

er
 C

u 1]

 

 

2S
RB

(h,ω)

S(h,ω)

Student Version of MATLAB

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
 (c)

Energy h̄ω [meV]

S
(h

,ω
) 

[m
eV

−
1  p

er
 C

u 1]

 

 

2S
RB

(h,ω)

S(h,ω)

Student Version of MATLAB

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4
 (d)

Energy h̄ω [meV]

S
(h

,ω
) 

[m
eV

−
1  p

er
 C

u 1]

 

 

2S
RB

(h,ω)

S(h,ω)

Student Version of MATLAB

Figure 3.21: Comparison between experimental and QMC data for T =
0.263(8) J . (a) Left side (h <0.5): 2SRB(h, ω) calculated by Rahnavard
and Brenig [115] for T = 0.25 J and right side (h >0.5): S(h, ω) mea-
sured on IN5 at 0.79(3) K = 0.263(8) J . (b) Cut at h ∈ [0.545 0.555],
(c) cut at h ∈ [0.695, 0.705] and (d) cut at h ∈ [0.845, 0.855] at the same
temperature.
The blue points are the experimentally determined S(h, ω) = Syy(h, ω)+
Szz(h, ω), which are compared to the results from Rahnavard and Brenig
(red line).
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Figure 3.22: Comparison between experimental and QMC data for T =
0.532(7) J . (a) Left side (h <0.5): 2SRB(h, ω) calculated by Rahnavard
and Brenig [115] for T = J/2 and right side (h >0.5): S(h, ω) measured
on IN5 at 1.60(2) K = 0.532(7) J . (b) Cut at h ∈ [0.545 0.555], (c)
cut at h ∈ [0.695, 0.705] and (d) cut at h ∈ [0.845, 0.855] at the same
temperature.
The blue points are the experimentally determined S(h, ω) = Syy(h, ω)+
Szz(h, ω), which are compared to the results from Rahnavard and Brenig
(red line).
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(a)

Figure 3.23: Comparison between experimental and QMC data for T =
1.06(2) J . (a) Left side (h <0.5): 2SRB(h, ω) calculated by Rahnavard
and Brenig [115] for T = J and right side (h >0.5): S(h, ω) measured on
IN5 at 3.18(5) K = 1.06(2)J . (b) Cut at h ∈ [0.545 0.555], (c) cut at h ∈
[0.695, 0.705] and (d) cut at h ∈ [0.845, 0.855] at the same temperature.
The blue points are the experimentally determined S(h, ω) = Syy(h, ω)+
Szz(h, ω), which are compared to the results from Rahnavard and Brenig
(red line).
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Figure 3.24: Comparison between experimental and QMC data for T =
2.04(6) J . (a) Left side (h <0.5): 2SRB(h, ω) calculated by Rahnavard
and Brenig [115] for T = 2 J and right side (h >0.5): S(h, ω) measured
on IN5 at 6.2(2) K = 2.04(6) J . (b) Cut at h ∈ [0.545 0.555], (c) cut at h
∈ [0.695, 0.705] and (d) cut at h ∈ [0.845, 0.855] at the same temperature.
The blue points are the experimentally determined S(h, ω) = Syy(h, ω)+
Szz(h, ω), which are compared to the results from Rahnavard and Brenig
(red line).
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energy to the sample, but can also gain energy from it. The wiggles in the Monte

Carlo data arise from the uncertainty when SRB(h, ω) (calculated with quantum

Monte Carlo) is transformed into SRB(h, ω) because of the analytical continuation

of the imaginary time data.

A comparison between experimental data at T = 1.06(2) J and QMC data at T =

J is shown in Figure 3.23. SRB(h, ω) shows good agreement with the experimental

data. At this temperature the intensity below the lower boundary of the two-spinon

continuum εl increases further. Spectral weight shifts from the antiferromagnetic

zone center towards h → 0 and 1 where increased intensity can be observed.

Experimental data at T = 2.04(6) J are compared to QMC data at T = 2J

in Figure 3.24. Even at T = 2 J the experimental structure factor is described

correctly by the theoretical structure factor SrB(h, ω). The intensity is still limited

by the upper boundary εu of the two-spinon continuum. Within this boundary the

intensity is almost independent of h, with the exception of the higher spectral weight

at low energies and h → 0 and 1.

The resolution-convoluted structure factor SRB(h, ω) by Rahnavard and Brenig

[115] describes the intensity and its decrease with increasing energies for all temper-

atures compared in this chapter. The increase in intensity below the lower boundary

for the two-spinon continuum εl with increasing temperature, and the boundaries of

the scattering, are reproduced correctly by the theoretical results. For all measured

temperatures a continuum is observed. The increased intensity close to h → 0, 1 is

studied closer in the section about long-wavelength dynamics.
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Static structure factor S(h) and susceptibility χ′(h)

Grossjohann and Brenig [86] use sum rules to assess the quality of the analytic

continuation in their calculations. Here we compare our data and the structure

factor calculated by Rahnavard and Brenig [115] to their scaling relations (3.8) and

(3.9).

The parameters DS and Dχ are given for the unconvoluted QMC data from

Grossjohann and Brenig [86]. Therefore DS and Dχ need to be adapted for com-

parison with the experimentally obtained data. Due to normalization considerations

and the fact that, in practice, one measures S(h, ω) = Syy(h, ω)+Szz(h, ω), both the

structure factor and the susceptibility have to be corrected by a factor π/2. Instead

of multiplying the static structure factor and susceptibility by π/2, DS and Dχ can

be divided by π/2. This allows for easy comparison with the scaling relations (3.8)

and (3.9).

These scaling relations use the static structure factor S(h) and the static suscep-

tibility χ′(h), which one can obtain by an integral transformation of the dynamic

structure factor given by equations (2.4) and (2.5) in section 2.3.4. In order to

compare our data with the scaling relations, cuts at h ∈ [0.495, 0.505] are made

and the data between -0.1 meV and 0.1 meV, where the incoherent scattering was

subtracted improperly, are replaced by a linear interpolation. The interpolation is

done for the dynamic susceptibility, since it is easier to interpolate χ′′(h,ω), see Fig-

ure 3.25. The result is then transformed to the dynamic structure factor using the

fluctuation-dissipation theorem described in sections 2.3.3 and 3.3.4. Interpolation

is not possible in χ′′(h, ω) at the two lowest temperatures, T = 0.15(2) and T =

0.30(1) K. For T = 0.15(2) K, S(h, ω) is interpolated between -0.1 and 0.1 meV

using the resolution-convoluted two- plus four-spinon structure factor calculated by

Caux [76]. The data for T = 0.30(1) K were omitted from the comparison with

these scaling relations.

The static structure factor and susceptibility were calculated using equations (2.4)

and (2.5). Comparisons of the static structure factor and susceptibility with the

scaling relations (3.8) and (3.9) are shown in Figure 3.26.

The experimentally determined static susceptibility χ′(h) agrees less well with the

scaling relation (3.8) than the resolution convoluted QMC data by Rahnavard and

Brenig [115]. The experimentally determined static structure factor S(h) agrees

with the scaling relation (3.8) for temperatures up to 4 J , but deviates strongly

from equation (3.8) for 10 J .

A possible explanation for this could be that small interpolation errors are blown

up when χ′′(h,ω) is transformed into S(h,ω). To test if interpolation errors explain

this discrepancy, the static structure factor S(h) and susceptibility χ′(h) are calcu-

lated for the experimental data, and the QMC data from Rahnavard and Brenig,

with an integration range starting at 0.1 meV. The interpolated data are below

this energy, so using this method they are not taken into account. Then the scal-

56



Multispinons in CuSO4*5D2O

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

Energy h̄ω [meV]

χ"
(h

, ω
) 

[m
eV

−
1  p

er
 C

u 1]

 

 

Data
Interpolation

Figure 3.25: Linear interpolation of the dynamic susceptibility χ′′(h,ω), h ∈
[0.495, 0.505], at T = 3.18(5) K.

ing relations (3.8) and (3.9) are fitted to S(h)RB, and χ′(h)RB obtained with the

method mentioned above for the resolution-convoluted QMC data from Rahnavard

and Brenig [115] for energies bigger than 0.1 meV. This leads to the new values DS =

0.072(2) and Dχ = 0.1175(7). The experimentally determined static structure factor

S(h) and susceptibility χ′(h), with the integration range > 0.1 meV, are compared

to the scaling relations with these new parameters in Figure 3.27.

The experimental static structure factor and susceptibility do not agree better with

the reparametrized scaling relation (Figure 3.27) than with the original one (Fig-

ure 3.26). Therefore, possible interpolation errors do not explain all discrepancies

between QMC and experimental data.

Another possible explanation is that with increasing temperature, less spectral

weight shifts from the antiferromagnetic zone center at h = 0.5 than predicted by

Rahnavard and Brenig [115]. But in the region with increased intensity, close to

h → 0,1 at 6.2(2) K, no noticeable difference between theory and experiment was

observed, see e.g. Figure 3.24.

The deviation in χ′(h) is less pronounced because of the division by ω in equation

(2.5).
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Figure 3.26: Comparison between experimental data and scaling relations.
(a) Comparison of the measured static structure factor (blue points) to
the scaling relation (3.8) with DS/(π/2). (b) Comparison of the experi-
mentally determined static susceptibility, calculated using equation (2.5),
with the scaling relation (3.9) and Dχ/(π/2). The data are interpolated
in χ′′(h,ω) between -0.1 meV and 0.1 meV where the incoherent scatter-
ing is not properly subtracted from the data. The error bars are smaller
than the symbols.
The green points are the static structure factor, respectively susceptibility
at 0.15(2) K, interpolated using the exact two- plus four-spinon structure
factor calculated by Caux [76]. The triangular symbols are twice the
static structure factor S(h)RB, respectively susceptibility χ′(h)RB cal-
culated from the resolution-convoluted QMC data from Rahnavard and
Brenig [115].
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Figure 3.27: Comparison between experimental data and scaling relations.
(a) Comparison of the measured static structure factor (blue points) to
the scaling relation (3.8) with DS = 0.064(2)/(π/2). The integration in
(2.4) started at 0.1 meV in order to rule out possible errors from interpola-
tion. (b) Comparison of the experimentally determined static susceptibil-
ity (blue points) with the scaling relation (3.9) and Dχ = 0.137(7)/(π/2).
Integration in (2.5) started at 0.1 meV in order to rule out possible errors
from interpolation.
S(h) and χ′(h) at the two lowest temperatures, 0.15(2) and 0.30(1) K, are
lower than for higher temperatures, because at low temperatures a bigger
ratio of spectral weight is cut out. The triangular symbols are twice the
static structure factor S(h)RB, respectively susceptibility χ′(h)RB cal-
culated from the resolution-convoluted QMC data from Rahnavard and
Brenig [115]. Again, integration in (2.4) and (2.5) started at 0.1 meV.
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Figure 3.28: Temperature dependence of the long-wavelength dynamics.
S(h, ω) from cuts at h ∈ [0.895 0.905] and different temperatures. The
intensity at h → 1 is temperature dependent.

Long-wavelength dynamics

With increasing temperatures spectral weight shifts from the antiferromagnetic zone

center to ~ω→ 0 and h→ 0,1, as can be seen in Figure 3.7. The question whether the

long-wavelength dynamics in Heisenberg chains can be described by spin diffusion

has long been discussed.

Because of the temperature independent intensity at h close to zero, discussed in

section 3.3.5, only data with h → 1 were studied. The temperature dependence of

the increased intensity for h → 1 is easily visible in Figure 3.28.

The increased intensity close to h → 1 could be caused by the copper subsystem

which forms the magnetic chains, by phonons, or it could be an additional Bragg

peak. The positions of Bragg peaks were calculated, and do not agree with the

observed signal. In order to determine whether this contribution to the signal comes

from the copper subsystem, which forms the magnetic chains, or from phonons, the

total spectral weight for each temperature is calculated by integrating over the whole

h- and ω-range. To do this, cuts from S(h, ω) with width 0.01 between h = 0.5 and

0.95 are taken and summed up over h. Because the step width in h is constant, one

can use

S(ω) =
0.95∑
h=0.5

S(h, ω)∆h.

Where the incoherent scattering could not be completely removed, in the energy

range between -0.1 to 0.1 meV, it was cut out in S(ω) and replaced by a linear inter-

polation in χ′′(ω), before the data were transformed into S(ω) again using equation

(2.3), see section 2.3.3. The data were interpolated in χ′′, because it is easier and
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more reliable due to the linear energy dependence of χ′′ close to ~ω = 0. At the

three lowest temperatures, 0.15(2) K, 0.30(1) K and 0.79(3) K, linear interpolation

in χ′′(ω) was not possible, therefore the data were interpolated in S(ω) for these

temperatures. The resulting S(ω) was summed over the energy range from -1.3

meV to 1.3 meV using the equation

SSum =
1.3meV∑

~ω=−1.3meV

S(ω)∆ω

and compared with the spectral weight calculated using the convoluted and nor-

malized two- and four-spinon continuum by Caux [76]. The data were normalized

with the scaling factor A2+4 determined in section 3.4.1. Due to the integration

range h ∈ [0.5, 0.95] and the normalization, the total expected spectral weight is
1
2

2
3
S(S+1) = 0.25 since S = 1/2 for CuSO4*5D2O. The integration range was chosen

to finish at h = 0.95 because for higher h the energy cutoff is too low be able to safely

distinguish between magnetic and incoherent scattering. The results are shown in

Table 3.4.

Temperature [K] SSum

31.5(6) 0.224(10)
12.4(5) 0.228(6)
6.2(2) 0.23(1)
3.18(5) 0.24(3)
1.60(2) 0.25(3)
0.79(3) 0.25(2)
0.30(1) 0.25(2)
0.15(2) 0.25(2)
Caux * 0.251(8)

Table 3.4: Results of summing the data over the whole h- and ω-range. * The two-
and four-spinon structure factor calculated by Caux is convoluted with the
resolution function and normalized as described in section 3.4.1.

The difference between the highest and lowest calculated spectral weight is less

than 15%. The lower spectral weight observed at higher temperatures is due to

the fact that only data up to h = 0.95 were taken into account, and that more

spectral weight can be seen at h → 1 at high temperatures. For phonons, the

spectral weight would increase with increasing temperature. This small variation

in the measured spectral weight hints that the increased intensity close to h → 0,1

does indeed originate from the copper subsystem which forms the magnetic chains.

Cuts at different wave vectors show that this increased intensity changes its form

with changing wave vector h, see Figure 3.29.

In order to determine if the increased intensity arises from spin diffusion, it was

fitted using equation (3.10) by Marshall and Lowde [125]. Before equation (3.10)

was fitted to the data, it was convoluted with the resolution function as described
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Figure 3.29: Long-wavelength dynamics for different wave vectors. Cuts at T
= 31.5(6) K through the region with increased intensity close to h → 1
with different wave vectors. The width and shape change with varying
wave vector.

in section 3.4.1. Fits are done at T = 31.5(6) K and for h close to 1. Two fits are

shown in Figure 3.30.

Fits using equation (3.10) do not fit well to the measured data, even though the

shape of the experimental data is similar to the fit. Hence, we cannot conclude that

the increased intensity close to h = 1 comes from spin diffusion. To clarify this

question, further investigation of this phenomenon is necessary.
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Figure 3.30: Fits for the long-wavelength dynamics. Fits using equation (3.10)
to cuts at T = 31.5(6) K with (a) h ∈ [0.845 0.855] and (b) h ∈ [0.865
0.875].
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3.5 Discussion

Fitting the resolution convoluted two- and four-spinon dynamical structure factor

calculated by Caux to the data at 150 mK permits to find the scaling factor A2+4 for

an absolute normalization of the data onto the Cu2+
1 spin. The parameters for the

resolution function and the exchange J are determined as well by these fits. Using

this scaling factor, resolution function and J , the data at finite temperatures can be

compared absolutely to theoretical predictions.

The two- and four-spinon dynamical structure factor calculated by Caux [76] de-

scribes the low temperature behavior of CuSO4*5D2O correctly, as already shown

by [72]. Werner and Klümper [114] found a simpler expression for the structure

factor at T = 0 given in equations (3.4) and (3.5). This theoretical structure factor

fits similarly well to the cut at h ∈ [0.495, 0.505] at T = 0.15(2) K as the two- and

four-spinon dynamical structure factor calculated by Caux. For high energies, the

results by Caux, and by Werner and Klümper, are nearly identical and only deviate

noticeably below 0.3 meV. At even lower energies, ~ω < 0.1 meV, the structure

factor calculated by Werner and Klümper starts to deviate further than the error

bars. This shows that the two- plus four-spinon continuum at low temperatures can

be described by a quite simple expression, given by equations (3.4) and (3.5), for a

relatively big energy range when the cut-off is chosen appropriately. Equations (3.4)

and (3.6) by Werner and Klümper show agreement with cuts from the experimental

data at h ∈ [0.495, 0.505] also for finite temperatures up to T = 3.18(5) K, which

corresponds to T ∼ J. This is already above the crossover temperature, which is

given as T∗ = 0.7 J . The fits however break down for T > J. Equation (3.7) did

not fit the data, but comparing numerical results from Werner and Klümper to our

experimental data shows that experimental data at 31.5(6) K, which corresponds to

T ∼ 10 J, show good agreement with their numerical data for T ∼ ∞. We expect

therefore for CuSO4*5D2O good agreement with these numerical results even for T

� 10 J and that even at these temperatures spin correlations are important.

The scaling relation by Schulz [104] given in equation (3.1) shows good agreement

with the data up to temperatures of the order of J , i.e. intermediate temperatures.

This is higher than the range given by Schulz, who states that (3.1) is valid for

low temperatures, which usually means T < J . The temperature energy scaling for

CuSO4*5D2O collapses to a single curve given by equation (3.1) for energies between

0.2 and 0.5 meV and temperatures up to 2J . This shows that the excitation spectrum

of CuSO4*5D2O is similar to the excitation continuum of the 1D LL.

Introducing logarithmic corrections for umklapp scattering, as done by Starykh,

does not improve agreement between experimental data and the theoretically cal-

culated structure factor. Equation (3.2) by Starykh [105, 110, 111] reproduces the

shape of the continuum at h ∈ [0.495, 0.505] for temperatures smaller or equal to

≈ 0.25 J , but overestimates the intensity, especially at low temperatures and low

energies.
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Equation (3.3) given by Barthel [112] was originally proposed for the Bose-Hubbard

model, and only follows the experimental data at the lowest measured temperature,

0.15(2) K, which is the temperature where the parameters are fitted.

The scaling relations for the static structure factor and the static susceptibility

with the parameters given by Starykh [105] agree with quantum Monte Carlo data

by Rahnavard and Brenig [115]. Good agreement for all temperatures is found be-

tween the static susceptibility and the scaling relation. The static structure factor

S(h) also agrees with the sum rule, except at the highest measured temperature .

A possible explanation is that, in reality, less spectral weight shifts from the anti-

ferromagnetic zone center than predicted by Rahnavard and Brenig [115]. But in

the region with increased intensity up to temperatures of 6.2(2) K, close to h →
0,1, no noticeable difference between the quantum Monte Carlo data by Rahnavard

and Brenig and experimental data was found. Accounting for possible errors intro-

duced by interpolation does not improve agreement between the scaling relation and

dynamic susceptibility.

The dynamic structure factor of the antiferromagnetic spin-1
2

Heisenberg antifer-

romagnetic chain calculated by Rahnavard and Brenig [115] describes the behavior

of CuSO4*5D2O correctly. At low temperatures (T = 0.30(1) K and T = 1.60(2)

K) the results from Grossjohann and Brenig show wiggles, which we do not observe.

These wiggles arise from the uncertainty when SRB(h, τ) (calculated with quantum

Monte Carlo) is transformed into SRB(h, ω), because of the analytic continuation of

imaginary time data. At all temperatures for which quantum Monte Carlo results

by Rahnavard and Brenig are available, SRB(h, ω)) is a qualitatively and quanti-

tatively good description of the experimental data. The intensities, as well as the

changing shape of the continuum, are reproduced correctly. The shifting of spec-

tral weight below the lower boundary of the two-spinon continuum and away from

the antiferromagnetic zone center to h → 0,1 with increasing temperature are also

described. This shifting of spectral weight away from the antiferromagnetic zone

center was predicted by Starykh [105] and Grossjohann and Brenig [86]. We could

not determine definitely whether this increased intensity near h → 0, 1 at low ener-

gies is diffuse. The excitation spectrum of CuSO4*5D2O shows excellent agreement

with the excitation spectrum of a spin-1
2

Heisenberg antiferromagnetic chain, even

at finite temperatures.

For all observed temperatures continuous scattering drops to zero at the same

energy. So even at the highest measured temperature, the signal is well contained

within the upper boundary of the two-spinon continuum [72]. This means that

a spinon continuum is observed at all measured temperatures, and CuSO4*5D2O

behaves, even at 31.5(6) K, like a quantum magnet and not like a classical system

at infinite temperatures, for which one would expect single spin flips.
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• CuSO4*5D2O is an excellent model material for the spin-1
2

Heisenberg antifer-

romagnetic chain.

• A spinon continuum is observed at all measured temperatures and therefore

one can conclude that CuSO4*5D2O behaves like a quantum magnet even at

T ∼ 10J , and not like a classical magnet at infinite temperatures, for which

one would expect single spin flips.

• Quantitative and qualitative comparisons between experimental data and the-

oretical calculations across a range of temperatures were done.

• The dynamic structure factor for the excitation spectrum of the spin-1
2

Heisen-

berg antiferromagnetic chain calculated by QMC is a quantitatively good de-

scription of the experimental data.

• The increasing intensity at h → 0,1 and ~ω → 0 with increasing temperature,

which is also predicted theoretically, arises from the same copper subsystem

that forms the magnetic chains.

• Good agreement between the excitation spectrum of CuSO4*5D2O and ω/T -

scaling is observed up to T ∼ 2J .

• Both static structure factor and static susceptiblity show good agreement with

scaling relations for most temperatures.

• Numerical data for T → ∞ and experimental data for T ∼ 10J show good

agreement, and indicate that even for T� J good agreement may be expected

and that spin correlations are important at these temperatures.
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Chapter 4

The quasi-1 dimensional Ising

antiferromagnet RbCoCl3

The Ising chain is probably one of the most studied models in magnetism. The

simplest excitation in an Ising chain is flipping a spin. This gives rise to two do-

main walls which are a soliton-pair state. The Ising chain in a transverse magnetic

field is probably the simplest realization of a quantum phase transition. Near its

quantum critical point the ferromagnetic Ising chain CoNb2O6 shows a spectrum of

bound states [13]. This motivates the investigation of similar physics in other model

systems.

Candidates are from the family ACoX3, with A = {Rb, Cs, Tl} and X = {Br, Cl}
to which RbCoCl3 belongs. Optical spectroscopy measurements indicate a lower

energy for RbCoCl3 than for other members of this family [3]. In order to experi-

mentally access the quantum critical point, which is in this case the critical magnetic

field, a low enough energy scale is needed.

In this chapter the magnetic structure of RbCoCl3 is discussed and neutron scat-

tering studies of the excitation spectrum of RbCoCl3, which gives rise to bound

states at low temperatures, and its temperature dependence are presented.

4.1 Introduction

4.1.1 Ising materials

One of the most studied models in magnetism is the Ising model. It is named after

Ernst Ising, who studied a linear model of spins which can point only along one axis

[152]. Ising found that the one dimensional case has no phase transition. Peierls

predicted later that ferromagnetic order sets in at sufficiently low temperatures for

the two dimensional Ising model [153]. This case was solved exactly by Lars Onsager

[154].
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Figure 4.1: Splitting of the energy levels of a free Co2+ ion. The energy levels of
a free Co2+ ion split under the influence of the ligand field, spin-orbit cou-
pling and Jahn-Teller distortions. The resulting ground state has effective
spin-1

2 [162].

Ions giving rise to Ising-like interactions

Because the spins in Ising materials can only point along one axis, ions giving rise

to Ising-like interactions require large anisotropy. Since the magnetic moment varies

with the g-value, the g-value anisotropy can be used to find Ising ions [130]. One

ion which leads to Ising like interactions is Dy3+ [11] e.g. in the antiferromagnets

DyAlGa [155] and DyPO4 [156, 157]. Other model materials with Ising like interac-

tion can be found, for example, in the lithium rare earth (R) tetrafluorides LiRF4

for certain rare earths. LiTbF4 and LiHoF4 are Ising-like ferromagnets [158, 159].

The Co2+ ion is also a good resource for anisotropic model materials, and results in

Ising- or sometimes XY-interactions [130, 160, 161].

The Co2+ ion

The ground state of the free Co2+ ion is the 4F state with a spin of 3
2
, and the first

excited state is the 4P state. Under an octahedral ligand field, the free ion terms 4F

and 4P split into a ground state 4T1g and excited states. A sketch of this splitting

is shown in Figure 4.1.

Because the angular orbital momentum of Co2+ is not quenched, spin-orbit cou-

pling must be taken into account. This leads to an additional splitting of the states

obtained by ligand field splitting. The ground state 4T1g term is split into a ground
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Figure 4.2: Phase diagram of the Ising chain in a magnetic field. At low trans-
verse field the elementary excitations are pairs of domain walls. Above the
critical field, in the paramagnetic phase, excitations are flipped spins. This
Figure is taken from reference [13].

state Kramers doublet, a quartet and a sextet. The Jahn-Teller distortion of the

octahedral ligand field leads to further splitting into six Kramers doublets. Since at

low temperature only the lowest Kramers doublet is thermally populated, one can

assume that octahedrally coordinated Co2+ ions have an effective spin of 1
2

[130, 160–

162]. Depending on the kind of distortion (stretching or compression) this spin can

be of Ising- or XY-type. The anisotropy of the spin will depend on the relative

magnitudes of the spin-orbit coupling and the crystal field [130, 163].

The Ising chain in a transverse magnetic field

Perhaps the simplest realization of a quantum phase transition is the Ising chain in

a transverse magnetic field. At low transverse fields the elementary excitations are

domain walls, and above the critical magnetic field the elementary excitations are

flipped spins, as shown in Figure 4.2. Around the quantum critical point unconven-

tional entangled scaling and critical scaling can occur [1]. The one-dimensional Ising

model in a transverse field was studied theoretically by Pfeuty [164] and Sachdev

[1], amongst others.

In order to study this quantum phase transition experimentally a good model

material for an Ising chain is needed. Since the critical magnetic field depends on

the energy scale (10 T ≈ 1 meV), the energy scale should be low enough so that the

magnetic field strengths are still experimentally accessible. Coldea et al. studied a

ferromagnetic Ising chain, CoNb2O6, near its quantum critical point where it displays

a spectrum of eight particles, long predicted to appear near the critical point of an

Ising chain [165]. In CoNb2O6 these effects are realized by the interchain coupling

acting as a perturbation to the dominant Ising state [13, 166]. In contrast, in the

three dimensional Ising magnet LiHoF4 sharp spin-flip quasiparticles were observed
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both above and below the critical field [159, 167]. The study of CoNb2O6 by Coldea

et al. motivates the investigation of other Ising-like magnetic chains.

Another Ising chain which has been studied experimentally is CsCoCl3 [59, 60]. For

this compound, Shiba predicted the Néel phase to change into a spin-liquid like state

with no long range order [168]. This has not been confirmed in CsCoCl3 due to its

rather high critical field, but is suspected to be responsible for an order to disorder

transition in BaCo2V2O8 [169]. Another Ising chain studied is SrCo2V2O8 which

shows two phase transitions with an applied magnetic field increasing in strength

[12, 126].

The family ACoX3

The family ACoX3, with A = {Rb, Cs, Tl} and X = {Br, Cl}, is a class of potential

Ising materials [11]. CsCoBr3 [59, 62–64], CsCoCl3 [59, 60, 170] and TlCoCl3 [65–67]

have been studied using neutron scattering. Those materials all have an in-chain

interaction around 2J = 12.8 - 14.7 meV, an XY-component ε = 0.14 - 0.15, and

order around 30 K. RbCoCl3, which is studied in this chapter, has been studied less

than these compounds. Magnetic susceptibility measurements indicated the energy

scale 2J to be lower. A low enough energy scale is needed to experimentally access

the critical magnetic field [3].

The excitation spectrum of CsCoCl3 and CsCoBr3 has been studied using neutron

scattering [60, 62] and Raman spectroscopy [161, 171]. The weak interchain interac-

tion present in these compounds leads to a set of discrete peaks being observed. Due

to the lower energy scale of RbCoCl3, and the better resolution of high resolution

neutron spectroscopy, studying the excitations in RbCoCl3 is expected to lead to a

better understanding of the excitation spectrum of the Ising-like antiferromagnetic

chain.

4.2 Excitations in Ising-like antiferromagnetic

chains

The simplest excitation in a spin chain consists of flipping a spin, see section 1.2.

The excitation spectrum of the spin-1
2

anisotropic Heisenberg antiferromagnet

H = 2J
∑
j

[
SzjS

z
j+1 + ε

(
Sxj S

x
j+1 + Syj S

y
j+1

)]
= HZZ +HXY ,

where ε is a measure for the anisotropy, was first determined for ε = 1 by des

Cloizeaux and Pearson [74] and is discussed for the spin-1
2

Heisenberg antiferro-

magnetic chain in section 1.2 and chapter 3. Here the excitation spectrum for the
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Ising-like antiferromagnetic chain is introduced.

Villain [172] studied the spin dynamics of an Ising-like antiferromagnetic chain

at low temperatures, and showed that it can be governed by the propagation of

boundaries between antiferromagnetic one-dimensional domains (single-domain-wall

description). At elevated temperatures, the motion of thermally activated domain

walls should manifest itself as a central peak of the longitudinal response Szz(Q, ω)

[172]. This peak has been observed by, amongst others, Hirakawa and Yoshizawa

in CsCoCl3 [173, 174] and Nagler in CsCoBr3 [62]. If these excitations, consisting

of domain walls, satisfy certain conditions they are called solitons. “Essentially,

solitons are quantized excitations of a classical, continuous system which are not

scattered by solitons or other quasi-particles: they can be retarded or accelerated

during the collision, but the velocity (and shape) at the end of the collision is the

same as before” [61].

Mikeska [175] suggested that solitons can be observed by inelastic neutron scat-

tering. A first experiment on the ferromagnetic chain CsNiF3 was carried out by

Kjems and Steiner [176] in 1978, but the result is controversial. Regnault, Boucher

et al. could prove the existence of solitons, showing that the domain walls in the

antiferromagnetic chain (CD3)4NMnCl3 propagate freely, by studying the lifetime

of antiferromagnetic excitations [177, 178]. Figure 4.3 shows a sketch of a magnon

decaying into two solitons and the resulting dispersion.

Ishimura and Shiba [179] studied the spin dynamics of one dimensional Ising-like

antiferromagnets, using perturbation theory up to first order in ε and exact calcula-

tions for finite chains (domain-wall-pair description). Shiba expanded the model to

take interchain interactions into account. These models are explained in more detail

in section 4.2.1. Other models were established to describe experimental results.

Johnstone et al. [171] studied the Ising-like antiferromagnetic chain CsCoBr3 using

Raman spectroscopy. They postulated that the interchain interaction modifies the

Co2+ levels, and implemented this by changing the nearest neighbor interchain inter-

action JIC for every peak. Lehmann et al. [161] studied CsCoCl3 and CsCoBr3 using

Raman spectroscopy, and implemented the modification of Co2+ levels by changing

εJ for every peak. Jörke and Dürr [180] compared FIR spectroscopy results for

RbCoCl3 with the theories by Johnstone and Lehmann and found reasonably good

agreement. Nagler [62] extended the perturbation theory by Ishimura and Shiba

to finite temperatures, and the results compare reasonably well to inelastic neutron

scattering data for the one-dimensional Ising-like antiferromagnet CsCoBr3. They

also found experimental evidence for ideal soliton gas behavior near the antiferro-

magnetic zone center, suggested by Maki [181].

Matsubara [182] studied the quasi one-dimensional antiferromagnets CsCoCl3,

CsCoBr3 and RbCoCl3 using Raman scattering. He introduced an extension to

Shibas model, which removes the discrepancies observed between experimental and

theoretical results in earlier theories. This theory is presented in more detail in

section 4.2.1. Goff [60] introduced a term arising from exchange mixing to explain
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Figure 4.3: Sketch of solitons and the resulting dispersion.
Top: A magnon decaying into two solitons (domain walls).
Bottom: With neutron scattering one can observe two continua arising
from soliton pairs. The low lying continuum is called a “Villain mode”, it
is due to neutrons scattering on thermally excited solitons. The continuum
at higher energies arises due to the creation of a pair of solitons which leads
to a gapped dispersion. This Figure is from reference [64]. Jz corresponds
to J , and the red lines indicate scans in reference [64].
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neutron scattering results in CsCoCl3. This theory is also presented in more detail

in section 4.2.1.

4.2.1 Theoretical models

The isolated chain model

For the Ising-like antiferromagnet, ε is much smaller than 1 and can be treated as a

perturbation. Ishimura and Shiba [179] studied the dynamics of the one dimensional

Ising like antiferromagnet using perturbation theory up to first order in ε. This model

only treats isolated chains. For a chain of N ions Ishimura and Shiba find the matrix

elements

〈ν,Q |H| ν ′,Q〉 =


2J for ν ′ = ν,

V for ν ′ = ν + 1,

V* for ν ′ = ν − 1,

0 otherwise,

(4.1)

where V = εJ
(
1 + e−2πiQ

)
and ν is the number of reversed spins. The dynamic

spin correlation function Sαα(Q, ω), α= x or z, can be written as

Sαα(Q, ω) =
∑
f

∣∣〈f ∣∣SαQ∣∣ g〉∣∣2 δ (ω − Ef + Eg) ,

where Eg and Ef are the energies of the ground state and the excited state, |g〉
is the ground state, and |f〉 is an excited state connected by the spin fluctuation

operator SαQ = N−1/2
∑

j e
iQjSαj . The ground state is given by perturbation theory

as

|g〉 ≈ ΨNeel1 +
1

E0 −HZZ

HXY ΨNeel1,

and

S+
Q |g〉 ≈

1√
2

(1− ε cos (2πQ)) Ψ1(Q) +
1√
2

V∗

2J
Ψ3(Q),

where ΨNeel1 is a Néel state and Ψ1 and Ψ3 are excited states. E0 is the energy of

the Néel state. These states are illustrated in Figure 4.4.

The spin correlation function can be written as

Sxx(Q, ω) ≈
(
− 1

4π

)
Im[(1− ε cos(2πQ))2G(1, 1)

− (1− ε cos(2πQ))

(
V∗
2J

G(1, 2) +
V

2J
G(2, 1) + o

(
ε2
))

],

(4.2)
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ΨNeel1

ΨNeel2

Ψ1(Q)

Ψ3(Q)

Ψ2(Q)

Ψ4(Q)

Figure 4.4: Basis states for the perturbation theory from the pure Ising limit
used by Ishimura and Shiba. The states with flipped spins are excited
states of the Néel state. This Figure is inspired by Figure 1 in reference
[179].

Figure 4.5: Excitation continuum for the isolated chain model. The white
lines are the upper and lower boundaries of the continuum resulting from
solitons in isolated chains. The parameters are estimated for compounds
of the ACoX3 family. For the isolated chain model, the parameters are J
= 6.5 meV and ε = 0.18.
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where G(i, j) =
〈
i
∣∣∣ 1
ω−H+iµ

∣∣∣ j〉 , (µ → +0), is the Green’s function defined using

(4.1). The resulting excitation spectrum is shown in Figure 4.5

The interchain coupling model

Shiba [183] extended the isolated chain model by Ishimura and Shiba by taking

interchain coupling into account through the staggered field hIC = nJIC , where JIC
is the exchange between nearest neighboring chains and n is a multiplicity arising

from the magnetic structure. Under the influence of interchain coupling discrete

peaks arise. The boundaries of the continuum shift slightly, and the discrete peaks

due to interchain interaction have spectral weight also outside of the continuum

boundaries. Figure 4.6 shows the excitation spectrum when interchain coupling is

taken into account. In Figure 4.7 the excitations for isolated chains and for coupled

chains are compared. Under the influence of interchain coupling the continuum splits

into discrete peaks, which appear on top of the continuum arising from isolated

chains (two staggered fields arise due to the assumed magnetic structure, here hIC
= 0 and 6*0.05 meV. The staggered field hIC = 0 meV leads to a continuum, while

hIC = 6*0.05 meV leads to discrete peaks on top of the continuum).

Figure 4.6: Excitation spectrum of the interchain coupling model. The white
lines are the boundaries for the continuum arising from isolated chains.
The parameters are estimated for compounds of the ACoX3 family. For
the interchain coupling model the parameters are J = 6.5 meV and ε =
0.18 with an added interchain interaction hIC = 0 and 6*0.05 meV.

Equation (4.1) then takes the form

〈ν,Q |H| ν,Q〉 =

{
2J (1 + ε2) + 2(2ν − 1)hIC for ν = 1,

2J
(
1 + 3

2
ε2
)

+ 2(2ν − 1)hIC otherwise,
(4.3)
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Figure 4.7: Comparison between the isolated chain model and the interchain
coupling model. The parameters are estimated for compounds of the
ACoX3 family and are taken as J = 6.5 meV, ε = 0.18. Q is 1.0 [r.l.u.].
The staggered fields are hIC = 0 and 6*0.05 meV.

and

〈ν,Q |H| ν ′,Q〉 =



V for ν ′ = ν + 1,

V∗ for ν ′ = ν − 1,

V2 for ν ′ = ν + 2,

V∗2 for ν ′ = ν − 2,

0 otherwise,

(4.4)

where V2 = −J 1
2
ε2
[
1 + e−4πiQ

]
. The dynamic spin correlation function Sxx(Q, ω)

is calculated in a similar manner to the isolated chain model, using the matrix

elements of equation (4.4) instead of (4.1).

The in-chain next nearest neighbor (nnn) model

Matsubara extended the interchain coupling model by taking a next nearest neighbor

in-chain interaction into account [182, 184]. He studied the quasi one-dimensional

antiferromagnets CsCoCl3, CsCoBr3 and RbCoCl3 using magnetic Raman scattering

[182]. He explained the results by extending the interchain coupling model by Shiba.

In addition to the interchain exchange hIC and the antiferromagnetic in-chain nearest

neighbor (nn) exchange J , he also takes the ferromagnetic in-chain next nearest

neighbor (nnn) exchange J ′ into account. The effect of J ′ is shown in Figures 4.8.

In this model the intensity of the continuum decreases while the discrete peaks

win in intensity. Also the low energy limit of the excitation spectrum is at higher

energies than the lower boundary given by the isolated chain model. The boundaries

of the continuum for isolated chains are not valid anymore in this model. Figure

4.9 compares the in-chain nnn model with the interchain coupling model. The

position of the discrete peaks shifts, and the spectral weight of the continuum arising
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Figure 4.8: Excitation spectrum of the in-chain next nearest neighbor (nnn)
model. The weight lines are the boundaries of the continuum for isolated
chains. The parameters are estimated for compounds of the ACoX3 family.
The parameters are J = 5.43 meV, J ′ = -1.07 meV, ε = 0.18 and the
staggered fields are hIC = 0 and 6*0.05 meV.

from isolated chains decreases. The part of spectral weight accounted for by the

discrete peaks compared to the spectral weight of the continuum is bigger when J ′

is taken into account. Also the onset of the intensity is now at higher energy, and

no continuum is visible at energies lower than the position of the first peak.

The matrix elements of the Hamiltonian are given by

〈ν,Q |H| ν,Q〉 =

{
2J (1 + ε2) + 2J ′ [1− ε cos(2πQ)] + 2(2ν − 1)hIC for ν = 1, N − 1,

2J
(
1 + 3

2
ε2
)

+ 4J ′ + 2(2ν − 1)hIC otherwise,
(4.5)

for diagonal terms, and for off-diagonal terms by

〈ν,Q |H| ν ′,Q〉 =



V2∗ for ν ′ = ν − 4,

V∗ for ν ′ = ν − 2,

V for ν ′ = ν + 2,

V2 for ν ′ = ν + 4,

0 otherwise.

(4.6)

The dynamic spin correlation function Sxx(Q, ω) is calculated using equations

(4.2), (4.5) and (4.6). For RbCoCl3 Matsubara found the parameters ε = 0.15, J

= 71.8 K ≈ 6.19 meV, J ′/J = 0.135 and JIC/J = 0.02. Fits by Matsubara to the

Raman scattering results for RbCoCl3 work well for low frequencies, but additional

peaks which were not observed by Matsubara are predicted by this model [182].
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Figure 4.9: Comparison between the interchain coupling model and the in-
chain next nearest neighbor (nnn) model. The parameters are esti-
mated for compounds of the ACoX3 family and are taken as J = 6.5 meV
for the interchain coupling model, and J = 5.43 meV and J ′ = -1.07 meV
for the in-chain nnn model, and ε = 0.18 and hIC = 0 and 6*0.05 for both
models. Q = 1.0 [r.l.u.].

The exchange mixing model model

Goff et al. [60] describe the magnetic excitations observed by neutron scattering in

the Ising antiferromagnetic chain CsCoCl3 using the spin Hamiltonian with diagonal

terms

〈ν,Q |H| ν,Q〉 =

{
2J + νhIC for ν = 1, N − 1,

2J + νhIC + 2∆ otherwise,
(4.7)

and off-diagonal terms

〈ν,Q |H| ν ′,Q〉 =


V∗ for ν ′ = ν − 2,

V for ν ′ = ν + 2,

0 otherwise,

(4.8)

where ν runs over the values 1,3,5,...,N-1.

∆ is the exchange mixing, and calculated to be ∆ = 0.09J. The exchange mixing

arises from a mixing with higher levels having the same spin number. This depresses

the split levels of the lowest Kramers doublet by the same amount ∆. The exchange

mixing term helps to distinguish energetically between a two-soliton and a spin-

wave state. This function can also be fulfilled by the in-chain next nearest neighbor

interaction J ′ introduced in Matsubara’s in-chain nnn model. The difference is that

J ′ leads to an additional Q-dependence of the matrix elements of the Hamiltonian,

while ∆ is a local splitting. The dynamic spin correlation function Sxx(Q, ω) is

calculated using equations (4.2), (4.7) and (4.8).

Goff found “quantitative agreement”between his model and neutron scattering
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Figure 4.10: Excitation spectrum for the exchange mixing model. The white
curves are the lower and upper boundaries of the continuum arising from
isolated chains. The parameters are estimated for compounds of the
ACoX3 family and are J = 6.5 meV, ε = 0.18 with an interchain inter-
action hIC = 0 and 6*0.1 meV and exchange mixing ∆ = 0.09*J = 0.59
meV.
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Figure 4.11: Comparison between the in-chain nnn model and the exchange
mixing model. The parameters are estimated for compounds of the
ACoX3 family and are taken as J = 5.43 meV, J ′ = -1.07 meV, ε = 0.18
and hIC = 0 and 6*0.05 for the in-chain nnn model, and J = 6.5 meV,
ε = 0.18, hIC = 0 and 6*0.1 meV and ∆ = 0.59 meV for the exchange
mixing model.
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data for CsCoCl3, and his model works better in this case than Matsubara’s in-

chain nnn model [60].

Figure 4.10 shows the excitation spectrum for the exchange mixing model. The

lower boundary for isolated chains is too low compared to this model, and the upper

boundary does not fit also. Again the discrete peaks have spectral weight outside

of the continuum. Figure 4.11 shows the difference between Matsubara’s in-chain

nnn model and Goff’s exchange mixing model. The differences are remarkable. The

peak positions change, and the continuum from isolated chains is smaller in the in-

chain nnn model than in the exchange mixing model. The first peak in the exchange

mixing model is a broad onset of the continuum.
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4.3 Magnetic and crystallographic structure of

RbCoCl3

In order to understand the magnetic excitations in RbCoCl3 a good understanding

of the crystallographic and magnetic structure is essential. To obtain this, neu-

tron scattering experiments were performed in cooperation with Nora Hänni from

the University of Bern. The results presented in this section are also published in

reference [185].

4.3.1 Experiments

Experiments were performed on powder and on single crystal samples. The samples

used for this work were grown by Nora Hänni at the University of Bern under the

supervision of Karl Krämer [185], three single crystals are shown in Figure 4.12.

Neutron diffraction data on powder samples were obtained by Nora Hänni and Karl

Krämer at the HRPT [186, 187] and DMC [187] powder diffractometers at the Swiss

spallation neutron source (SINQ) at the Paul Scherrer Institut (PSI) in Villigen,

Switzerland. The data were collected between 1.5 K and 300 K.

Data from elastic neutron scattering were obtained on the triple-axis spectrometers

IN22 at ILL and EIGER at PSI at temperatures between 1.5 K and 80 K. An elastic

neutron scattering experiment on EIGER with vertical magnetic fields between 0 T

and 13 T was also performed. The samples were aligned for the experiments with

scattering plane (0 0 1) and (1 1 0) for the experiment on IN22 and (0 0 2) and (2

2 0) for the experiments on EIGER.

Figure 4.12: Three RbCoCl3 single crystals grown by Nora Hänni [185]. The de-
picted crystals were used for inelastic neutron scattering measurements at
the time-of-flight spectrometer LET of the ISIS Facility at the Rutherford
Appleton Laboratory in Didcot, UK, see section 4.4.1, and are already
mounted onto the sample holder. The samples were handled in a glove
box filled with helium and put in an aluminum sample can.
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4.3.2 Crystal Structure

RbCoCl3 is a hexagonal perovskite of the family ACoX3 with A = Rb, Cs, Tl

and X = Br, Cl. The Rb+ and Cl− ions form layers of RbCl3 along the c-axis,

and smaller Co2+ ions occupy octahedral voids between the layers. The Co2+ ions

carry an effective spin-1
2
, see section 4.1.1, and form chains along the c-axis. On

cooling down to 1.5 K no indications for a structural phase transition were observed

[185]. Table 4.1 gives the lattice parameters for different temperatures. The crystal

structure obtained is shown in Figure 4.13.

Figure 4.13: Crystal structure of RbCoCl3. Rb is purple, Co blue and Cl green.
The Co2+ ions carry spin-1

2 and form chains along the crystallographic
c-axis [185, 188]. These plots were made with VESTA [139].

T [K] a [Å] c [Å]

297 7.0003(3) 5.9989(2)
80 6.9416(2) 5.9606(2)
1.5 6.9299(1) 5.9510(1)

Table 4.1: Lattice parameters for RbCoCl3 at different temperatures [185].
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4.3.3 Magnetic structure

In diffraction experiments with powder and single crystal samples two magnetic

phase transitions were observed at TN1 ≈ 28 K and TN2 ≈ 14 K [185] (for compar-

ison: the transition temperatures for CsCoCl3 are TN1 ≈ 21 K and TN2 ≈ 10-14

K [60, 189]). Diffraction scans obtained on EIGER are shown in Figure 4.14 and

the integrated intensity of these peaks is shown in Figure 4.15. In order to obtain

the integrated intensities, the Bragg contributions observed in the diffraction ex-

periments were fitted using a Gaussian, while the diffuse contributions were fitted

using a Lorentzian. At the transition temperatures one can observe an increase in

the Bragg contribution (related to magnetic long range order) and a simultaneous

decrease of diffuse scattering (indicating short range order).
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Figure 4.14: Diffraction pattern of a RbCoCl3 single crystal at 1.5 K and 55 K.
A structural peak at h = 1 is prohibited by the space group of RbCoCl3,
but the peak at h = 1 at 55 K is not of magnetic origin [185].

Figure 4.16 shows a temperature diagram for RbCoCl3 indicating the transition

temperatures, and the temperatures where the magnetic structure was determined.

The magnetic moments point along the crystallographic c-direction, which is also

the chain direction. The magnetic exchange interactions along the chains are anti-

ferromagnetic and rather strong because of superexchange via the Co-Cl-Co bonds.

The shortest interaction path between the chains is via Co-Cl-Cl-Co. This includes

a Cl-Cl van der Waals contact, and therefore the magnetic interchain interaction is

much weaker than the interaction within a chain [185, 190].
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Figure 4.15: Integrated intensity of diffraction scans on RbCoCl3 made on the
thermal neutron triple-axis spectrometer EIGER at PSI. The transition
temperatures are indicated by the dotted lines. At the transition temper-
ature the Bragg scattering increases while the diffuse scattering increases
at TN1,2 , but decreases with further decreasing temperatures.

T Paramagnetic

< 80 K: Correlations along chains

~ 28 K: Transition to 3D order

18 K: k1 = (1/3, 1/3, 1) and diffuse scattering
~ 14 K: 2nd phase transition

2 K: k2 = (1, 1, 1) and k3 = (½, ½ , 1)

Figure 4.16: Temperature dependence of the magnetic correlations in
RbCoCl3. This Figure sketches how the magnetic structure of RbCoCl3
changes with temperature, and where the magnetic structure was deter-
mined for each phase.
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Structure for T > TN1

The magnetic moments order antiferromagnetically in the chains below 70 - 80 K

where the magnetic susceptiblity shows a maximum [185]. Above TN1 the interchain

interaction plays no role in the correlation between spins. The magnetic moments

are parallel to the crystallographic c-axis, but are unordered in the ab-plane.

Structure for TN1 > T > TN2 (intermediate temperatures)

At TN1 > T > TN2 one propagation vector, k1 =
(

1
3
, 1

3
, 1
)
, was observed. The

magnetic structure determined by N. Hänni [185] at T = 18 K, which is between TN2

and TN1 , is shown in Figure 4.17 (a). In neutron scattering experiments phases are

undetermined, and solutions which differ only in a phase shift have to be considered

equivalent. Therefore, the magnetic structures of RbCoCl3 and CsCoCl3, shown in

Figure 4.17, are considered equivalent at intermediate temperatures [185, 189].

-1.86 μB
3.72 μB

(a)

Neel state 2

Neel state 1

Disordered chain

(b)

Figure 4.17: Magnetic structure in the intermediate temperature phase.
(a) Magnetic structure of RbCoCl3 at 18 K determined by Nora Hänni
[185]. (b) Magnetic structure found for the intermediate temperature
phase in CsCoCl3 by Mekata [189]. This structure is equivalent to the
structure shown in (a) because in neutron scattering phases are undeter-
mined.

Monte Carlo Simulation of the magnetic structure

In order to understand the magnetic structures better, Monte Carlo simulations were

done in cooperation with Mattia Mena from University College London [191]. Ab-

initio calculations were performed where the energy of a system of random spins with

magnetic moment ±µB aligned along the crystallographic c-axis, which are subject

to an antiferromagnetic nearest neighbor and ferromagnetic next nearest neighbor

interaction, was minimized. The diffraction pattern for the resulting structures

was calculated and compared with the experimentally obtained diffraction pattern.
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Figure 4.18: Monte Carlo simulation of the magnetic structure and Bragg
diffraction pattern at intermediate temperatures done in coop-
eration with Mattia Mena from University College London [191]. The
partially ordered magnetic structure in the ab-plane which leads to the
Bragg diffraction pattern which agrees with the experimentally observed
Bragg pattern at 18 K. Therefore the structure at 18 K is thought to be
similar to the one shown here.

The Monte Carlo simulation reproduces the positions of the Bragg peaks which

give the propagation vector. The magnetic moment is connected to the intensity

of the Bragg peaks. For intermediate temperatures, the Monte Carlo simulation is

able to reproduce the position of the sharp Bragg peaks at h = 1/3 arising from

the propagation vector k1 =
(

1
3
, 1

3
, 1
)

and the diffuse scattering observed at 18 K.

These features can be obtained from a partially disordered magnetic structure, as

shown in Figure 4.18. The order within the domains leads to the sharp Bragg peaks

at h = 1/3 while the disorder at the boundaries of the domains leads to diffuse

scattering. Better simulations may be obtained using the cluster heat bath method

[192, 193] used by Koseki and Matsubara to simulate the magnetic phase transitions

in CsCoCl3 and CsCoBr3 [194].
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Structure for TN2 > T (low temperatures)

Below TN2 two additional propagation vectors, k2 = (1, 1, 1) and k3 =
(

1
2
, 1

2
, 1
)
,

have been found. The peak arising from k3 is small. Elastic neutron scattering

scans with and without an applied magnetic field and X-ray diffraction confirm that

the k3 propagation vector is of magnetic origin. The magnetic structure at 2 K is

of a ferrimagnetic kind and is sketched in Figure 4.19.

Monte Carlo Simulation of the magnetic structure

Minimizing the energy on a random grid as done for intermediate temperatures

leads to a perfect honeycomb lattice, the structure in the top diagram in Figure

4.19 where k3 is not taken into account. This ideal honeycomb ground state at 2 K,

and the corresponding magnetic Bragg pattern, are shown in Figure 4.20. In addi-

tion to a nearest neighbor antiferromagnetic inter-chain exchange, a ferromagnetic

next-nearest neighbor interaction is also needed to stabilize the perfect honeycomb

structure [161, 183].

At low temperatures the Monte Carlo simulation should reproduce two effects:

The propagation vectors k2 = (1, 1, 1) and k3 =
(

1
2
, 1

2
, 1
)
. While the peak arising

at h = 1 could be reproduced , the peak arising at h = 1/2, which was observed

experimentally, could not be reproduced using Monte Carlo simulations. Additional

simulations which take not only single planes, but the three dimensional nature of

the problem into account were also done. Defects in the planes and along the chains

were introduced in the simulations, but have, so far, not reproduced the peak at h =

1/2. A possible explanation could be that the implementation of the temperature is

not yet satisfying. Only the position of the Bragg peaks, which give the propagation

vectors, could be reproduced, but not the correct intensities. The relative intensities

are connected to the relative magnetic moments.
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+

=
4.11 μB -2.3 μB

-4.14 μB 2.27 μB

3.19 μB -3.22 μB

0.92 μB

-0.92 μB

(a)

(b)

(c)

Figure 4.19: Magnetic structure in the low temperature phase. Magnetic
structure of RbCoCl3 at 2 K considering the propagation vectors k1,
k2 and k3. (a) The top structure arises when only k1 and k2 are taken
into account, the middle structure (b) is the structure arising from k3,
and the lower structure (c) is the sum of top and middle structure, aris-
ing from all three propagation vectors. The top structure is the same as
found for RbCoCl3 by Lockwood [190] and for CsCoCl3 by Mekata [189].
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Figure 4.20: Monte Carlo simulation of the magnetic structure and Bragg
pattern at low temperatures done in cooperation with Mattia Mena
from University College London [191]. The magnetic structure in the
ab-plane found with Monte Carlo simulations minimizing the energy at
2 K corresponds to the structure in the top diagram in Figure 4.19. This
structure leads to the magnetic Bragg diffraction pattern shown here.

4.3.4 Discussion

Neutron diffraction on powder samples and elastic neutron scattering on single crys-

tals confirm the crystallographic structure from Engberg and Soling [188]. No struc-

tural phase transitions were observed. Two magnetic order transitions were observed

and the transition temperatures agree with those found using Raman scattering by

Lockwood [190] and using FIR spectroscopy by Jörke [180].

The magnetic structure for TN1 ≥ T ≥ TN2 is the same as found for CsCoCl3
except for a phase shift. Lockwood found the magnetic structure at temperatures

lower than TN2 to be the same as for CsCoCl3 [190], while we observed an additional

propagation vector k3 =
(

1
2
, 1

2
, 1
)
. Jörke and Dürr [180] observed a “not pure F-

phase” (the phase for T < TN2). They attributed this to impurities in the crystal

and domain wall pinning. Monte Carlo simulations using spins with a fixed magnetic

moment pointing along a given axis, done in cooperation with Mattia Mena from

University College London [191], have been able to reproduce the position of the

Bragg peaks at 18 K, but at low temperatures only the perfect honeycomb structure,

without a contribution from k3, could be reproduced. Koseki and Matsubara [194]

did Monte Carlo simulations of the magnetic ordering of CsCoCl3 and CsCoBr3 using

a method called the “cluster heat bath method”[192, 193]. Monte Carlo simulations

using this method still need to be implemented for RbCoCl3, but could lead to a

better insight into the magnetic ordering of RbCoCl3. Also the relative intensity of

89



4.3 Magnetic and crystallographic structure of RbCoCl3

the Bragg peaks was not reproduced by the Monte Carlo simulations. This would

lead to the relative magnetic moments. A good understanding of the magnetic order

in the different phases is needed to understand the excitation spectrum of RbCoCl3
in these phases. The excitation spectrum of Ising chains depends on the staggered

field as seen in section 4.2.1. The staggered field is given by hIC = n×JIC where JIC

is the interchain interaction and n is a multiple arising from the magnetic structure.

Nonetheless, the contribution from k3 is small, and may therefore be neglected in a

first approximation to understand the magnetic excitations.

The diffuse scattering is remarkably strong at some temperatures, and studying

it, as e.g. done by P. Manuel et al. for YBaCo4O7 [195], could teach us more about

the magnetic order in RbCoCl3, especially close to the phase transitions.
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4.4 Excitations in RbCoCl3

4.4.1 Experiments

In addition to the diffraction experiments described in section 4.3.1, mostly inelas-

tic neutron scattering experiments were performed on RbCoCl3. The samples used

in these experiments were single crystals grown by Nora Hänni, see section 4.3.1,

Figure 4.12, and [185]. For the time-of-flight experiment three single crystals were

coaligned, while for the triple-axis-experiments only one crystal was aligned. Align-

ment was done on the two-axis neutron diffractometer Morpheus and the two-axis

diffractometer Orion at PSI. The samples were sealed in an aluminum can filled with

helium.

A high-resolution neutron scattering experiment was performed on the cold neu-

tron multi-chopper time-of-flight spectrometer LET at ISIS [196]. High statistics

scans were made at 4 K < TN2 < 18 K < TN1 < 35 K with an incoming energy of

25 meV, while lower statistics scans were collected at 8 K < TN2 < 10.5 K and 23 K

< TN1 with an incoming energy of 20 meV . The time-of-flight data were prepared

for data analysis by Mattia Mena [191].

A neutron scattering experiment was performed on the thermal neutron triple-

axis-spectrometer IN22 at ILL. The main objective of this experiment was to study

certain Q-points, which were identified in the time-of-flight experiment, over a wider

temperature range. Several diffraction scans were also obtained. Using an orange

cryostat, scans at temperatures between 2 K and 80 K were made in the energy range

8 - 20 meV. The scattering plane was given by (1 1 0) and (0 0 1). kf was fixed to 1.97

Å−1 for inelastic, and to 2.662 Å−1 for elastic measurements. The instrument setting

was source – monochromator – monitor 1 – slits – orange cryostat with sample –

slits – PG filter – monitor 2 – analyzer – detector. The best resolution on IN22 is

obtained at (2/3 2/3 1.2), therefore scans were made at this Q-point between 2 K

and 80 K.

An experiment was performed on the thermal neutron triple-axis spectrometer

EIGER at PSI. EIGER is a new instrument, and a high resolution mode which uses

λ/2 on the monochromator was used for this experiment. The sample was the same

one as used for the experiment on IN22. Temperatures were again between 1.5 K and

80 K, and the scattering plane was given by (0 0 2) and (2 2 0). The energy range

was 8 - 20 meV. Diffraction scans were made. In this experiment complementary

Q-points not studied on IN22 were measured, and especially the evolution of the

excitation spectrum at elevated temperature was studied. For the inelastic scans kf

was fixed to 2.662 Å−1. The instrument setting was source – monochromator PG –

monitor 1 – slits – orange cryostat with sample – slits – monitor 2 – analyzer PG –

detector.

From the triple-axis data the background as a function of A4 was subtracted, and

a spurion was removed from the IN22 spectrum. The IN22 and EIGER data were
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normalized for their average counting times (60 seconds for IN22 and 380 seconds

for EIGER). The triple-axis data from IN22 were convoluted with the 4D resolution

function using Trixfit [92, 93], see section 2.5.1.

4.4.2 Results

Measurements were done with L ranging from 1.0 to 1.5 [r.l.u.] at temperatures

between 2 and 80 K.

Figure 4.21 shows color plots of scans at (2/3 2/3 L) with L = 1.0 - 1.5 [r.l.u.] at

2, 18, 35 and 60 K. Figure 4.22 shows scans at (2/3 2/3 1.2) made at 2 K, 18 K and

35 K. Each of these temperatures is in a different magnetic phase. The evolution

of the excitations with temperature is shown in the color map in Figure 4.23. This

color map illustrates the increasing intensity of the sharp mode with decreasing

temperature.

Figure 4.24 shows the temperature dependence of the integrated intensity. The

intensity is integrated at (2/3 2/3 1.2) over an energy range from 10 meV to 18

meV for temperatures up to 80 K to determine the integrated intensity. Figure

4.24 shows that the peak intensity decreases with increasing temperature. This

can be explained by a two level system, where the ground state depopulates with

increasing temperature and the excited state is populated. At low temperatures it is

more likely for a neutron to create a soliton-pair state, because the excited states are

not yet occupied. With increasing temperature the probability that excited states

are occupied increases, and instead of creating a soliton-pair state a neutron becomes

more and more likely to interact with a thermally excited soliton (Villain mode).

The decrease in intensity can be fitted with an exponential function of the form

BG − A exp
(
−E
kBT

)
with A = 458(17) [a.u.], E = 6.05(61) meV and BG = 476(4)

[a.u.], where A and BG are given in the same “arbitrary units ”as the intensity. The

exponent E is of the magnitude of the energy scale 2J and 2E is approximately the

size of the gap. In Figure 4.22 a continuum which does not change with temperature

is visible above the main mode.

The three energy scans in Figure 4.22 back the observation from the color map

in Figure 4.23 that at the first phase transition at TN1 the peak position changes,

while at the second phase transition at TN2 the modes split. At 2 K two peaks are

visible, and the splitting decreases when L approaches 1.5 [r.l.u.], see Figure 4.21

(a). The two peaks merge into a broader one at 18 K. The minimum of the mode is

at L = 1.0 and around 12 meV for all temperatures, except for 1.5 and 2 K, where

the splitting of the modes shifts the minimum of the lower mode down to 11 meV.

To determine peak positions, a Gaussian was fitted to the data. To extract reliable

information about the width, one has to account for the possibility that multiple

peaks may appear as a single peak due to limitations in resolution. Therefore,

determining the width requires a physical model of the excitations.

Figure 4.25 (a) shows how the peak position at (2/3 2/3 1.2) changes with temper-
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Figure 4.21: Excitations in RbCoCl3. Color plots of full data sets for scans at (2/3
2/3 L) with L = 1.0 - 1.5 [r.l.u.] measured at (a) 2K, (b) 1.5 K, (c) 18
K, (d) 35 K and (e) 60 K. Panels (b) and (e) have been measured on
EIGER and panels (a), (c) and (d) on IN22. The “blobs ”at 2 K are an
artifact from data interpolation for the color plot.
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Figure 4.22: Excitations in the three different phases Energy scans made at
(2/3 2/3 1.2) for three different temperatures. The black line indicates
the resolution at 2 K.

Figure 4.23: Evolution of peak splitting at L = 1.2 for temperatures between 2 K
and 80 K measured on IN22. The dotted lines indicate 14 K and 28 K,
the two transition temperatures.
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Figure 4.24: Temperature dependence of the integrated intensity. The in-
tegrated intensity is fitted with an exponential function of the form

BG − A exp
(
−E
kBT

)
with A = 458(17) [a.u.], E = 6.05(61) meV and BG

= 476(4) [a.u.]. The dotted lines indicate the magnetic order transition
temperatures.
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Figure 4.25: Temperature dependence of the peak position. (a) The position
of maximum intensity at (2/3 2/3 1.2) for different temperatures. This
illustrates how the split peaks merge with increasing temperature. (b)
The positions of the maximum intensity at (2/3 2/3 1.0) and (2/3 2/3
1.5). The peak position changes with temperature. The peak positions
at L = 1.0 and L = 1.5 move closer together, which means that the
bandwidth of the dispersion decreases. The dotted lines indicate the
magnetic order transition temperatures.
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ature. The choice of this Q-value is favorable for studies limited by energy resolution

because of resolution focusing. The peak positions were fitted with two Gaussians.

The evolution and vanishing of the splitting is also shown in the color plot in Figure

4.23. The dotted lines indicate the approximate temperatures of the phase tran-

sitions, TN1 ≈ 28 K and TN2 ≈ 14 K. The color plot in Figure 4.23 shows how

the peak intensity decreases with increasing temperature. The splitting which is

resolved clearly at low temperatures vanishes around TN2 . A clear shift of the peak

position to lower energies is visible at TN1 .

Figure 4.25 (b) shows how the bandwidth narrows with increasing temperature.

This can also be seen in the color plots in Figure 4.21. Because the bandwidth

increases with decreasing temperature, the maximum energy of the excitation is

at lower energies for high temperatures. A dispersion with a big bandwidth, as

seen at low temperature, signifies high mobility, while the narrower dispersion at

high temperatures signifies low mobility. The decrease of mobility with increasing

temperature is because there are more quasiparticles and thermally populated states

at higher temperatures, so less free states are available. This was also observed in

an interacting dimer spin system [197].

The results in the different phases are now presented in more detail.

T > TN1

Data from inelastic neutron scattering were taken up to 80 K. However, the highest

temperature where a complete set of inelastic data with (2/3 2/3 L) and L = 1.0 -

1.5 [r.l.u.] was obtained was 60 K. The second highest temperature where a complete

data set was obtained is 35 K, color plots for these temperatures are shown in Figure

4.21.
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Figure 4.26: Temperature evolution above TN1. Energy scans at (2/3 2/3 1.0)
for three different temperatures above TN1 . The sharp peak on top of
the broad continuum decreases with increasing temperature, while the
intensity of the continuum hardly changes.
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Figure 4.26 shows three characteristic scans obtained on EIGER at (2/3 2/3 1.0)

at 35, 60 and 80 K. At 35 K a sharp peak with a continuum at higher energies is

visible. This sharp peak looses intensity at 60 and 80 K, while the intensity of the

continuum decreases much less. This means that the excitation spectrum changes

between TN1 and 80 K, where a maximum in the magnetic susceptibility suggests

that antiferromagnetic correlation along the chains set in.

In the diffraction pattern at 55 K, shown in Figure 4.14, no magnetic Bragg peaks

are visible. This suggests that for temperatures above TN1 no long range order is

present, therefore no staggered field is present above TN1 .

TN1 > T > TN2

At the first transition TN1 the peak position changes and the intensity increases with

decreasing temperature, as can be seen in the color plot in Figure 4.23 and in Figure

4.27 which compares scans at 35 K, 26 K and 18 K. These changes can be explained

by staggered fields arising due to the interchain coupling. The continuum at high

energies appears not to be influenced by the change in temperature. The sharp peak

at 18 K is a bit broader and has higher intensity than the excitation at 35 K. Also at

18 K the onset of a shoulder at low energies is visible. This may already be the first

sign of the magnetic phase transition at TN1 ≈ 14 K. At the second phase transition

the weights of the staggered fields will change.
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Figure 4.27: Changes across the phase transition at TN1 ≈ 28 K.
Q = (2/3 2/3 1.2) and T = 35 , 26 and 18 K. At the first magnetic
phase transition the peak position changes and the intensity of the peak
increases with decreasing temperature. The continuum at high energies
does not change. The shoulder appearing at 18 K at low energies is
already a precursor of the second magnetic phase transition at TN1 ≈ 14
K.
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TN2 > T

The second phase transition at TN2 is illustrated in Figure 4.28 and can also be

seen in Figure 4.23. In Figure 4.27 a shoulder appears at low energies already at

18 K. This shoulder grows in strength with decreasing temperature, and a second

peak arises at high energies, see Figure 4.28. This change in peak position and

intensity can be explained by changing weights of the staggered fields. Even though

the transition temperature TN2 is given to be 14 K [185], the scan at 11 K resembles

more the data at 16 K than those at 6 K. While the phase transition takes place

at a well defined temperature, the diffuse scattering visible in Figure 4.15 indicates

that the correlations change. For example the uncorrelated chains in the magnetic

structure for intermediate temperatures shown in Figure 4.17 become correlated

with decreasing temperature.
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Figure 4.28: Changes across the phase transition at TN2 ≈ 14 K.
Q = (2/3 2/3 1.2) and T = 16, 11 and 6 K. The intensity of the shoulder
at low energies, which is already visible at 18 K, increases with decreasing
temperatures. The broad peak in the middle looses intensity and a peak
at higher energies appears.

Scans at (2/3 2/3 1.2) obtained on IN22 and EIGER at 2 K are shown in Figure

4.29 (a) and (b). At energies above the two intense peaks, additional weaker peaks

are visible, especially in the data obtained on EIGER shown in Figure 4.29 (b). The

onset of the intensity is at the first sharp peak, and no continuum is visible at lower

energies. The only model discussed in section 4.2.1 which shows a similar sharp onset

of intensity is the in-chain next nearest neighbor (nnn) model by Matsubara [182].

The relative intensity of the two high peaks at low energies is also best reproduced

by this model. Figure 4.29 (c) shows the structure factor predicted by this model

for L = 1.2.

Therefore, the in-chain next nearest neighbor (nnn) model by Matsubara [182] is

used in the next section to fit our data.
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Figure 4.29: Comparison between IN22 data at 2 K and the in-chain nnn
model. (a) Energy scan at (2/3 2/3 1.2) obtained on IN22 at 2 K with
kf = 1.97 Å−1 and (b) energy scan at (2/3 2/3 1.2) obtained on EIGER
at 1.5 K with kf = 2.662 Å−1. (c) The in-chain nnn model by Matsubara
[182] with L = 1.2 and the parameters J = 5.43 meV and J ′ = -1.07
meV, ε = 0.18 and hIC = 0. The in-chain nnn model is the best model
to describe our experimental data.
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4.4.3 Results compared to the in-chain next nearest neigh-

bor (nnn) model

The in-chain next nearest neighbor (nnn) model introduced by Matsubara is de-

scribed in section 4.2.1, and by equations (4.5) and (4.6). In this section this model

is fitted to the experimentally obtained data.

T > TN1

For temperatures above TN1 no magnetic order in the ab-plane is present and the

staggered field is zero. Therefore, data obtained at temperatures above 30 K were

fitted with the in-chain next nearest neighbor model where the interchain exchange

was assumed to be zero.

Figures 4.21 (d) and (e) illustrate how the width increases with increasing tem-

perature, while the bandwidth decreases. The change in width can be described by

fitting the data with a Voigt, the convolution of a Lorentzian and a Gaussian. The

Gaussian width describes the width arising from the resolution of the instrument

and does not change with temperature. Therefore it is kept fixed to 0.6 meV, the

Gauss width found at the lowest measured temperature, for all fits. The width of the

Lorentzian is due to intrinsic damping of the excitations and increases with increas-

ing temperature. The Lorentz width is left free to vary, and its change describes

thermal broadening.

The decreasing bandwidth, which is a narrowing of the dispersion, is connected to

a lower mobility of the solitons. In the in-chain next-nearest neighbor model this can

be described by a change in ε. Unlike other parameters, such as width or intensity,

ε was only fitted at temperatures where the entire dispersion along L was measured.

In a second step the temperature dependence of ε so obtained was tested at other

temperatures, where scans were available only for some values of L.

Figure 4.30 shows fits of the in-chain nnn model to energy scans at 35, 50 and 80

K. The interchain interaction was set to zero. The parameters obtained by the fits

are given in table 4.2.

Parameter Fitted value

J 5.64(7) meV
J’ 0.83(6) meV
ε 0.182(1)-0.0008(1)*T

Lorentz Width 0.20(6)+0.010(1)*T

Table 4.2: Parameters found by fitting the in-chain next nearest neighbor model to
experimental data for temperatures above TN1 .

Figure 4.30 demonstrates the good agreement between the experimental data and

the in-chain next nearest neighbor model over a broad temperature range. The peak

position is reproduced well for the observed temperatures. Comparison to energy
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Figure 4.30: Fits of the in-chain nnn model to data at T > TN1. Fits of the
in-chain nnn model (red) without interchain interaction to experimental
data (blue) at Q = (2/3 2/3 L). (a) 35 K, L = 1.0, (b) 35 K , L = 1.2, (c)
35 K, L = 1.5, (d) 50 K, L = 1.2 and (e) 80 K, L = 1.2. The parameters
are J = 5.64(7) meV and J ′ = 0.83(6) meV. ε changes with temperature.
At 35 K ε is 0.154(1), at 50 K it is 0.142(1) and at 80 K it is 0.118(1). The
fits were convoluted with the resolution function using Trixfit [92, 93].
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scans at 35 K which span the whole L range shows that the peak positions are also

well reproduced for L different from 1.2. The peak position is also reproduced well

for scans at (2/3 2/3 1.2) at temperatures not shown here. This shows that the

temperature dependence found for ε is correct.

TN1 > T > TN2

The data at 18 K are fitted using the parameters obtained for T > TN1 . 18 K is well

away from the transition temperatures TN1 and TN2 , and data from LET, EIGER

and IN22 are available. The staggered field is given by hIC = n × JIC where JIC is

the interchain interaction and n is a multiple arising from the magnetic structure.

The possible staggered fields and their relative weights for the intermediate phase

of CsCoCl3 are given in Table 4.3. These staggered fields and their weights may

also be used for RbCoCl3, because the magnetic structures found for CsCoCl3 and

RbCoCl3 at 18 K are equivalent except for a phase shift [185]. In the diffraction

data a phase shift cannot be determined.

n 0 2 4 6

Weight 5/12 3/12 3/12 1/12

Table 4.3: Multiplicity and relative weights for the intermediate phase of CsCoCl3
[60, 189].

When the structure reported by N. Hänni et al. [185] is used, the staggered fields

arising and their weights are different. These values are given in table 4.4.

n 3/4 3

Weight 2/3 1/3

Table 4.4: Multiplicity and relative weights for the intermediate phase of RbCoCl3
using the structure determined by N. Hänni et al. [185], shown in Figure
4.17 (a).

Figure 4.31 shows fits to the data at 18 K using the weights and staggered fields

given in table 4.3. From these fits an interchain interaction of JIC = 0.0575(2) meV

is obtained. The fit at (2/3 2/3 1.5) shows good agreement with the experimental

data, width and peak position are reproduced excellently. For L = 1.2 the intensity is

slightly too low. Still, the peak position and the continuum are reproduced correctly.

At (2/3 2/3 1.0) the peak position of the fit is slightly displaced to higher energies,

and the width and intensity of the continuum are overestimated.

Figure 4.32 shows fits to the data at 18 K, for which the multiplicities and weights

given in table 4.4 are used. The interchain interaction obtained from these fits is

JIC = 0.069(33) meV.

Fitting the data at 18 K with the multiplicities and weights from Table 4.4 shows

even better agreement with the experimental data than the fits with the multiplicities
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Figure 4.31: Fits of the in-chain nnn model at TN1 > T > TN2. Fits of the in-
chain nnn model (red) with interchain interaction to experimental data
(blue) obtained on IN22, at T = 18 K and Q = (2/3 2/3 L). The weights
are given in Table 4.3. (a) L = 1.0, (b) L = 1.2 and (c) L = 1.5. The
parameters used for the fits are J = 5.64 meV and J ′ = 0.83 meV, ε
= 0.168 and JIC = 0.0575(2) meV. The fits were convoluted with the
resolution function using Trixfit [92, 93].
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Figure 4.32: Fits for the in-chain nnn model at TN2 < T < TN1. Fits of
the in-chain nnn model (red) with interchain interaction to experimental
data (blue) obtained on IN22, at T = 18 K and Q = (2/3 2/3 L). The
multiplicities and weights are given in Table 4.4. (a) L = 1.0, (b) L =
1.2 and (c) L = 1.5. The parameters used for the fits are J = 5.64 meV
and J ′ = 0.83 meV, ε = 0.168 and JIC = 0.069(33) meV. The fits were
convoluted with the resolution function using Trixfit [92, 93].
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and weights from Table 4.3 shown in Figure 4.31. Again agreement between the fit

and the experimental data is excellent at (2/3 2/3 1.5). At (2/3 2/3 1.0) the peak

position and intensity of the sharp mode are reproduced better than in Figure 4.31.

Only for Q = (2/3 2/3 1.2) the fitted peak position is at lower energies than in the

experimental data.

TN2 > T

For temperatures below TN2 the magnetic structure shown in Figure 4.19 has two

components. Since the magnetic peak associated with k3 is far weaker than the

one associated with k2, one may assume that the dominant structure is the same as

found by Lockwood for RbCoCl3 [190] and by Mekata for CsCoCl3 [189]. Therefore,

it is assumed that the possible staggered fields and their weights are similar to those

given in table 4.5.

n 0 6

Weight 2/3 1/3

Table 4.5: Multiplicity and relative weights for the low temperature phase of CsCoCl3.
These staggered fields and weights also arise for RbCoCl3 when k3 is ne-
glected. Lockwood observed a structure which gives rise to these weights
for RbCoCl3 [190].

If the propagation vector k3 is included, the magnetic structure is the one found

by N. Hänni et al., and the staggered fields and their weights change. The new

values are given in table 4.6.

n 1/2 2 -1/4 5

Weight 2/6 1/6 2/6 1/6

Table 4.6: Multiplicity and relative weights for the low temperature phase of RbCoCl3
when the propagation vector k3 is included. The corresponding structure
is shown in Figure 4.19 and described in reference [185].

Fig 4.33 shows fits to the data at 2 K using the staggered fields and weights

for CsCoCl3 given in table 4.5. The fits using the parameters found at higher

temperatures reproduce the sharp modes observed at 2 K. At (2/3 2/3 1.0) the

two sharp peaks and their relative intensities are reproduced correctly, but the peak

positions are slightly shifted. The fit shows a small peak around 16 meV where no

excitation is visible in the data. This peak also arises at (2/3 2/3 1.2), and there

also the relative intensities of the two sharp modes are not reproduced correctly by

the model. The fit at (2/3 2/3 1.5) reproduces the sharp mode at the correct energy,

but its intensity is too low and the width too small.

Figure 4.34 shows fits to the data at 2 K using the weights and staggered fields

given in Table 4.6. Agreement between experimental data and these fits is poor
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Figure 4.33: Fits with the in-chain nnn model at TN2 > T. Fits of the in-chain
nnn model (red) to experimental data (blue) obtained on IN22, at T = 2
K and Q = (2/3 2/3 L). The staggered fields and their weights are given
in Table 4.5. (a) L = 1.0, (b) L = 1.2 and (c) L = 1.5. The parameters
used for the fits are J = 5.64 meV and J ′ = 0.83 meV, ε = 0.1804 and
JIC = 0.0575 meV. The fits were convoluted with the resolution function
using Trixfit [92, 93].
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Figure 4.34: Fits with the in-chain nnn model at T < TN2. Fits of the in-chain
nnn model (red) to experimental data (blue) obtained on IN22 at T = 2
K and Q = (2/3 2/3 L). The staggered fields and their weights are given
in Table 4.6. (a) L = 1.0, (b) L = 1.2 and (c) L = 1.5. The parameters
used for the fits are J = 5.64 meV and J ′ = 0.83 meV, ε = 0.168 and
JIC = 0.069 meV.
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except for Q = (2/3 2/3 1.5). Both for Q = (2/3 2/3 1.0) and (2/3 2/3 1.2) the two

sharp modes visible in the experimental data are not reproduced by the fits.
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4.4.4 Temperature dependence of the weights

So far only data above TN1 and at specific temperatures well away from the magnetic

order transition temperatures were studied. At the first magnetic ordering transition

interchain interactions begin to play a role, and this leads to staggered fields. These

staggered fields change at the second magnetic ordering transition. The staggered

fields lead to a splitting of the continuum into bound states. In order to gain a better

understanding of the behavior of RbCoCl3, and how the staggered fields change as

a function of temperature, the weights for all data at Q = (2/3 2/3 1.2) between

2 K and 80 K are analyzed. Since the fits with the staggered fields and weights

given in Table 4.5 work much better, the multiplicities for the CsCoCl3 structure

[189] (which was also found for RbCoCl3 by Lockwood [190]) and the parameters

found in the corresponding fits are used in this section. The resulting temperature

dependences of the weights are shown in Figure 4.35.
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Figure 4.35: Temperature dependence of the weights for staggered fields.
Weights for the staggered fields obtained by fitting experimental data at
Q = (2/3 2/3 1.2). The total weight has been normalized to one. The
error bars are omitted for better visibility. The dotted lines indicate the
transition temperatures. The inset shows the whole temperature range
from 2 to 80 K while the the weights for temperatures lower than 35 K
are shown in more detail.

At 80 K, where correlations along the chains set in n = 0 carries the full weight

(n = 0 is equal to no staggered field). The weights of the other multiplicities are

negligible at this temperature. At 60 K the weight of n = 2 starts to increase. It is

possible that a peak arising from a staggered field with n = 2 is covered by the broad
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peak observed at temperatures above TN1 . Close to the first transition temperature

TN1 the weight for n = 0 decreases, and below TN1 the weight for n = 2 decreases

while the weight for n = 4 increases. The weights for n = 2 and n = 4 should be

equal, but the weight for n = 2 decreases continuously. Even though n = 0 should

still account for about 40 % of the spectral weight, its weight is significantly smaller.

At the second transition temperature TN2 the weights change again. The biggest

change in weights is below 14 K (indicated by a dotted line), which is the transition

temperature. This indicates that the weights of the staggered fields change not only

at TN1 and TN2 , but continuously as a function of temperature as the weights follow

the development of correlations in the system.
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4.5 Discussion

RbCoCl3 is a quasi-one dimensional Ising-like antiferromagnet. It develops antiferro-

magnetic correlations along the c-axis below T ≈ 80 K, and undergoes two magnetic

phase transitions around 28 K and 14 K. For temperatures above TN1 a broad con-

tinuum is observed. Such a continuum is predicted for the excitation spectrum of

isolated antiferromagnetic chains [182, 183]. Below TN1 correlations develop in the

ab-plane, as interchain interaction sets in. As a result bound states are observed.

With decreasing temperature the maximum of the dispersion moves to higher ener-

gies. The increased bandwidth of the dispersion with decreasing temperature comes

from a reduced mobility at higher temperatures, and has been observed also in other

systems, e.g. in the dimer system TlCuCl3. There, the temperature dependence of

the dispersion was described by a mean field theory, see Troyer, Tsunetsugu and

Würtz [197, 198].

To describe the temperature dependence of the bandwidth of the dispersion in

RbCoCl3, ε is varied with temperature. This is a purely phenomenological descrip-

tion of the temperature dependence of the data.

Goff [60] fits his CsCoCl3 data at 25 K, which is above the first magnetic ordering

temperature for CsCoCl3, without a staggered field and the same ε for all tempera-

tures, but the fits at lower temperatures are shifted in energy. 25 K is not far above

21 K, the transition temperature for CsCoCl3. Therefore the bandwidth of the dis-

persion did not narrow much at 25 K, compared to the lowest observed temperature.

This would also explain the shift of the fits at lower temperatures. On the other

hand, Lehmann questions the idea of single ideal chains for temperatures above TN1

[161]. In any case, a model is needed which takes the temperature into account in

a more refined way than by just changing the staggered fields and their weights at

each magnetic phase transition and incorporating a changing ε.

The change in width of the experimental RbCoCl3 data due to thermal broadening

has also been described as a function of temperature.

Comparing the experimental data at 2 K to the theoretical models introduced in

section 4.2.1 leads to the conclusion that the in-chain next nearest neighbor (nnn)

model fits the data best.

The in-chain nnn model without an interchain interaction shows good agreement

with the experimental data for temperatures between 80 K and TN1 ≈ 28 K. In

this temperature range RbCoCl3 can be described by isolated Ising chains with an

XY-component and next nearest neighbor in-chain exchange, which enables one to

distinguish between spin wave and soliton states. The change of the spectrum within

this temperature range indicates that correlations develop below 80 K, and that these

correlations are getting stronger with decreasing temperature. The parameters for

the in-chain next nearest neighbor model were obtained by fits with this model at

temperatures above TN1 . The energy scale 2J ≈ 12.9 meV is higher than expected

from optical spectroscopy measurements, and is comparable to the energy scale 2J ≈
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12.8 meV for CsCoCl3. This means that the critical magnetic field is not easier to

reach experimentally for RbCoCl3 than for CsCoCl3.

The interchain interaction is determined by fitting the in-chain nnn model with an

interchain interaction to experimental data obtained at 18 K, which is below TN1 .

For intermediate temperatures between TN1 and TN2 two magnetic structures, which

differ only by a phase, are proposed [185, 189]. Fits with the staggered fields and

weights arising from both structures show good agreement with the experimental

data. The magnetic structure determined for RbCoCl3 by N. Hänni et al. [185]

leads to slightly better agreement with the data. But it cannot be unambiguously

determined which of the two suggested magnetic structures is the correct one.

The remarkably strong diffuse scattering observed in diffraction scans at inter-

mediate temperatures can be explained by both proposed magnetic structures. At

intermediate temperatures, in the structure suggested for CsCoCl3, 1/3 of the chains

show no correlations within the chains. These uncorrelated chains lead to diffuse

scattering, while the correlated chains give rise to Bragg scattering. The structure

determined by N. Hänni et al. can be explained as consisting of different ordered

domains. While the ordered domains lead to sharp Bragg peaks, the disorder at

the boundaries gives rise to diffuse scattering. An example for a material where

long-range order exists in chains along the c-axis, but not in the ab-plane, is the

frustrated Ising-like magnet Ca3Co2O6. Here the frustration in the ab-plane leads

to a “partially disordered antiferromagnetic state”, where only two out of three

sublattices in the ab-plane are ordered [199].

When cooling further below TN2 , the staggered fields change and in the structure

for CsCoCl3 the correlations in the unordered chains extend. In the structure deter-

mined by N. Hänni et al. the correlations in the ab-plane change, and the domains

grow.

However, below TN2 fits resulting from the structure determined by N. Hänni et

al. [185] fail to reproduce the two intense modes correctly. Fits using the structure

found for CsCoCl3 at low temperatures do not show perfect agreement, especially for

the continuum at energies above the sharp modes, but reproduce the main features

of the excitation spectrum at 2 K correctly.

At high and intermediate temperatures, the excitation spectrum of RbCoCl3 shows

good agreement with the excitation spectrum of antiferromagnetic Ising chains with

next nearest neighbor in-chain interaction and interchain interaction below TN1 and

changing anisotropy. Below TN2 this model is not such a good description of the

experimental data. Additional terms in the Hamiltonian may be necessary, such as

a next nearest neighbor interchain interaction. The effect of this interaction, though

small, would be a further splitting of the bound states at low temperatures. Fits to

high-resolution neutron scattering data obtained on the time-of-flight spectrometer

LET show that a next nearest neighbor interchain interaction is needed to describe

the data at 18 K satisfactorily [191] when the magnetic structure determined for

CsCoCl3 is used. This also shows that the structure found by N. Hänni et al.
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cannot explain the time-of-flight data at 18 K. Introducing a next nearest neighbor

interchain interaction is supported by the fact that the perfect honeycomb structure

is stabilized by a such an interaction [161, 183].

A better knowledge of the magnetic structure of RbCoCl3 will help to identify

the staggered fields which arise. Monte Carlo simulations with the cluster heat bath

method [192, 193], as done by Koseki and Matsubara for CsCoCl3 and CsCoBr3 [194],

and studying the diffuse scattering could provide further insight into the magnetic

order in RbCoCl3, especially close to the phase transitions.

Both magnetic ordering transitions can be described by changing the weights of

the staggered fields. Fitting the weights of the different staggered fields shows that

these weights deviate from the ideal values obtained for the magnetic structure, and

indicates that the weights of the staggered fields change continuously as a function

of temperature, as the weights follow the change of correlations in the system. The

diffuse scattering at intermediate temperatures indicates that flucutations are im-

portant in this temperature range. Matsubara, who introduced the in-chain next

nearest neighbor model, also determined weights from magnetic Raman scattering

data for RbCoCl3 which deviate from the ideal ones [182]. These weights are com-

pared in Table 4.7.

n 0 2 4 6

T < TN2

Ideal 66 % 0 0 33 %
Fit (2 K) 52 % 12 % 1 % 35 %

Matsubara (2 K) [182] 31 % 19 % 13 % 37%

T > TN2

Ideal 42 % 25 % 25 % 8 %
Fit (18 K) 18 % 45 % 35 % 2 %
Fit (13 K) 25 % 38 % 35 % 2 %

Matsubara (13 K) [182] 18 % 40 % 29 % 13 %

Table 4.7: Weights for the different staggered fields above and below the second mag-
netic phase transition. The experimentally obtained weights deviate from
the ideal ones.

The weights obtained by the fits at 2 K are different from both the ideal ones

and those obtained by Matsubara. The experimentally obtained weights at 18 K

are close to the ones obtained by Matsubara at 13 K (which are still effected by

the magnetic phase transition at TN2). One problem with fitting the weights is

that due to the experimental resolution, the contributions of the different staggered

fields cannot be clearly separated. The high-resolution time-of-flight data obtained

on LET have better resolution, and provide more information about the number of

modes observed and therefore the number and strengths of the different staggered

fields. Time-of-flight data for RbCoCl3 are only available at a few temperatures,
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but understanding the excitations of RbCoCl3 at these temperatures will also help

to understand the excitation spectrum as a function of temperature.

• RbCoCl3 is a model material for the quasi-one dimensional Ising-like antifer-

romagnet.

• Below 80 K RbCoCl3 develops antiferromagnetic correlations along the c-axis.

A broad continuum is observed, as predicted for the excitation spectrum of

isolated antiferromagnetic Ising-like chains. The energy gap is determined.

The increasing bandwidth of the dispersion with decreasing temperature can

be described phenomenologically by varying the anisotropy term ε with tem-

perature.

• At a first magnetic ordering temperature TN1 ≈ 28 K correlations develop in

the ab-plane due to interchain interaction. As a consequence bound states are

observed. These bound states split at a second magnetic ordering temperature

TN2 ≈ 14 K, where the magnetic structure changes as well. Fluctuations are

important at intermediate temperatures.

• For temperatures above TN2 good agreement is found between the excitation

spectrum of RbCoCl3 and theoretical predictions for the excitation spectrum of

antiferromagnetic Ising chains with next nearest neighbor in-chain interaction

consisting of soliton-pair states.

• Below TN2 this model reproduces the rough features of the experimental data,

but discrepancies in the details indicate additional terms in the Hamiltonian

may be needed.

• Even though the magnetic ordering transitions can be described by changing

weights of the staggered fields, fits indicate that the weights change continu-

ously as a function of temperature.
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Chapter 5

Summary and Outlook

For this thesis two spin chain materials were studied. One of them is a model

Heisenberg chain, and the other a model Ising chain.

The spin-1
2

Heisenberg antiferromagnetic chain CuSO4*5D2O

By fitting the normalized and convoluted two- plus four-spinon dynamical structure

factor, calculated by Caux [76], to the data at 0.15(2) K one is able to obtain

the scaling factor for an absolute normalization of the experimental data. This,

in turn, makes it possible to compare experimental data at higher temperatures

to theoretical predictions using the same normalization. The finite temperature

behavior of CuSO4*5D2O is qualitatively and quantitatively well described by the

quantum Monte Carlo data by Rahnavard and Brenig [115]. The experimentally

obtained static and dynamic structure factor and susceptibility were also compared

to scaling relations. Agreement is good over a wide temperature range, but not for

all measured temperatures. Deviations occur especially at high temperatures. We

show that the data at 31.5(6) K (∼10 J) correspond to numerical data for T →∞,

and that even at these temperatures a spinon continuum is observed. This indicates

that the system behaves like a quantum system and not like a classical one, for

which one would expect single spin flips at infinite temperatures. With increasing

temperature, spectral weight decreases at the antiferromagnetic zone center and

increases close to h → 0,1 at low energies. We were unable to show definitely that

the origin of this scattering is spin diffusion. More detailed studies need to be done

to reveal the origin of this increased intensity close to h→ 0,1 and ~ω → 0. It would

also be interesting to compare our experimental data at temperatures higher than

6.2(2) K to quantum Monte Carlo data by Rahnavard and Brenig, when available.

In summary the excitation spectrum of CuSO4*5D2O is excellently described by

the excitation spectrum of a spin-1
2

Heisenberg antiferromagnetic chain, and shows

quantum behavior up to high temperatures.
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The Ising-like antiferromagnetic chain RbCoCl3

Neutron scattering was employed to study magnetic order and excitations in the

quasi one-dimensional Ising system RbCoCl3. The magnetic structure of RbCoCl3
found in the intermediate phase agrees, up to a phase, with previous results, while

the magnetic structure found below the second phase transition is different from

the one previously assumed. A possible explanation is the existence of different

domains. Diffuse scattering is remarkably strong close to the phase transitions, and

studying it could provide insight into the magnetic order of RbCoCl3. Monte Carlo

simulations of the magnetic structure reproduced the main features, but failed to

include all details. Improved Monte Carlos simulations incorporating the cluster

heat bath method [192, 193] are planned.

Excitations in RbCoCl3 are solitons. We observed the excitation spectrum of

RbCoCl3 at temperatures between 2 K and 80 K, where correlations in the chains

set in. In this thesis the observed excitation spectrum was compared to a theoretical

model introduced by Matsubara [182], the in-chain next nearest neighbor model.

Agreement with this model is good at low energies, but discrepancies remain at

higher energies, where it does not describe the observed continuum correctly. Both

phase transitions can be described by modifying the weights of the different staggered

fields, which corresponds to a change in the magnetic structure. Because the in-chain

next nearest neighbor model only accounts for the temperature dependence through

changes in the staggered fields, the increasing bandwidth of the dispersion with

increasing temperature is described purely phenomenologically. A theoretical model

which also takes temperature dependence into account is needed.

The different staggered fields still need to be understood better. Recently, simu-

lations on the excitation spectrum of RbCoCl3 with an applied external transverse

field have become available from the Group of H.B. Braun from University College

Dublin [200] and show interesting features. One such simulation is shown in Figure

5.1 (a). An experiment is planned to study the excitations in RbCoCl3 with an

applied transverse field. Figure 5.1 (b) shows LET data [191] where high statistics

scans were made, the resolution of these scans should be sufficient to determine

changes in the excitation spectrum when a transverse magnetic field is applied.
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Summary and Outlook

Sxx(Q, ω), Jz = 13.0 meV, Jt = 2.6 meV, h = 4.0% of Jz, B = 14.0 T, HWHM = 0.1 meV
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Figure 5.1: Excitation spectrum of RbCoCl3
(a) Simulation of the excitation spectrum of RbCoCl3 with an external
transverse magnetic field by L.P. English and H.B. Braun from University
College Dublin [200]. (b) High statistics data from LET. Figure from M.
Mena [191], the x-axis is the momentum transfer L [r.l.u]. The possible
resolution at low temperatures at LET should be sufficient to distinguish
the splitting arising from a transverse magnetic field.
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[180] R. Jörke and U. Dürr. J. Phys. C: Solid State Phys., 16:L1129, 1983.

[181] K. Maki. Phys. Rev. B, 24:335, 1981.

[182] F. Matsubara et al. J. Phys.: Condens. Matter, 3:1815, 1991.

[183] H. Shiba. Prog. Theor. Phys., 64:466, 1980.

[184] F. Matsubara et al. J. Phys. Soc. Jpn., 58:4284, 1989.

[185] N.P. Hänni, D. Sheptyakov, U. Stuhr, L. Keller, A. Cervellino, M. Medarde,
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[188] Å. Engberg and H. Soling. Acta Chem. Scand., 21:168, 1967.

[189] M. Mekata and K. Adachi. J. Phys. Soc. Jpn., 44:806, 1978.

[190] D.J. Lockwood et al. J. Phys. C: Solid State Phys., 16:6451, 1983.

[191] M. Mena. private communication.

[192] O. Koseki and F. Matsubara. J. Phys. Soc. Jpn., 66:322, 1997.

[193] F. Matsubara et al. Phys. Rev. Lett., 78:3237, 1997.

[194] O. Koseki and F. Matsubara. J. Phys. Soc. Jpn., 69:1202, 2000.

[195] P. Manuel et al. Phys. Rev. Lett., 103:037202, 2009.

[196] R.I. Bewley et al. Nucl. Instr. and Meth. in Physics, 637:128, 2011.
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