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Abstract
Collective magnetic excitations are a fascinating aspect of condensed matter physics, where

neutron scattering can provide valuable insight into the magnetic properties of physical

realisations of model systems. This thesis focuses on the excitation spectra of layered quantum

magnets in the case of the frustrated quantum magnet SrCu2(BO3)2 and the family of quasi-2D

antiferromagnets MPS3, with M a transition metal.

• SrCu2(BO3)2 is a physical realisation of the two-dimensional Shastry-Sutherland the-

oretical model, constructed as orthogonal dimers with the product of singlets on the

strong antiferromagnetic J bond as an exact ground state. The spin interactions for

such a particular geometry induces strong frustration which leads to unconventional

magnetism and exotic phases of matter. This work is concerned with a series of aspects

of the magnetic excitations in this compound. The excitation spectra as a function of

field, temperature and pressure are measured using neutron time-of-flight spectroscopy.

The experimental results show that correlations, bound magnons and finite tempera-

ture properties are highly unconventional and these results are compared with existing

theories on frustrated model systems. In addition, predicted topological properties of

SrCu2(BO3)2 in an applied field are confirmed experimentally.

• The transition metal phosphorus trisulfides (MPS3) are a family of quasi two-dimensional

materials on a honeycomb lattice with weakly bound magnetic planes. This work fo-

cuses mainly on the exchange interactions and critical properties of FePS3, which is

largely anisotropic with the S=2 Fe2+ moments pointing normal to the (a,b) plane. In-

elastic neutron scattering on single crystals is used to measure the spin wave dispersion,

providing new insight on the strength of the coupling interactions and anisotropies

and showing that FePS3 is a good two-dimensional model antiferromagnet. Similar

experiments on powdered samples of NiPS3 show low-Q dispersive spin waves with a

small spin-gap. Critical properties of FePS3 close to the Néel temperature are further

discussed, as the magnetic nature of the measured quasi-elastic scattering is confirmed.

Based on magnetization measurements in high pulsed fields, a possible tricritical point

in the 40-50T range is proposed.

The work presented in this thesis has been carried out in a collaboration between the Institut

Laue Langevin in Grenoble and the Laboratory for Quantum Magnetism of the EPFL.

Key words: Quantum magnetism, frustrated magnetism, Shastry-Sutherland model, strongly

correlated system, topological magnon insulator, spin wave theory, quasi-2D antiferromagnets,

phase transitions, neutron scattering, triple axis spectroscopy, time of flight spectroscopy
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Résumé
L’étude des excitations magnétiques est un domaine de la physique du solide au sein de

laquelle la diffusion des neutrons permet de confronter les modèles théoriques aux propriétés

magnétiques des matériaux. Cette thèse se concentre sur les spectres d’excitations magné-

tiques d’aimants quantiques, et en particulier, sur l’aimant frustré SrCu2(BO3)2 et sur la famille

des MPS3 aux des propriétés antiferromagnétiques quasi-2D.

• SrCu2(BO3)2 est une réalisation du réseau de Shastry-Sutherland, un modèle en deux

dimensions de dimers orthogonaux construit tel que le produit des singletons sur le

lien antiferromagnétique fort J est un état fondamental. Dans cette géométrie, les

interactions de spins sont fortement frustrées, ce qui implique un magnétisme non

conventionnel. L’évolution des spectres d’excitations magnétiques en fonction de la

température, d’un champ magnétique et de la pression appliquée est mesurée par

spectroscopie dite "temps-de-vol". L’analyse des résultats expérimentaux montre que les

correlations entre les magnons et les propriétées à températures finies sont hautement

non conventionnelles. Ces résultats sont comparés à des modèles théoriques existants.

De plus, une confirmation de prédiction théorique portant sur propriétés topologiques

de SrCu2(BO3)2 soumis à un champ magnétique est obtenue expérimentalement.

• La famille des MPS3 (avec M un métal de transition) aux propriétés antiferromagné-

tiques quasi-2D a une structure en nid d’abeilles dont les plans magnétiques ne sont

que faiblement liés. Ce travail s’intéresse principalement aux interactions d’échange

et aux propriétés critiques du composé anisotropique FePS3 dont les moments Fe2+

sont perpendiculaires au plan (a,b). La dispersion des ondes de spin est mesurée par

diffusion inélastique des neutrons avec des monocristaux, permettant d’étudier les

interactions d’échange et l’anisotropie de FePS3. Ce composé apparaît ainsi comme un

bon modèle d’antiferromagnétisme en deux dimensions. Des expériences similaires

sur poudre permettent d’étudier les ondes de spin de NiPS3. Les propriétés critiques de

FePS3 à la température de Néel sont présentées, à la lumière de la nature magnétique de

la diffusion quasi-élastique mesurée. Un point tricritique autour de 40-50T est envisagé

d’après des mesures de susceptibilité magnétique pour des hauts champs pulsés.

Le travail présenté dans cette thèse a été préparé dans le cadre d’une collaboration entre

l’Institut Laue Langevin à Grenoble et le Laboratoire de Magnétisme Quantique de l’EPFL.

Mots clefs : Magnétisme quantique, magnétisme frustré, modèle de Shastry-Sutherland, sys-

tèmes fortement corrélés, isolants topologiques magnoniques, ondes de spin, transitions de

phase, diffusion des neutrons, spectroscopie trois-axes, spectroscopie par temps de vol
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Introduction

Collective magnetism is a complex and diverse research subject in condensed matter physics.

Deceptively simple materials, well characterized microscopically, can display exotic magnetic

behaviour due to large quantum effects. Quantum fluctuations in systems with reduced

dimensionality may have enhanced spin correlations, leading to strongly correlated systems.

In this context, layered quantum magnets are of particular interest as quasi-2D materials,

as the weak coupling between the magnetic planes makes these compounds test-beds for

fundamental magnetism . By measuring time-dependent and space-dependant correlations,

and in particular spin correlations, neutron scattering is an excellent probe of quantum

magnetism. Hence, neutron scattering experiments on physical realisations of fundamental

theoretical models of magnetism bring new insight.

In particular, the research field of frustrated magnetism aims to understand unconventional

behaviour, defined in contrast to conventional magnets that show long-ranged order and

non-degenerate ground states. In the absence of such characteristics, the systems show strong

quantum effects and exotic phases of matter. Particular lattice geometries (like Kagomé or

Shastry-Sutherland lattices) or local constraints (like spin ice for a anisotropic ferromagnet

on a pyrochlore lattice) lead to frustration as not all the interactions can be satisfied, and

hence lead to degenerate states. As opposed to a conventional magnet, with a phase transition

between a paramagnetic state to a long-ranged ordered phase, there is no particular ordering

transition in a frustrated magnet due to the degeneracy of states and the system is instead

strongly correlated.

Starting from the magnetic atoms with unpaired localized electrons, organised on a lattice

with a specific geometry, the quantum-mechanical object of interest is the electronic spin S. It

is defined as a quantized angular momentum (in units of ~) and the eigenvalue of the operator

S2 is S(S +1)~2. The spin degree of freedom of neighbouring magnetic atoms interact either

when they have a direct orbital overlap, through double exchange, or by a pathway through

non-magnetic atoms. It is thus the overlap and geometric arrangement of the atomic orbitals

which define the spin interactions.
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Heisenberg Hamiltonian. The isotropic Heisenberg Hamiltonian can be considered as a

starting effective model to describe localised spins on a lattice, with pairs of spins coupled

through a bilinear energy J . This is usually the starting point for any study of a real material

[1], where particularities of the interactions, geometry, dimensionality, or crystal field are then

described as deviations from the model in the form of anisotropies. The most general form of

this model is defined by the following Hamiltonian :

H =− ∑
(i , j ),α=x,y,z

Jαi j Sαi Sαj (1)

where (i , j ) indicates a sum over the pairs i j and the spin operators S are quantum mechanical

operators obeying the commutation relations of angular momentum [Sx ,S y ] = i Sz .

J corresponds to the exchange parameter. In the chosen convention, J < 0 corresponds to an

antiferromagnetic coupling while J > 0 is ferromagnetic.

When J x = J y = J z , the coupling is fully isotropic, corresponding to an ideal Heisenberg

Hamiltonian. Other combinations are anisotropic, such as the Ising model with J x = J y = 0 or

the X Y model corresponding to a planar anisotropy with J z = 0.

Such ideal Hamiltonians rarely describe fully the magnetic properties of real materials as there

are further perturbation terms, and the identification of these deviations and their effect is

often the object of study in quantum magnetism. Among possible perturbation terms are

single-ion anisotropies or a particular crystal environment introducing anisotropies such

as the Dzyaloshinskii-Moriya interaction. In addition, this ideal model can be restricted to

nearest neighbours, but further couplings must often be included, for example to reproduce

frustration effects which depend on competing interactions particular to the lattice geometry.

Similarly, this model is lattice-dependent and thus can be used for one or two-dimensional

models, which can display radically different properties compared to three-dimensional

models.

Forms of collective magnetism. Collective magnetism can take diverse forms depending

on parameters such as the competing interactions, the lattice geometries, the effective di-

mensionality and the spin value. A first situation is the appearance of magnetic long-ranged

order below a critical temperature, which is an extremely common scenario in real magnetic

materials. Far below the ordering transition temperature, quantum fluctuations become more

important. Low-energy fluctuations, called spin waves, are considered semi-classical, with

quantum fluctuations only weakly appearing as a renormalisation of quantities in spin wave

theory such as spin wave velocity and staggered magnetisation. A chapter will be dedicated to

the transition metal phosphorus trisulfides family (MPS3), which are antiferromagnets on a

honeycomb lattice below the Néel temperature [2]. Linear spin wave theory is thus relevant to

describe their magnetic excitations.

Radically different are materials in which there is no magnetic long-ranged order even at zero

temperature, with an exponentially decreasing correlation function at large distances. This

2
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absence of long-ranged order was predicted by Haldane in 1983 to occur in an S=1 Heisen-

berg chain [3], and confirmed in both organic [4] and inorganic [5] quasi one-dimensional

compounds. A consequence of the finite correlation length is the presence of a spin gap,

where there are no low-energy excitations. The ground state is a spin singlet and the spin gap

corresponds to the energy difference between the ground state energy and the energy of the

singlet to triplet excitation. These magnetic systems are classified as gapped spin liquids [6].

The frustrated quantum magnet SrCu2(BO3)2 with a spin gap of 34 K [7] will be discussed in

this context.

Finally, non-gapped spin liquids, with low lying excitations in the singlet-triplet gap, are also

widely studied in quantum magnetism such, for example in Kagomé lattice geometries with

possible resonating valence bond states[8], but are beyond the scope of this work.

0.1 Thesis outline

This thesis is concerned with layered quantum magnets with reduced dimensionality probed

by inelastic neutron scattering. Neutron scattering as a probe of magnetism is discussed in

chapter 1. The work is then divided in two main chapters discussing aspects of collective

magnetism relevant in either the frustrated quantum magnet SrCu2(BO3)2 which displays no

long-ranged magnetic order due to its competing interactions on a particular 2D geometry, or

in the MPS3 family of quasi-two dimensional antiferromagnets on a honeycomb lattice. They

are largely independent from each other and can be read separately. Finally, two appendices

will discuss selected aspects of magnetism in compounds relevant either to spintronics (Mn-

doped ZnO in appendix A) or to superconductivity (incommensurate magnetic order in FeTeSe,

CrAs and MnP in appendix B).

The detailed layout is as follows :

• SrCu2(BO3)2 in chapter 2 : The Shastry-Sutherland geometry of orthogonal dimers

with exact ground state is realised in SrCu2(BO3)2 (SCBO), making it a good model

system with unconventional magnetism and exotic phases of matter. Frustration in

this compound leads to fully localised singlet-triplet excitations observed as a flat band

in the excitation spectra. Its coupling exchange constants place SrCu2(BO3)2 in the

dimer-singlet phase with no long-ranged order, very close to a possible quantum phase

transition to a proposed plaquette phase. This phase can be reached and studied by

tuning the strength of the exchange, for example using hydrostatic pressure.

This work focuses on the impact of strong frustration and correlations in this model

system by measuring the neutron excitation spectrum for a broad range of energies, and

its evolution with temperature, applied magnetic field and applied pressure. The results

confirm the strength of the interaction couplings, and show that bound state formation

and possible correlated hopping have dramatic effects on the dynamical response of

the system. By measuring and analysing the unusual finite temperature properties of

the singlet-triplet mode of SrCu2(BO3)2, a Q-dependent correlated decay of the singlet-

3
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triplet modes is shown to be strongly sensitive to thermal population of the triplet

states. Due to a buckling of the CuBO3 planes, the Dzyaloshinskii-Moriya interaction

creates strong anisotropies in this compound, weakly splitting the degenerate singlet-

triplet mode. Coupled with the strongly frustrated geometry, the Dzyaloshinskii-Moriya

interaction makes SCBO a potential topological magnon insulator, which we discuss

using neutron experimental evidence.

• The MPS3 family in chapter 3: Transition metal phosphorus trisulfides (MPS3) are a fam-

ily of quasi two-dimensional antiferromagnets on a honeycomb lattice (M=Fe,Ni,Co,Mn).

The magnetic planes are only weakly bound by Van der Waals forces, thus reducing the

strength of the interlayer couplings and allowing rotational twinning. Although their

crystallographic structure are very similar, members of the MPS3 family have differ-

ent magnetic properties. In particular, FePS3 is largely anisotropic with properties of

an Ising antiferromagnet below TN = 123 K with S = 2 moments normal to the (a,b)

plane. Each moment is ferromagnetically coupled to two of its nearest neighbours and

antiferromagnetically coupled to its third.

Using neutron diffraction to study the presence of magnetic domains, this work explains

discrepancies observed in literature and confirms k = [01 1
2 ] as the magnetic propagation

vector. By measuring the gapped dispersion of the doubly degenerate spin waves

in FePS3 using inelastic neutron scattering, the anisotropy and exchange coupling

constants were extracted and shown to explain the dynamical properties of FePS3 as a

2D-antiferromagnet model system. The phase transition at the Néel temperature shows

both first order characteristics and critical scattering in FePS3, while the measured

quasi-elastic scattering is found to be magnetic. Finally, FePS3 has an honeycomb lattice

and a large single ion anisotropy, which makes it a potential candidate compound for

the presence of tri-critical point. The magnetization measurements at high pulsed fields

carried out on single crystals provide some evidence for such a tri-critical point in the

40-50 T range.

In addition, the excitation spectra of NiPS3 has also been measured for a powdered

sample using time-of-flight spectroscopy, showing highly dispersive low-Q spin waves

with a small spin-gap.

Two additional topics will be briefly explored in the appendices :

• Mn-doped ZnO in appendix A : Spin correlations in dilute magnetic semiconductors

can be explored using polarised neutron scattering in order to assess claims of ferromag-

netism in lightly Mn-doped ZnO. Ferromagnetism in dilute magnetic semi conductors

would make them potential candidates for technological application of magnetic prop-

erties. By studying the structural and magnetic properties of powdered samples using

polarized neutron scattering, the observed ferromagnetic behaviour of Mn-doped ZnO

is shown to coincides with the presence of MnO nanoparticles, whereas cluster-free

Mn-doped ZnO behaves paramagnetically.

4
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• Unconventional superconductivity in appendix B: incommensurate correlations in

new superconductors are discussed for three compounds : the iron chalcogenide

Fe1+y Te0.7Se0.3 ; and the binary pnictides CrAs and MnP. The interplay of magnetism

and superconductivity is at the heart of research on unconventional superconductors,

which focuses on the evolution of magnetic order close to the superconducting phase,

for example by doping the parent compound or by applying hydrostatic pressure. In

particular, a new narrow magnetic phase is discovered in MnP at 15 kbar applied pres-

sure, and the magnetic phase observed from neutron diffraction for 25 kbar is shown to

be incommensurate along c and to extend at least to 55 kbar applied pressure.
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1 Materials and Methods

1.1 Neutron Scattering

Neutron scattering is a powerful and versatile probe of condensed matter physics as it allows

the direct measurement of correlations functions, both in time and space. The wavelength of

thermal neutrons (∼ 2 Å) is similar to inter-atomic distances, and their energy (∼ 25 meV) is

comparable to lattice vibrations and elementary excitations. Neutrons are uncharged, thus

only interacting weakly and non-destructively with matter, penetrating deeply into materials

and thus allowing bulk studies. In addition, the neutron scattering length varies fairly randomly

between elements and isotopes of the same elements, allowing the study of light isotopes

such as hydrogen. The nuclear force gives rise to scattering of the neutrons by the atomic

nuclei, and is referred to as nuclear scattering. Neutrons interact with the nucleus via a simple

point-like potential, so that the amplitudes of nuclear scattering are easily interpreted. In

addition, neutrons have an intrinsic spin 1/2 magnetic moment so that they are sensitive to the

internal magnetic field of materials originating from unpaired electrons. Neutron magnetic

scattering thus allows spin correlations functions in magnetic materials to be accessed.

The rate of scattered neutrons per unit of incident flux ψ0 corresponds to the cross section σ

and is the fundamental quantity measured in a neutron scattering experiment. The rate I of

neutrons detected in a solid angle dΩwith a final energy between E f and E f +dE f is given

by :

I =ψ0

(
d 2σ

dΩdE f

)
∆Ω∆E f (1.1)

where ( d 2σ
dΩdE f

) defines the partial differential cross section, which can be calculated using the

formalism of scattering theory.
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Chapter 1. Materials and Methods

1.1.1 Scattering theory

For a complete derivation of the partial differential cross section, one can refer to Squires

[9]. A scattering process is described by Fermi’s golden rule. The rate of change between the

neutron in an incoming state and a continuum of outgoing states is given by :

∑
k f

Wi→ f =
2π

~
ρk f 〈ψi |V̂ |ψ f 〉|2 (1.2)

with V̂ the operator describing the interaction responsible for the scattering and ρk f the

number of momentum states per unit range for neutrons in the final state with scattered

wavenumber k f . The incoming flux is expressed as :

ψ0 = v

Y
= ~ki

Y mn
(1.3)

with Y the normalisation volume, ki the incident wavenumber and mn the mass of the

neutron.

Considering only neutrons scattered into the solid angle dΩ, and using the expression for the

flux ψ0, the differential cross section is given by :

dσ

dΩ
= 1

ψ0

1

dΩ

∑
k f

in dΩ

Wi→ f =
k f

ki

( mn

2π~2

)2
|〈ψi |V̂ |ψ f 〉|2 (1.4)

Neutrons are scattered by the nucleus due to the strong nuclear force, which has a interaction

range of the order of femtometers (fm). As this interaction range is much smaller than the

neutron wavelength (Å), neutrons cannot probe the internal structure of the nucleus and

thus scatter isotropically. In this context, the first Born approximation allows to replace the

scattered wave function by a plane wave, by taking only the first term in the expansion of

the wave function in powers of the interaction potential V(r). The first term of this series

describe a single scattering process of the incident wave, and the following terms describe

scattering processes of higher order known as multiple scattering. The Born approximation

thus assumes that both the incident and scattered neutrons can be described as plane waves,

with only one single scattering event of the incident wave from the interaction potential.

A scattering process can be inelastic, with the neutron either gaining or loosing energy to the

scattering system. The neutron energy transfer is defined as :

~ω= Ei −E f

= ~2

2mn
(k2

i −k2
f ) (1.5)
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1.1. Neutron Scattering

The neutron momentum transfer to the scattering system ~Q is defined as :

~Q = ~ki −~k f (1.6)

In a scattering event, the state of the scattering system must also be taken into account. For a

transition of the scattering from an initial state |λi 〉 to a final state |λ f 〉, the partial differential

cross section is thus given as :

(
d 2σ

dΩdE f

)
λi→λ f

= k f

ki

( mn

2π~2

)2
|〈λiψi |V̂ |λ f ψ f 〉|2δ(Ei −E f +~ω) (1.7)

with δ(Ei −E f +~ω) an explicit expression for energy conservation.

Regarding magnetic scattering, the magnetic potential V̂m contains the spin operator σ̂. The

spin state of the neutron must be thus specified in the partial differential cross section for a

magnetic scattering event :

(
d 2σ

dΩdE f

)
σiλi→σ f λ f

= k f

ki

( mn

2π~2

)2
|〈σiλiψi |V̂m |σ f λ f ψ f 〉|2δ(Ei −E f +~ω) (1.8)

Turning to the interaction potential with respect to the neutron coordinate r, it can be written

for the whole scattering system as :

V (r) =∑
j

V j (r−R j ) (1.9)

with V j (r−R j ) the potential of the neutron due to the jth nucleus.

1.1.2 Nuclear scattering

The interactions of neutrons with the jth nuclei of the sample can be described by the Fermi

pseudo-potential :

V j (r−R j ) = 2π~2

mn
b jδ(r−R j ) (1.10)

with b j the nuclear scattering length of the jth nucleus . The scattering length of an element

depends on its isotopes and, if present, on the direction of its nuclear spin with respect to the

spin of the incident neutron.

For a fixed ki and k f , the Fourier transform V (Q) of the potential for the scattering system is

9



Chapter 1. Materials and Methods

given as :

V (Q) =∑
j

2π~2

mn
b j ei Q·Rj (1.11)

Coherent scattering contains the scattering cross-section obtained if all the scattering centres

have the same average scattering length b̄ =∑
i fi bi with fi the abundance of the isotope with

scattering length bi . For a mono-atomic sample, the coherent partial differential cross section

is given by :(
d 2σ

dΩdE f

)
coh

= k f

ki

1

2π~
b̄2

∑
j , j ′

∫ ∞

−∞
dt e−iωt 〈ei Q·(r j (t )−r j ′ (0))〉 (1.12)

showing that coherent scattering from a crystal depends on spatial and temporal correlations

between the same nucleus, or different nucleus at different times. Nuclear Bragg peaks thus

appear in the coherent part of the partial differential scattering cross section.

On the other hand, incoherent scattering is caused by randomly distributed deviations from

the mean scattering length which is characterised by the variance b2 =∑
i fi b2

i and is given by:

(
d 2σ

dΩdE f

)
i nc

= k f

ki

1

2π~
(b2 −b

2
)
∑

j

∫ ∞

−∞
dt e−iωt 〈ei Q·(r j (t )−r j (0))〉 (1.13)

showing that incoherent scattering arises from self-correlations of the same nucleus at differ-

ent times.

The total scattering cross sections for coherent and incoherent scattering for an element are

given as :

σcoh =4πb
2

(1.14)

σi nc =4π(b2 −b
2

) (1.15)

These values are tabulated for each isotope in [10].

Also tabulated in [10] are the neutron absorption cross sections σabs of elements and their

isotopes, given for the typical thermal velocity v = 2200 m/s. Neutron absorption results from

neutron-induced nuclear process which destroys the neutron and emits secondary radiation

and is generally inversely proportional to the neutron velocity in the cold and thermal energy

range.

10



1.1. Neutron Scattering

1.1.3 Scattering from a crystal

In the case of periodic scattering centres, such as in a crystal with a reciprocal lattice defined

by a*, b* and c* and lattice vector τ = ha*+kb*+l c*, there are Bragg peaks in the coherent

differential cross section dσ
dΩ for momentum transfer Q =τ.

This corresponds to satisfying Bragg’s law in the case of a monochromatic beam :

nλ= 2d sinθ = 4π

|τ| sinθ (1.16)

Hence, the coherent differential cross section is given as :

dσ

dΩ
= N

(2π)3

V0

∑
τ
δ(Q−τ)|Fn(τ)|2 (1.17)

with N the number of unit cells in the sample, V0 the volume of the unit cell, and Fn the static

nuclear structure factor corresponding to Fn(τ) =∑
j b j eiτ·r j e−W j with e−W j the Debye-Waller

factor from thermal lattice fluctuations.

1.1.4 Scattering function

The quantity measured in neutron scattering can be related to the thermal average of operators

expressed as correlation functions. Indeed, the partial differential cross section is proportional

to the scattering function S(Q,~ω) after removing the instrumental effects. S(Q,~ω) contains

a double sum over pairs of nuclei where each term of the sum corresponds to the correlation

between the spatial position of one nucleus (or spin) at time t = 0 with the position of another

nucleus (or spin) at a time t . S(Q,~ω) thus provides information on collective behaviours, and

can be used to estimate the strength of couplings in the system.

Furthermore, the scattering function S(Q,~ω) can be related to the imaginary part of the

dynamical susceptibility χ′′(Q,~ω) by the fluctuation-dissipation theorem :

S(Q,~ω) = ~
π

[n(ω)+1]χ′′(Q,~ω) (1.18)

with [n(ω)+1] the Bose factor, given by n(ω) = 1
e~ω/kB T −1

. The dynamical susceptibility cor-

responds to the response of a system to a perturbation, and its imaginary part χ′′(Q,~ω) is

related to the dissipation of energy by the perturbed system. The constant ~ will be dropped

in following expressions of the scattering function.

11
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1.1.5 Detailed balance

It can be shown that S(Q,ω) has the analytical property [9] :

S(Q,ω) = e
~ω

kB T S(−Q,−ω) (1.19)

This is known as the principle of detailed balance.

For systems where there is no effect of the reversal of Q, then S(Q,ω) = e
~ω

kB T S(Q,−ω). Let

a positive energy transfer ω > 0 be defined in a scattering process as a loss of energy for

the neutron (and a gain for the system). The probability that the neutron creates an energy

exchange in either direction is the same. However, for a temperature T, the probability of the

system being initially in the higher energy state is lower than the probability of it being in the

lower energy state by a factor e
~ω

kB T . The scattering function corresponding to a neutron energy

gain S(Q,−ω) is thus less than the one corresponding to a neutron energy loss S(Q,ω) by the

same factor.

Figure 1.1 illustrates the principle of detailed balance for a system with a temperature compa-

rable to the energy of the mode, i.e. kB T ∼ ~ω0.

Figure 1.1: Scattering function as a function of ω for kB T ∼ ~ω0 showing the principle of
detailed balance. 1

1from "Neutron Scattering" lecture by Ross Stewart, ISIS neutron Facility, Rutherford Appleton Lab, Didcot, UK
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1.1. Neutron Scattering

1.1.6 Magnetic scattering

Neutron magnetic scattering will be discussed under the assumption of localised unpaired

electrons, and considering scattering as due to spin only, so that itinerant systems are excluded.

In this context, neutron magnetic scattering measures the spin correlations function, and thus

can easily distinguish between phases with different symmetries of the correlation function

(for example, between a paramagnet with diffuse scattering or an ordered phase with Bragg

peaks). Neutrons are scattered by the spatially varying magnetic field from spins in the

material. The dynamic scattering function is proportional to time and the spatial Fourier

transform of the two-spin correlation function of the sample is :

Sα,β(Q,ω) = 1

2π

∑
R

∫ +∞

−∞
ei Q·R−ωt 〈Sα0 (0)SβR(t )〉d t (1.20)

with R the spin positions. The measured Q-dependence of the scattering function can give

insight on the spatial correlations of the spin correlations : if S(Q,ω) is resolution limited in

Q, then the spatial spin correlations are long-ranged, whereas if S(Q,ω) is broader than the

resolution in Q, the spin correlations are short-ranged.

Furthermore, the observed scattering is modified by two factors : the orientation factor and

the magnetic form factor. The orientation factor exists because only some components of this

tensor can be observed by neutron scattering. Indeed, the neutron only see magnetism with

components perpendicular to the scattering vector Q, which is a consequence of Maxwell’s

law 5·B = 0. The dynamic scattering function is thus multiplied by the orientation factor

δαβ− Q̂αQ̂β to remove the parallel components, with Q̂αβ the components of the unitary

vector Q̂. The magnetic interaction vector thus has the form :

M⊥Q = Q̂× (
M(Q)× Q̂

)
(1.21)

with M(Q) the Fourier transform of the sample magnetization M(r).

Neutrons are scattered by magnetisation densities rather than by point-like objects on a

lattice, as unpaired localised electrons have spatially extended valence orbitals. The dynamic

scattering function is derived from effective operators with localised spins on lattice vertices,

so that a correction factor is needed in order to take into account the spatial spin densities.

The validity of the approach is given by the Wigner-Eckart theorem, which shows that the

matrix element can be decomposed into a product of two factors, one of which is independent

from the angular momentum orientation. In this case the correction factor is the magnetic

form factor squared f 2(|Q|), with f the Fourier transform of the normalised spin density of a

single atom or ion. The magnetic form factor is ion specific [11], and within the hypothesis of

a spherical spin density, follows a simple decreasing function as |Q| increases.
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Chapter 1. Materials and Methods

Nevertheless, not all electronic orbitals can be well approximated by a sphere, such as the eg ,

d(x2 − y2) orbital, for which the spin density is extended in the z-direction and has a faster

decay in the x y-plane. Taking into account the particular shape of orbital can be necessary

in order to properly account for an anisotropic form factor, and can be crucial for example

in the case of Cu2+ where a single unpaired spin occupies a 3d(x2 − y2) orbital. For example,

an anisotropic form factor had to be taken into account in La2CuO4 in order to analyse high

energy spin waves obtained from neutron scattering [12].

The analytical approximation of the form factor obtained from the radial distribution of

electrons is given as the sum of radial integrals, which are defined as :

〈 jl (|Q|)〉 =
∫ ∞

0
R(r )2 jl (|Q|r )4πr 2dr (1.22)

where jl (|Q|) are spherical Bessel functions with l=0,2,4,6 and R(r ) the radial part of the single

electron wavefunction in the atom. An analytical approximation to the 〈 jl (|Q|)〉 integrals for

most common atoms and magnetic are tabulated as coefficients in the International Tables

of Crystallography volume C [13]. Usually the dipole approximation is used to obtain the

magnetic form factor from only the leading contribution in the limit of small momentum

transfer Q, with g the Landé splitting factor [11] :

f (|Q|) = 〈 j0(|Q|)〉+ 2− g

g
〈 j2(|Q|)〉 (1.23)

In the case of particular shape of orbitals, the anisotropic magnetic form factor is derived from

the spherical Bessel functions by taking into account an angular dependence on the polar

angles θQ andΦQ of the wavevector Q [14]. For the electron in the d(x2 − y2) orbital relevant

for Cu2+, the following explicit expression can be used :

f (|Q|) =〈 j0(|Q|)〉− 5

7
(1−3cos2(θQ ))〈 j2(|Q|)〉

+ 9

56
〈 j4(|Q|)〉(1−10cos2(θQ )+ 35

3
cos4(θQ ))

+ 15

8
〈 j4(|Q|)〉sin4(θQ )cos(4ΦQ ) (1.24)

Figure 1.2 shows the anisotropic magnetic form factor squared for the d(x2 − y2) orbital of

Cu2+ depending on the direction of the wavevector Q compared to the angle-averaged form

factor from the dipole approximation. Except for very small |Q|, the anisotropy is large for

Q//z and should be taken into account.

14



1.1. Neutron Scattering

Figure 1.2: Wavevector dependence of the anisotropic magnetic form factor squared f (|Q|)2

for the d(x2 − y2) orbital of Cu2+ from equation1.24. In blue is the angle-averaged form factor,
which corresponds to the form factor calculated from the dipole approximation. In green and
red are the magnetic form factor for two directions of Q with the polar angle θQ = 0 andΦQ = 0
for Q//z (green) and θQ = 90 andΦQ = 0 for Q ⊥ z (red).

Including the orientation factor and the form factor described above, the magnetic scattered

intensity from a single crystal is given by the partial differential cross section:

d 2σ

dΩdE
= r 2

0

k f

ki
f (|Q|)2

∑
α,β

(δαβ−Q̂αQ̂β)Sα,β(Q,ω) (1.25)

with the magnetic scattering length r0 = γN e2

me c2 where γN is the neutron gyromagnetic ratio [9].

In order to take into account the effect of temperature, this equation should be corrected by

the Debye-Waller thermal factor e(−2W ).

Similarly to nuclear elastic scattering from a crystal, a periodic arrangement of magnetic

moments leads to magnetic elastic scattering with the following cross section :(
dσ

dΩ

)
mag

= r 2
0 Nm

(2π)3

V0m

∑
τm

δ(Q−τm)
∣∣Q̂× (

Fm(Q)× Q̂
)∣∣2

(1.26)

with Nm the number of magnetic unit cells in the sample, V0m the volume of the magnetic

unit cell. Magnetic peaks are found for Q =τm and the magnetic structure factor Fm(τm) is

given by :

Fm(τm) =∑
j

1

2
g j f j (τm)〈S j 〉eiτm ·r j e−W j (1.27)

with j the magnetic moments in the unit cell.
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Chapter 1. Materials and Methods

1.1.7 Neutron Sources (and neutron beam )

Neutron sources can roughly be divided into two categories, with neutrons either produced by

nuclear fission or by nuclear spallation. An alternate way of classifying the sources are between

continous or pulsed neutron beams, as the PSI spallation source produces a continuous

neutron beam. A non-exhaustive list of neutron scattering institutes is given in table 1.1 and

corresponds to the facilities relevant to this experimental work .

Table 1.1: List of relevant neutron scattering facilities

Neutron sources production type beam type
Institut Laue Langevin (ILL), France fission continuous
ISIS, Rutherford Appleton Laboratory, UK spallation pulsed
Paul Scherrer Institute (PSI), Switzerland spallation continous
FRM-II, Germany fission continous
ANSTO, Australia fission continous
J-Parc, Japan spallation pulsed
SNS, USA spallation pulsed

Typical neutron energies available from a neutron source are usually divided into three cate-

gories : hot, thermal and cold (described in table 1.2) corresponding to a Maxwellian distribu-

tion profile of neutron energies obtained from moderators.

Table 1.2: Classification of neutron beam by energy range, with examples of ILL instruments

Type Energy [meV] Temperature [K] example
Cold 0.1-100 1-120 IN14, IN5
Thermal 10-100 120-1200 IN8, IN4
Hot 100-500 1200-6000 IN1

Ultracold neutrons (UCN), with neutron velocities as low as 5 m/s, can be used in particle

physics, for example to measure the lifetime of neutrinos. The neutrons have too low energy

to study bound states , and are thus outside the scope of this work.

1.1.8 Neutron spectroscopy

Neutron spectroscopy is concerned with measuring the partial differential cross section d 2σ
dΩdE .

This is done by counting the number of neutrons scattered per unit time for a sample as a

function of energy transfer ~ω and momentum transfer Q using a neutron detector. This

requires to know the energy and wavevector of both the incident neutron and of the scattered

neutron. There are several ways to measure the partial differential cross section, including

triple-axis spectroscopy and direct time-of-flight spectroscopy.
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1.1. Neutron Scattering

Triple-axis spectroscopy

Triple-axis spectrometers are versatile instruments that measure a scattering event at a single

value of (Q,ω), with the initially polychromatic neutron beam undergoing three separate

scattering events. The initial and final neutron energies are selected by Bragg diffraction on re-

spectively a monochromator and an analyser. The choice of materials for the monochromator

and analyser depends on the neutron wavelength, and the desired resolution. For thermal

neutrons, a widely used monochromator is pyrolytic graphite (PG) oriented along [001], which

is a special form of graphite with the layers randomly distributed around a common c axis.

Other materials also commonly used in triple-axis spectroscopy are silicon and copper.

The name of the triple-axis technique comes from the existence of three rotation axis in the

scattering configuration (schematically shown in figure 1.3 ) : to select the desired wavelength

from Bragg scattering at the monochromator, both the monochromator and the spectrometer

table have to be rotated around the first axis (A1/A2). The analyser/detector unit rotates

around the second axis to select the sample scattering angle 2θ with respect to the direction of

the incoming neutron wavevector ki (A4). Around the third axis, the detector and the analyser

are rotated separately to select the scattered wavevector k f (A5/A6). An additional rotation

of the sample table (A3) allows sample orientation in order to obtain the desired position in

reciprocal space.

Figure 1.3: Schematic configuration of a conventional triple-axis spectrometer.
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A neutron energy-loss scattering process corresponds to the scattering triangle shown in figure

1.4 with :

Q = ki −k f =τ+q (1.28)

~ω= ~2

2mn
(k2

i −k2
f ) = ~ω0(q) (1.29)

with τ the reciprocal lattice vector and ~ω0(q) the energy of an excitation for a reduced

wavector q. The magnitude of the momentum transfer is given as a function of the scattering

angle :

|Q| =
√

k2
i +k2

f −2ki k f cos(2θ) (1.30)

Figure 1.4: Schematic scattering triangle of a scattering process
.

Two types of scans are fundamental to triple-axis spectrometry to map the dispersion relation

of excitations in condensed matter systems such as magnons or phonons : constant-Q scans

and constant-energy scans. The former corresponds to keeping the momentum transfer Q

constant while changing the energy transfer by small increments, which is done by modifying

the Bragg scattering angle of either the analyser or the monochromator. In this type of scans,

the sample angles A3 and A4 must also change. Constant-energy scans, on the other hand,

correspond to varying the momentum transfer, while keeping the energy transfer constant, so

that only A3 and A4 are changing.

Resolution Ellipsoid

Triple-axis spectrometer models assume perfectly monochromatic and divergence-free beams.

In reality, this conditions are relaxed in order to obtain sufficient statistics. The selected energy

at the monochromator is distributed around a mean value due to the finite mosaicity of the

crystals and the divergence of the incident neutron beam, and similarly, a distribution of

energy is obtained from the analyser. The measured phase space (Q,ω) is thus distributed

around the nominally selected (Q0,ω0), and this distribution is known as the spectrometer

resolution function R(Q−Q0,ω−ω0).
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1.1. Neutron Scattering

The measured intensity can thus be described as a 4D convolution of the dynamical scattering

function with the resolution function of the spectrometer :

I (Q0,ω0) =
∫

R(Q−Q0,ω−ω0)S(Q,ω)dQdω (1.31)

The resolution function of a triple-axis spectrometer depends on the relative sense of rotation

at the instrument spectrometer axes and can be approximated using a Gaussian beam profile

[15] :

R(Q−Q0,ω−ω0) = R0 e−
1
2∆v M∆v (1.32)

with ∆v a four dimensional vector corresponding to the difference between nominal (Q0,ω0)

and measured (Q,ω) and M the resolution matrix. The results are 4D resolution ellipsoids,

with size and orientation depending on the resolution matrix.

The resolution matrix has been derived analytically by Cooper and Nathans [16] as well as by

Popovici [17] , the latter taking into account the finite size of the sample and of the instrument.

Several tools have been developed to calculate analytically and numerically the convolution of

the dynamical scattering function with the resolution, including for example the Monte Carlo

Matlab® routines "trixfit" based on the resolution calculations "rescal" [18].

Time-of-flight spectroscopy

Time-of-flight spectroscopy uses the neutron time-of-flight to obtain its energy via the de

Broglie relation between wavelength and speed λ= h
mv . Inelastic time-of-flight is very efficient

to explore large areas of (Q,~ω) space as scattered neutrons are collected over a wide range of

neutron energy transfers. Two different geometries exist depending on whether the neutron

energy is fixed for the incoming beam (direct) or the outgoing beam (indirect). In the direct

geometry, a pulsed neutron beam is monochromated at a time tc . At sample position neutrons

are then scattered at a time t with momentum and energy transfers Q and ~ω. Each neutron is

then detected on a position sensitive detector (usually a 3He detector) at a time t +d t , creating

a map where each pixel represents at trajectory in 4 dimensional (Q,~ω).

Parabolas in Reciprocal space From energy and momentum conservation, the trajectories

are parabolas in reciprocal space. When the interest lies in S(Q,ω) (for a powder sample

for example), from Q2 = k2
i +k2

f −2ki k f cos(2θ) and using eq. 1.5 for a fixed Ei , with 2θ the

scattering angle :

~
2mn

Q2 = 2Ei −~ω−2
√

Ei (Ei −~ω)cos(2θ) (1.33)
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The available phase space for direct time-of-flight spectrometers can be derived from 1.33 for

a fixed incident energy Ei and the detector coverage in scattering angle. The trajectories in

reciprocal space are shown in figure 1.5 for Ei = 12 meV and scattering angles of 5, 25, 50, 75,

100 and 140 degrees. The detector coverage on an inelastic time of flight spectrometer thus

defines the accessible area of the S(Q,ω) spectrum.

Figure 1.5: Trajectories in reciprocal space as a function of Q for an incident energy of 12 meV.
For a detector coverage from 5 degrees to 140 degrees, the full area between the two outermost
blue lines will be accessible on an inelastic time-of-flight spectrometer

.

As the detectors are Position Sensitive Detectors (PSD), both the polar and azimuthal angle

of the scattered neutron are obtained with respect to ki . The components of Q can thus be

separated into parallel Q||and perpendicular Q⊥ to ki so that the parabolas become :

~
2mn

k2
i −~ω= ~

2mn
(|Q⊥|2 + (ki −|Q|||)2) (1.34)

In an inelastic time-of-flight experiment on a single crystal, the measured intensity corre-

sponds to the intersection between the trajectories of the parabolas with the scattering func-

tion S(Q,ω). The sample can be rotated in 2θ with 1-5 degrees steps in order to cover a larger

four dimensional S(Q,ω) range. This separation into perpendicular and parallel components

is useful in particular in the case of low-dimensional systems, where the S(Q,ω) is independent

on one or more directions of Q. In a 2D system, rod-like scattering will be observed along one

direction as there is no dependence of the dynamical scattering function on the momentum

transfer along this Q direction . In that case, a time-of flight spectrometer can be used with the

Q|| direction parallel to the incident beam ki . Q⊥ then corresponds to the in-plane scattering.

At a fixed Q⊥ point, Q|| varies with as the energy transfer changes. Since S(Q,ω) is independent

of this direction, the variation of Q|| does not impact the intensity of the magnetic scattering.

One carefully chosen sample orientation thus allows to collect the full relevant S(Q,ω) map

for a 2D system by integrating the data over the irrelevant Q|| range.
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1.1. Neutron Scattering

Figure 1.6: Schematic of the cold direct time-of-flight spectrometer LET from [19] showing the
choppers for pulse shaping, contaminant removal, pulse removal and resolution. Chopper 1
and 5 are high-speed rotating disks that control the incident energy and the energy resolution.

Inelastic spectrometers are usually large in size, with long flight paths from moderator to

detectors (20-30 m) and wide angle coverage by detectors (for example on LET, 4 m high

position sensitive detectors are arranged in a cylindrical coverage from -40 to 140 degrees).

The large angle coverage allows to access extended areas of reciprocal space, and as will be

shown in this section, the energy resolution improves with larger distances.

TOF spectrometers at Spallation sources Time-of-flight spectrometers are widely used in

spallation sources, as the neutron are directly produced as a pulsed beam. A set of choppers is

then used to shape the pulse, remove contamination and select the desired incident energy. A

example of such a set of choppers is shown in figure 1.6 for the cold time-of-flight spectrometer

LET at ISIS.

These chopper disks are carbon fibre composite disks with 10B coating to absorb neutrons

and have apertures for neutron transmission. For LET, chopper 1 and 5 are high speed 300Hz

counter rotating discs to control the incident energy. The pulse-width matching between the

two choppers allows the optimization of the flux for the desired resolution. Choppers 2, 3

and 4 are slower rotating choppers to prevent frame overlap and other spurious signal. In

addition, the chopper system is designed to allow scattering from several incident energies to

be collected within the same time-frame. This is known as multiplexing and is an efficient

mode of data collection that takes full advantage of the 100ms pulse out of the moderator [19].

TOF spectrometers at fission sources At fission sources such as the ILL, the neutron beam

is continuous. Time-of-flight spectrometers thus need additional choppers (pulsing choppers)

in order to create polychromatic neutron pulses from the continuous source. This is usually

done in the first chopper group with counter-rotating disks which are de-phased with respect

to the monochromating choppers in order to select the desired wavelength. Figure 1.7 shows

a schematic time-distance diagram for the case of the cold time-of-flight spectrometer IN5 at

ILL, which shows a schematic of the energy distribution of the neutron pulses as they pass

through the different chopper groups, the sample and finally reach the detectors.
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Figure 1.7: Distance-Time diagram for IN5 from [20]. Blue represents the most energetic
neutrons and red the less energetic ones. Dashed diagonal line corresponds to Ei . P1 and
P2 are the Pulsing choppers, FO and CO are respectively the Frame overlap chopper and the
Contaminant order chopper. M1 and M2 are the Monochromating choppers. The left panel
shows one pulse while the right panel shows the pulse repetition and clearly demonstrates the
need for the frame overlap chopper.

Resolution Faster neutrons are more difficult to resolve in time at the detector position, so

that time resolution (and hence energy resolution) is better at larger energy transfers (slower

neutrons) than for no energy loss (faster neutrons). The energy resolution of the instrument

for a fixed Ei is typically given as the full-width half-maximum of the elastic line. Resolution is

strongly dependent on how narrow in time the pulse is, on the energy distribution from the

moderator, as well as on the sample-to-detector distance.

In a simple approximation, the energy resolution has two contributions: the distribution

of energies of the moderator and the monochromating chopper burst. The neutrons with

an energy Ec out of the moderator have a time width of ∆tm(Ec). The time window of the

monochromating chopper is ∆tc . The convolution of ∆tc and ∆tm(Ec) give the time distribu-

tion ∆t of the neutrons after the monochromating chopper. Approximating the distributions

by Gaussians, this is given by .

∆t =
√
∆t 2

c +∆tm(Ec )2 (1.35)

Taking into account the moderator-chopper distance L1, this quantity corresponds to the

incident energy resolution. The energy resolution for the scattered beam must also take into

account the chopper-sample distance L2 and the sample-detector distance L3.
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1.1. Neutron Scattering

The energy resolution at the detector can be obtained by combining these contributions [21] :
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For a fixed Ei , the resolution thus improves for large sample-detector distance L3 and as the

energy transfer increases.

In terms of Q resolution, the dominant contribution is the pixel size of the position sensitive

detectors. Other contributions are the divergence of the incident beam, the finite energy

resolution and the physical size of the sample, which all lead to a Gaussian spread. The

convolution of the square resolution function of the pixel size and the Gaussian spread gives

a overall isotropic projection of the Q-resolution on the detector plane, unlike triple-axis

spectroscopy, where the resolution is extended along one of the in-plane Q components.

Repetition-rate multiplication mode One aspect of new-generation time-of-flight spec-

trometers is the possibility to use several incident energies from a single neutron pulse. This is

obtained by synchronising the source pulse with the incident beam chopper so that a single

pulse can have a distribution of neutrons with different discrete incident energies reaching

the sample at separate times. At the detector position, the scattered neutrons are correlated

to their respective incident energy using their time-of-flight. This mode allows simultaneous

measurements of different resolution and kinematic parameters, which drastically reduces

the experimental acquisition time.

1.1.9 Polarised neutron spectroscopy

It is not always possible to distinguish the nature of the observed neutron scattering. This

can be the case when focusing for example on very weak diffuse scattering whose intensity is

much weaker than the dominant nuclear scattering, or when the nature of the scattering is not

obvious, for example if it is quasi-elastic. Incoherent scattering in a sample could also need

to be identified, in particular for samples containing hydrogen (large incoherent scattering

cross-sections). Polarised neutron spectroscopy is very efficient in addressing these problems

as it is possible to combine the cross-sections obtained for different polarization directions in

order to separate magnetic, nuclear and incoherent scattering contributions.

The general principle of polarised neutron scattering is to probe the spin transition of the

scattered neutron. A neutron beam with a defined spin state needs to be produced, and the

spin-state distribution of the neutrons after scattering needs to be analysed. This allows to

measure the scattering amplitudes for each transition for an uniaxial polarised beam, given

by the Moon-Riste-Koehler equations derived from the interaction potential for magnetic,
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nuclear and incoherent scatterings [22]:

U|↑〉→|↑〉 = bcoh −pM⊥z +B Iz (1.37)

U|↓〉→|↓〉 = bcoh +pM⊥z −B Iz (1.38)

U|↑〉→|↓〉 =−p(M⊥x + i M⊥y )+B(Ix + i Iy ) (1.39)

U|↓〉→|↑〉 =−p(M⊥x − i M⊥y )+B(Ix − i Iy ) (1.40)

where z refers to the direction of the neutron polarisation and with bcoh the coherent scattering

length, M⊥ the magnetic interaction vector, p the magnetic pre-factor p = γn r0

2µB
, I the nuclear

spin operator and B the spin-dependant nuclear amplitude.

These equations show that coherent nuclear scattering is always non-spin-flip scattering

(|↑〉→ |↑〉 or |↓〉→ |↓〉). In addition, the incoherent scattering cross section can be separated

into the spin-dependant and independent part (the latter referred to as isotopic incoher-

ent). Isotopic incoherent scattering results from a random disorder in the nuclear scattering

lengths and hence is entirely non-spin-flip. On the other hand, the magnetic and nuclear

spin scattering are non-spin-flip if the effective spin components are along the direction of

the neutron polarization, and the scattering is spin-flip if the effective spin components are

perpendicular to the polarization direction. Hence the nuclear-spin incoherent, which comes

from randomly oriented nuclear spin, is present in both non-spin-flip and spin-flip channel

with respectively 1/3 and 2/3 ratios. Regarding magnetic scattering, only spin components

which are perpendicular to the scattering vector are visible in neutron scattering. In the special

case where the neutron polarisation is along the scattering vector, magnetic scattering thus

only appears in the spin-flip channels.

On multi-detector neutron spectrometer, a technique of longitudinal neutron polarisation

analysis for three orthogonal directions of the neutron polarisation is generally used, called

XYZ-polarisation analysis [23]. In the case of a paramagnetic sample, it provides unambiguous

separation of the magnetic, nuclear and spin incoherent cross sections. For a planar multi-

detector in the x y-plane, the incident polarisation is aligned alternately along x, y and z, and

the separated scattering cross-sections within the hypothesis of a paramagnetic sample are

given by a linear combination of the measured XYZ cross-sections :
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with TSF and TN SF corresponding respectively to the total spin-flip and total non-spin-flip

measured cross-sections. The magnetic cross-section can thus be calculated in two indepen-

dent ways.

Examples of such multi-detector diffractometers using XYZ polarisation analysis include the

diffuse spectrometer D7 at the ILL [24] and the spectrometer DNS at the FRMII [25]. The

working principle is as follows: a guide field sets the polarisation axis for the neutron beam,

and then one of the spin states is selected by reflection from a super-mirror bender. This is

followed by a Mezei-type precession coil neutron spin flipper, which flips the spin with respect

to the guide field direction. The flipper is switched on or off depending on whether processes

flipping the neutron spin or not are being measured. A set of coils around the sample position

rotates the polarization into one of three orthogonal directions for XYZ polarisation analysis,

and the outgoing polarisation is analysed by another set of super-mirror benders. A total of six

cross sections are collected : spin flip and non-spin flip for each field orientation at the sample

position. The different contributions to the total scattering cross section (magnetic, spin

incoherent and nuclear and isotope incoherent) are then separated by the linear combination

of the cross sections given in equations 1.41-1.44.

In a practical neutron experiment, several corrections have to be made during data reduction

to correct for instrumental errors (detailed in [26]) : The polarisation efficiency of the instru-

ment is obtained by measuring the scattering from amorphous quartz. As it gives only nuclear

coherent scattering, there should be no spin-flip scattering for an ideal efficiency of the po-

lariser, analyser and flipper. The detector efficiencies is then obtained by measuring scattering

from vanadium, which has a negligible coherent cross section (for the most abundant isotope
51V) and thus is considered to only scatter incoherently. A vanadium count in a detector is

thus proportional to the efficiency and solid angle coverage of that detector. In addition, the

background is estimated using transmission measurements of an empty sample holder and of

a cadmium sample (which has a very large neutron absorption cross-section), weighted by the

transmission of the sample.

Finally, the calibration with vanadium allows the normalisation of data in order to obtain the

scattering in absolute units, i.e. as a cross section per solid angle and per formula unit ( barns

sr−1 f.u. −1). Indeed, the incoherent cross section for the most abundant isotope of vanadium
51V (99.75 % abundancy) is σi nc = 5.08 barns so that the total cross section of vanadium is

given by :
(

dσ
dΩ

)
V
= 5.08

4π

To obtain the sample cross section in absolute units, the sample counts NS can thus be divided

by the vanadium counts NV , normalising by the vanadium cross section, the ratio of scattering

centres between vanadium ns(V ) and the sample ns(S) and the ratio of their transmission tV

and tS :(
dσ

dΩ

)
S
= NS

NV

ns(V )

ns(S)

tV

tS

5.08

4π
(1.45)
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1.1.10 Sample environment

At sample position on neutron spectrometers, several types of environments can be installed

in order to control the temperature (cryostat, dilution fridge or cryo-furnace), the applied mag-

netic field (vertical or horizontal magnets) or the applied pressure (pressure cells). A detailed

review of the range of available sample environments for neutron scattering experiments can

be found in [27], and only high-pressure sample environments will be discussed further.

Pressure

In the context of neutron scattering, the realisation of high-pressure experiment is usually a

challenge. Having a high-pressure set-up as sample environment will lead to a reduction of

sample size, an increase of the quantity of absorbing and scattering materials in the trajectory

of the neutron beam, constraints on operating temperatures and a reduction of accessible

reciprocal space. The choice of a pressure cell type, of the pressure transmitting media in

which the sample is immersed (to obtain hydrostatic pressure) and of a pressure marker (NaCl,

Pb) is thus very dependent on the experiment. Only four different high pressure experimental

set-ups will be described here, and a comprehensive overview of possibilities and constraints

in high pressure neutron scattering experiments can be found in [28].

"Russian alloy" Clamp cell for time-of-flight with 10 kbar at 1.5K Clamp cells are widely

used in high-pressure neutron scattering experiment as they are compact and reliable. They

consist of a piston cylinder pressure device. Pressure is applied ex-situ with an external press

and the clamp cell is then locked mechanically. Due to the partial loss of pressure when

the load is released after locking the cell and the temperature dependence of the applied

pressure on the sample, accurate pressure can only be obtained from an in-situ neutron

measurement of the Bragg peaks from a pressure marker such as NaCl or Pb. As the maximum

reachable pressure from calibration is given at 300K, the decrease of pressure when the clamp

cell is cooled (from thermal contraction of pressure medium) should be taken into account

when choosing a particular pressure cell. The pressure cell chosen in the CrAs time-of-flight

experiment described in section B.2 was a "Russian alloy" clamp cell, suitable for single crystal

measurements up to 15 kbar. "Russian alloy" refers to a NiCrAl alloy with 57% Ni, 40% Cr and

3 % Al, which is non-magnetic and is used in high pressure experiments for its strength.

McWhan Clamp cell for triple-axis-spectroscopy with 23 kbar below 1K The first McWhan

pressure cell was developed by McWhan and collaborators in 1974 for pressure neutron scat-

tering beyond 10 kbar. Its characteristic elements are a bi-conical Al2O3 cylinder containing

the sample and two tungsten carbide pistons. Current design are clamped McWhan pressure

cells, with pressure applied ex-situ with an hydraulic press. Al2O3 is suitable for neutron

scattering experiments as it is non-magnetic and shows an 80 % transmission across the full

bi-cone.
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1.1. Neutron Scattering

The Mcwhan design used at the ILL is shown in Figure 1.8 for the 20 kbar set-up with a CuBe

sample capsule (number 16). Sample space is large for a high pressure cell device (5-10 times

larger than for the Paris-Edinburgh pressure cell), as the sample capsule has 6mm diameter

and 24mm height in the 20 kbar set-up. This sample environment was used in combination

with a cooling device ("Triton") to reach dilution temperatures of 150mK in the context of the

plaquette phase SCBO experiment described in section 2.5.

The pressure transmitter was Fluorinert, a perfluoro-carbon liquid which does not contain

hydrogen (and thus a very weak incoherent scattering cross section) but with a limited hy-

drostatic pressure range of maximum 20-23Kbar (depending on composition, best is 1:1

FC84-Fc87).

The pressure marker was pure NaCl, for which the equation-of-state as a function of pressure

and temperature is known. Tabulated value for the unit cell volume variation V /V0 was

obtained by Decker et al.[29] and extended to low temperatures by Skelton et al. [30].In

practice, the salt (either powder or single crystal) is added with the sample and the scattering

angle of a Bragg peak can be obtained in-situ from diffraction. The unit cell volume of

NaCl under pressure V can then be extracted from the new d-spacing of the Bragg peak and

compared to the ambient unit cell volume V0 in order to get the tabulated pressure from the

obtained (V0 −V )/V0 at a specific temperature.

Paris-Edinburgh (PE) pressure cell for diffraction with maximum 76 kbar from 5 to 300K

Paris-Edinburgh cells are hydraulic pressure cells with opposed anvils of sintered materials

for compression. Their advantage is that pressure can be applied and changed in-situ. There

exists a number of Paris Edinburgh pressure cell, each with different load frames, anvils,

hydraulic fluid and cryogenic equipment.

Presented here is specifically the ILL Paris Edingburgh pressure cell VX5 which has a maximum

pressure of 10GPa (at 300K) and a minimum temperature of 5K [32]. The load frame of the

VX5 is a two column design, which must be taken into account for single crystal experiments,

as the columns block the neutron beam and lead to a loss of about 30 degrees of accessible

rotation on each side. The pressure cell is equipped with single-toroidal anvils of sintered

cubic Boron nitride and a gasket of TiZr alloy with available sample space of 10-30 mm3.

In neutron scattering, TiZr refers to an alloy with null neutron coherent scattering. The

bound coherent scattering length of Ti and Zr are respectively -3.44 fm and 7.16 fm so that an

alloy with 67.7 % Ti and 32.3 % Zr will not produce Bragg reflections [28]. However, there is

incoherent scattering and some short range species-species order which create a background,

which is significant in the case of a weak signal. Boron has a large neutron absorption cross

section, and the Boron nitride anvils thus have very low neutron transmission.

The hydraulic fluid used is compressed helium, which is the only possibility for cooling below

110K. The pressure cell is cooled by a closed-cycle He gas cryostat, with a cooling time of 30hrs
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Figure 1.8: Technical drawing for the ILL McWhan pressure cell in the 20kbar set up. Courtesy
of ILL, from design in [31]. Left : Full body of the MacWhan pressure cell. Right : Zoom on the
sample capsule

from 300K to 5K. It has the option of a fast pre-cooling to 77K by flooding the sample space

with liquid nitrogen, evacuating and then using the CCR to cool to base temperature (6-8hrs)

The reduction of cooling time is crucial, as although pressure can be increased in-situ on the

beam-line, the pressure cell temperature needs to be at 250-300K while the pressure load is

increased.

The PE cell is suited for both powder sample and single crystal, as shown in section B.3. For the

powder sample, the pressure transmitting medium is usually a 4:1 deuterated methanol:ethanol

mixture and the pressure marker is a small piece of Pb, a strong neutron scatterer with a small

incoherent cross section. The accurate pressure can be obtained from the known equation of

state of Pb corrected by the thermal expansion [33]. Single crystals are instead embedded in a

Pb matrix which also acts as the pressure transmitting media (due to its low shear strength),

and the ensemble is then inserted in a CuBe ring to prevent radial rupture.
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1.1.11 Neutron-related Units

In practice, a particular set of units are associated with neutron scattering, with cross sections

usually discussed in barns (1 barn = 10−28m2 = 10−24cm2), with wavelength and wavevector

in respectively in Å and Å−1 and energies in meV. From neutron kinematics, useful numerical

relations between the neutron energy and its wavelength and wavevector are the following :

E[meV] = h2

2mλ2 = 81.81

λ2 [meV.Å2]

E[meV] = (~k)2

2m
= 2.072k2[meV.Å2]

Other techniques may use different units for energy, and a pratical energy conversion table

between frequently used units is given below :

• E = kB T with T the temperature in K −→ 1 meV=11.6 K

• E =µB B with B the magnetic field strength in T −→ 1 meV=17.3 T

• E = hν with ν the frequency in Hz −→ 1 meV= 242 GHz

• E = hc/λ with λ the wavelength in mm −→ 1 meV=1.23 mm

• E = hcλ−1 with λ−1 the wavenumber in cm−1 −→ 1 meV= 8.07 cm−1

withµB = 5.788·10−5 [eV T−1] the Bohr magneton and kB = 8.617·10−5 [eV K−1] the Boltzmann

constant. As a reference, thermal neutrons, with typical v=2200 m/s, correspond to an energy

of 25.3 meV, T=293 K and λ= 1.8 Å.
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1.2 Samples

1.2.1 SrCu2(BO3)2

The SrCu2(BO3)2 single crystals were grown by travelling solvent technique at PSI. These

crystals were intended for neutron scattering studies and thus have the chemical formula

SrCu2(11BO3)2, with natural Boron replaced by the 11B isotope in order to avoid the large

neutron absorption cross section of 10B : σabs = 3835 barns for the naturally 20% abundant
10B isotope compared to σabs = 0.0055 barns for 11B isotope, from tabulated values in [10].

The obtained crystals were rods with diameter of about 8mm and cut into ∼ 15 mm long

crystals. One of the sample mount was composed of a single crystal aligned on a aluminium

mount with a mass of about 2.5g. In order to increase the quantity of sample in the beam, the

other sample was a multi-crystal system on a CuBe mount with 7 crystals for a total mass of

10.3g, co-aligned with (110) and(001) in the scattering plane. For the pressure experiment, one

of the SCBO crystal was cut into a rod with a diameter of 6mm and a 7mm height in order to

tightly fit in the CuBe capsule1 of the McWhan pressure cell, aligned using X-ray Laue with a

and b in the scattering plane.

1.2.2 MPS3

Growth method

Crystals of FePS3 and NiPS3 were prepared using the vapour transport method 2. The method

is described in details in [34] for FePS3 and [35] for NiPS3. Quartz tubes were subjected to a

cleaning procedure of etching in acid, followed by rinsing with de-mineralized water. They

were then heat-treated under vacuum at 1000°C for 30mn. Stoichiometric quantities of the

pure elements (> 99.998 %), for a total mass of 5g, were placed in the quartz tubes. The tubes

were then evacuated, sealed, and placed in a horizontal two-zone furnace. The temperature

of the two zones were independently controlled to a range between 620 and 750°C and a

two-stage heating protocol was followed (duration 2-4 weeks) before the furnace was switched

off and allowed to cool. The resulting tubes contain a large number of small platelets with a

hexagonal motif and a metallic gray color with typical largest dimensions 10x10x0.2 mm3.

Powder pellets of FePS3and NiPS3

Due to the layered nature of the FePS3 and NiPS3 crystals, obtaining an anisotropic powder

with no preferred orientation is difficult. The method used in order to limit this problem was

to compress the powder from ground crystals into several cylindrical pellets, as detailed in

[36]. Three cylinders were obtained with a volume of about 1cm3 each. For neutron scattering

spectroscopy, the pellets were stacked with mutually orthogonal axes in an attempt to reduce

1done by Björn Wehinger at the University of Geneva
2Done by Andrew Wildes at the Institut Laue Langevin
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preferred orientation.

Single crystals of FePS3

The largest crystals obtained were saved for neutron scattering experiments, and their quality

was assessed using either X-ray Laue (EPFL), or neutron Laue (ANSTO). FePS3 crystals form

into platelets with the [001] axis normal to the plane. They have a typical thickness of 0.2mm.

Two co-aligned single crystals Using Laue neutron scattering, each crystal (labeled 4 and 5

in the batch for reference) was first confirmed to be a single-crystal 3 and the [110] direction

could be identified. The two samples were wrapped in Al foil and glued to Aluminium pins.

The two samples were co-aligned with (331̄) and (001) in the scattering plane.

17 co-aligned single crystals In order to have sufficient mass for a time-of-flight experiment,

numerous platelet crystals of FePS3 were co-aligned and glued on thin Aluminium sheets with

amorphous CYTOP®fluoropolymer glue[37] with low hydrogen content and thus adapted

for neutron scattering. The monoclinic c* axis is normal to the surface of the platelets. The

alignment of the sample, done on a X-ray Laue diffractometer, had the (331̄) direction in the

scattering plane, although the quality of the X-ray Laue images did not allow to distinguish

between the monoclinic directions (331̄), (33̄1̄) and (010). The scattering obtained from

the co-aligned samples was thus a superposition of three domains. The final sample was

composed of 8 Aluminum sheets parallel to each other with a total of seventeen crystals for an

estimated total mass of 0.3g. An acceptable co-alignment of the 8 Aluminium sheets was done

on Orientexpress at ILL.

High-field samples For the high-field measurements, a good quality single crystal was

selected using X-ray Laue patterns. The samples were then cut out from this single crystal

and oriented with respect to the field in order to get either H//c* or H//b. The sample for the

H//c* orientation had a diameter smaller than 1mm, and a thickness of about 0.01mm. It was

held by vacuum grease to a wooden flat holder and inserted in a standard plastic capsule. The

second sample (H//b) was cut out in a rectangular shape with dimensions 1x2.5x0.1 mm3 and

held by vacuum grease in the plastic capsule.

3characterised by Garry McIntyre at ANSTO, Australia
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1.2.3 Sample quality

The MPS3 samples are very sensitive to external elements and strains. Using glue can change

the magnetic properties of NiPS3 [35], and NiPS3 as well as FePS3 powders appear to adsorb

water. In addition, the crystals are difficult to grind into a truly randomized powder and the

strain from grinding can introduce distortions. Although MPS3 structures are indexed with

a monoclinic space group, they can also be indexed with good accuracy with an hexagonal

space group with (001) shared between the two space-groups. This makes it impossible to

determine unique a and b axis from the Laue patterns. As there is no obvious deviation from a

three-fold symmetry, the identified (0 k 0) direction could also be (h h 0) or (h h̄ 0). Figure

1.9.a shows an example of such a Laue X-ray pattern.

Finally, the FePS3 crystals are usually twinned with a rotation within the (a,b) plane, so that

the sample have 120°-rotated domains . All of these factors contribute to the necessity to

carefully select and characterise samples before neutron experiments in order to minimize

mosaicity, although experiment have to be carried out taking mosaicity and domains into

account. Figure 1.9.a-b shows examples of the Laue pattern of FePS3 crystals, while figure

1.9.c shows a scan of (001) for two co-aligned crystals, with a mosaicity of about 4 degrees.

(a) (b) (c)

Figure 1.9: FePS3 single-crystal examples of sample quality and mosaicity. a) X-Ray Laue
pattern of a single crystal. b) Neutron Laue pattern for the composite 17-crystal mount.
c) Neutron scan of the (001) Nuclear peak for the co-aligned crystals 4 and 5.
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1.3 Linear Spin Wave theory

In ordered systems, the dispersion of magnetic excitations can be described and derived using

linear spin wave theory. Relevant in the context of inelastic neutron scattering by spin-waves,

linear spin wave theory [38, 9] taking into account an antiferromagnetic nearest neighbour

interaction will be outlined below. In a classical picture, the spin waves are described as the

synchronised precession of the spins in a magnetically ordered ground state, with a wave-like

behaviour coming from the phase difference between the precessing spins.

In the bosonic approach to spin waves, the starting point is given by the Hamiltonian :

H = 1

2
J
∑
iδ

Si ·Si ,δ (1.46)

with δ running over nearest neighbours and J < 0 the antiferromagnetic exchange constant.

The magnetic lattice is divided into two inter-penetrating sub-lattices A and B with respectively

spin up or spin down. Lattice geometries allowing this division are referred to as bipartite

lattices .

In order to transform the problem into a interacting-boson problem, the Holstein-Primakoff

transformation expresses the spin operators in terms of Boson creation and annihilation

operators for each sublattice [39] :

S+
A =

p
2S a†

√
1− a†a

2S

S−
A =

p
2S

√
1− a†a

2S a

Sz
A = S −a†a

S+
B =

p
2S

√
1− b†b

2S b

S−
B =

p
2S b†

√
1− b†b

2S

Sz
B =−S +b†b

(1.47)

with the boson operators obeying the commutation relation [a, a†] = 1. The raising and

lowering operators are defined as S± = Sx ± i S y . In the linear spin wave approximation,

only the first term of the expansion in 1/S is taken into account, so that only terms that are

quadratic in terms of boson operator are kept in the Hamiltonian. The obtained Hamiltonian

however is not diagonal, with coupled bosons on different lattice sites.

Fourier-transformed variables aq and bq are then defined for a periodic system as a function

of momentum q, and the following Hamiltonian is obtained :

H =−N

2
z JS2 + z JS

∑
q

[γq(a†
qb†

−q +aqb−q)+ (a†
qaq +b†

qbq)] (1.48)

with γq = 1
z

∑
δ ei q·δ.
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Unlike in the ferromagnetic linear spin wave theory, the obtained Hamiltonian from Fourier-

transformed variables is still not diagonal, with coupling terms between aq and bq. It can be

diagonalised using the Bogoliubov transformation to new variables αq and βq, corresponding

to quasi-particles :

αq = uqaq − vqb†
−q

α†
q = uqa†

q − vqb−q

βq = uqbq − vqa†
−q

β†
q = uqb†

q − vqa−q
(1.49)

where the coefficients uq and vq must be chosen so that u2
q − v2

q = 1. The parametrization

uq = coshθq and vq = sinhθq satisfies this condition. In order to obtain an diagonalised

Hamiltonian, the angle θq can be chosen so that cross terms such as αqβq vanish :

tanh2θq =−γq (1.50)

The Hamiltonian can thus be expressed as :

H =−z

2
N JS(S +ν)+ z JS

∑
q

√
1−γ2

q(α†
qαq +β†

qβq) (1.51)

with ν= 2
N

∑
q 1−

√
1−γ2

q ∼ 0.158. The first term of the Hamiltonian corresponds to the zero

point energy, and the second part gives the energy dispersion of the spin waves. The magnon

modes are doubly degenerate with :

ω2
q = (z JS)2(1−γ2

q) (1.52)

Quantum fluctuations have the effect of reducing the staggered magnetization from the

fully saturated value. It can be obtained as the deviation of the average Sz component in

equilibrium for one sublattice A from S : δMA
N =< Sz

A >−S = 1
2 − 1

N

∑
q(a†

qaq + 1
2 ) 1√

1−γ2
q

.

Spin wave theory can be generalised to include further couplings such as second and third

nearest neighbour exchange interactions. In addition, the presence of anisotropies break

rotational symmetry and a spin gap hence opens in the spin wave excitation spectrum at the

Brillouin zone center. Furthermore, most lattice cannot be written as bipartite, and competing

interactions for particular geometries lead to frustration. Spin-waves follow from the concept

of quasi-particles, with a well-defined momentum and energy and are thus associated to

magnons following Bose statistics. Although spin wave theory stems from ordered magnets,

the interacting boson picture can be extended to the dynamical properties of gapped systems

with no magnetic long-ranged order, with magnon quasi-particles corresponding in this case

to singlet to triplet excitations.
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2 The frustrated quantum magnet
SrCu2(BO3)2

2.1 Introduction

Quantum magnets displaying collective singlet ground states have raised a large interest,

in particular as quantum spin fluctuations in low spin antiferromagnets are responsible for

unconventional magnetic behaviours. While spin-1 systems with Heisenberg interactions were

shown to have a gapped spectrum away from conventional spin wave theory [3], quantum

fluctuations are expected to have the largest effect in spin 1/2 compounds with reduced

dimensionality, such as the chain compound CuGeO3 [40].

Such system are typically discussed using an interacting bosons picture. With singlet states

described as a hard-core bosons, an isolated dimer lattice has a ground state with total spin

S=0 and a triply-degenerate excited state with S=1 [41]. Within this bosonic picture, the triplet

state is identified as a quasi-particle with S=1, called a triplon, and the singlet state is generally

defined as the absence of a triplon. For weak inter-dimer interaction, there is no long-ranged

magnetic order and the ground state consists of non-magnetic singlets. The triplon mobility

then depends on the increase of inter-dimer coupling. The bosonic nature of the singlet

and triplet is guaranteed by the fact than the spin operator of two different dimers commute.

Hard-core bosons means that they cannot occupy the same quantum state, as opposed to free

bosons. A hard-core constraint is thus added in order to exclude states with more than one

quasi-particle per dimer :

s†
i si +

∑
α

t †
i ,αti ,α = 1 (2.1)

with si and ti ,α (α= x, y, z) as bound operator for the singlet and triplet states with bosonic

statistics. This constraint implies that each dimer can only be in a singlet state or in one of

the three excited triplet states. Both inter and intra-dimer interactions are typically present

in the realization of a dimerized spin lattice, which can be mapped in the bosonic picture by

repulsive and hopping terms, with the applied magnetic field controlling the triplon density.

Systems where the spin topology leads to frustration thus exhibit a reduced kinetic energy
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Chapter 2. The frustrated quantum magnet SrCu2(BO3)2

of the excitations. Interestingly, Bose-Einstein-Condensation (BEC) has been discussed in

quantum magnets, by drawing an analogy between a frustrated spin 1/2 dimerized system in

an applied a magnetic field with a lattice gas of hard-core bosons [41, 42]. In this analogy, the

magnetic field is treated as a chemical potential.

Furthermore, bound states of excited dimers are also likely to form. Considering two dimers

in an excited state only coupled by an inter-dimer coupling J , all the doubly excited states

S=0, 1 and 2 would have the same energy 2J . However, the inter-dimer coupling lifts the

degeneracy, and the S=2 quintuplet with ferromagnetic spins appears at higher energy (since

the inter-dimer coupling favours antiferromagnetic coupling). On the other hand, the S=0 and

S=1 states with neighbouring excited dimers have lower energy than well-separated excited

dimers due to resonance, leading to a short-range attractive potential. Thus triplons are

confined as bound states as long as the kinetic energy is lower than the interaction energy,

with resulting interesting multi-magnon excitation spectra. Inelastic neutron scattering has

been shown to be useful to investigate these excited states, for example in the near-ideal

alternating Heisenberg chain Cu(NO3)2•2.5D2O [43].

The quantum magnet SrCu2(BO3)2 (SCBO) was proposed as a realization of the Shastry-

Sutherland model of interacting dimers in two dimensions (topical review in [7]). The magnetic

properties of this compound are due to Cu2+ ions in a network of orthogonal dimers with

localised spin-1/2. This Cu2+ network is strongly frustrated and there is no magnetic long-

ranged order down to very low temperatures at ambient pressure and no applied field. This

material shows a combination of unique features and exotic states, among which a spin gap

of ∆∼ 34K to the localised excited singlet-triplet mode [44], and magnetization plateaus in

high-field magnetization measurements [45, 46]. In addition, from the in-plane exchange

parameters, estimated by susceptibility measurements to J = 85 K and J ′ = 54 K in [47], the

value of the inter-dimer to intra-dimer exchange parameter ratio α= 0.635 places SCBO close

to a critical point, with drastic changes in the correlations above α∼ 0.7. Furthermore, the

specific heat, susceptibility, and dynamical structure factor observed in SCBO have similar

anomalous properties to the one-dimensional fully-frustrated ladder systems[48], making it a

rich test-bed for frustrated quantum magnetism. In this context, inelastic neutron scattering

has been a well-suited and widely used probe of the complex behaviour of SrCu2(BO3)2

[44, 47, 49, 50, 51, 52, 53, 54].
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2.1.1 Shastry Sutherland Model

The two-dimensional Shastry-Sutherland model was constructed for a square lattice with a

diagonal bond in such a way that it had a exactly solvable ground state [55]. It was later shown

that the orthogonal dimer lattice of SrCu2(BO3)2 is topologically equivalent to this model [44],

with the nearest-neighbour bond of the Shastry-Sutherland model corresponding to the next

nearest neighbour bond of SCBO :

H = J
∑
nn

~Si · ~S j + J ′
∑

nnn

~Si · ~S j (2.2)

Figure 2.1 shows the 2D lattice of the Shastry Sutherland model, with J and J ′ corresponding

to the intra and inter-dimer coupling of SCBO.

Figure 2.1: Schematic representation of the Shastry-Sutherland model on the 2D lattice,
described in [55] by an orthogonal Heisenberg Hamiltonian with nearest and next nearest
neighbour interaction

In a dimerized system, the Hilbert space is spanned by the singlet |s〉 and three triplets :

|tx〉 = ip
2

(| ↑↑〉− | ↓↓〉) (2.3)

|ty 〉 = ip
2

(| ↑↑〉+ | ↓↓〉) (2.4)

|tz〉 = −ip
2

(| ↑↓〉+ | ↓↑〉) (2.5)

The direct product of the dimer singlet on the strong bond J is an eigenstate of this Heisenberg

Hamiltonian with orthogonal dimer:

|s〉 =∏
i
|s〉i =

∏
i

1p
2

(| ↑↓〉i −| ↓↑〉i ) (2.6)
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It was shown by Shastry and Sutherland that this eigenstate is the ground state for the 2D

orthogonal dimer lattice for an exchange coupling ratio α= J ′
J < 0.5. Numerical calculations

extended the validity for α just below 0.7, even in the presence of weak interlayer coupling

J ′′, hence also extending the validity of the model to three dimensions [47]. This exact dimer

singlet state is also the ground state of the Majumdar-Ghosh model which is realised in a

zig-zag chain only for the fully frustrated ratio α= 0.5 [56].

As α goes to infinity, the Shastry-Sutherland lattice tends towards the two-dimensional square

lattice with an Heisenberg Hamiltonian, which has an antiferromagnetic long-ranged order

with no spin gap. The existence of a plaquette phase in the intermediary range of the α

parameter will be discussed in 2.5.

2.1.2 Physical realisation

SrCu2(BO3)2 crystallises with a tetragonal structure with spacegroup I4̄2m. The lattice con-

stants are a = b = 8.995 Å and c = 6.47 Å at room temperature. The crystal structure of SCBO is

characterized by a layered structure of alternating CuBO3 and Sr planes, as shown in figure 2.2.

Within the magnetic CuBO3 layer, the Cu2+ ions with spin-1/2 are located at crystallographi-

cally equivalent sites and are connected through the triangular BO3 molecules. Each Cu2+ ion

has one nearest neighbour and four next nearest neighbours with distances of respectively

2.905 Å and 5.132 Å at room temperature. A pair of Cu2+ nearest neighbours are connected

through O sites and form a dimer, which itself is connected to another orthogonal dimer

unit through a BO3 molecule. These CuBO3 planes are normal to the crystallographic [001]

direction, with the dimers oriented along [110] and [1̄10]. These magnetic planes are separated

from each other by the intercalated Sr layers.

Figure 2.2: Schematic illustration of the crystal structure of SCBO. Left : CuBO3 (a,b) plane.
Right : (b,c) plane.
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Below the structural transition temperature Ts=395K, the CuBO3 planes are slightly buckled

with a buckling angle of φ= 6°, hence breaking mirror symmetry of the magnetic planes [50].

Between adjacent layers, there are thus two distances between Cu2+ ions : 3.593 or 4.233 Å, so

that strictly speaking there are two interlayer coupling constants. In general, given the weak

interlayer interaction (as will be discussed in 2.2), this difference is neglected and only one

interlayer coupling J” is taken into account.

2.1.3 Dzyaloshinskii-Moriya interaction and staggered gyromagnetic tensor

If SrCu2(BO3)2 was an exact realisation of the Shastry-Sutherland model, the triplet excitations

would be fully localised with three-fold degenerate flat bands. Many features observed experi-

mentally cannot be explained by the Heisenberg model for a Shastry-Sutherland geometry

alone, such as the splitting of the singlet-triplet state observed both in Electron Spin Resonance

(ESR) measurements [57] and neutron scattering [58] or the field-induced staggered moment

seen in NMR [59]. In order to understand these experimental results in SCBO, the orthogonal

dimer model Hamiltonian requires the inclusion of Dzyaloshinskii-Moriya interactions (DM)

and a staggered gyromagnetic tensor, due to the buckling of the CuBO3 planes below 395 K

[50].

Flat CuBO3 planes with mirror symmetry would have an inversion center at the center of

the J bonds, hereby forbidding Dzyaloshinskii-Moriya interactions. The buckling of the

planes causes a loss of mirror symmetry with respect to the (a,b) plane, and components of

the Dzyaloshinskii-Moriya interaction are allowed. The Hamiltonian for the Dzyaloshinskii-

Moriya interaction is given by

HD = ∑
(i , j )

D i j · (S i ×S j ) (2.7)

Figure 2.3: Dzyaloshinskii-Moriya coupling in SCBO, figure from [60]. D represents the in
plane intra-dimer Dzyaloshinskii-Moriya vectors. The inter-dimer D ′ has in-plane and out
of plane components with D⊥ vectors pointing out of the plane on each bond and D ′

||,s the
in-plane component. The green rectangle is the structural unit cell and black arrows represent
the order of the spins for the DM term in the Hamiltonian.
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Figure 2.3 from [60] shows the in-plane geometry with the DM vectors. Below the struc-

tural phase transition Ts=395K (i.e. in the low-symmetry phase), an in-plane intra-dimer

Dzyaloshinskii-Moriya coupling D is allowed. Regarding the inter-dimer coupling, the DM

coupling is labelled D ′, with a dominant out-of-plane component D ′
⊥ and a weak in-plane

component D ′
||,s . In [60], a linear combination D̃|| of the intra-dimer D and in-plane inter-

dimer D’||,s appear in the Hamiltonian, as they have been shown to be interdependant [61].

The Dzyaloshinksy-Moriya interaction in SCBO is not frustrated as the D vector alternates

from bond to bond.

In addition, there are two inequivalent dimers in the plane (horizontal and perpendicular, see

Figure 2.2.a). The unit cell thus contains four inequivalent spin sites, so that there are four

inequivalent gyromagnetic tensors.

The gyromagnetic tensor on site 1 can be written as [50]:

ĝ1 =

gx 0 gs

0 g y 0

gs 0 gz

 (2.8)

with x along the 110 axis and z along the c-axis. gx , g y ,gz and gs take into account the buckling

angle of the CuBO3 planeφ, with for example gx = gξ cos2φ+gζ sin2φ. The three other tensors

are related to eq. 2.8 by symmetry operations. The diagonal terms are obtained from ESR

experiments [57]: gx = g y = 2.05 and gz = 2.28 . The off-diagonal elements gs are staggered

(opposite on sites 1 and 2, and on sites 3 and 4) and are estimated to gs = 0.023.

Taking into account a small magnetic field hz applied perpendicular to the CuBO3 planes and

including the Dzyaloshinskii Moriya interactions, the Hamiltonian is given by :

H = ∑
n.n.

J(Si ·S j )+ ∑
n.n.n.

J ′(S i ·S j )−gz hz
∑

i
Sz

i +
∑
n.n.

D i j ·(S i ×S j )+ ∑
n.n.n.

D ′
i j ·(S i ×S j ) (2.9)

2.1.4 Localised singlet-triplet mode

SrCu2(BO3)2 is gapped to a localised singlet-triplet excitation around 3 meV. The singlet-triplet

excitation is localised due to the frustrated geometry, as the kinetic energy of the triplon is

reduced since the hopping of a triplet is only allowed through forming a closed path of triplets.

On the other hand, the Dzyaloshinskii-Moriya interaction is not frustrated (as opposed to the

next nearest neighbour interaction), so that the degeneracy of the localized triplet is weakly

lifted and the excitations have a weak dispersion. In addition, the triplet states for the two

dimer orientations are not equivalent and so there are two dimer sub-lattices with triplet

excitations. There are thus two degenerate upper modes with Sz =±1 , two degenerate lower

modes Sz =±1 and one Sz = 0 mode. A magnetic field along the c axis would split each Sz =±1

modes into two branches.
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Figure 2.4 illustrates the excitation spectra of SCBO measured using inelastic neutron scat-

tering around ∆E = 3 meV, corresponding to the energy of the singlet-triplet mode. The

degeneracy of the triplon is weakly lifted by the DM interaction, and this is clearly visible, with

a small dispersion of the singlet-triplet modes between 2.8 and 3.2 meV.

Figure 2.4: Excitation spectra measured on the cold time-of-flight spectrometer LET at 1.5K
and zero applied field, showing the weak dispersion of the singlet-triplet modes at∆E = 3 meV

2.1.5 Neutron scattering studies of key features in SCBO

Inelastic neutron scattering is a key technique in order to gain insight on particular unique

features of SrCu2(BO3)2 through analysis of its excitation spectra :

• The effect of interlayer coupling on the excitations in SCBO can be studied in order to

analyse time-of-flight inelastic neutron scattering data.

• SCBO has an unusual temperature damping behaviour, for which a correlated decay

model has been proposed [51]. Further lifting the singlet-triplet mode degeneracy using

a magnetic field is key in order to understand the damping behaviour of SCBO.

• Correlated hopping is thought to play a large role in the bound magnon excitations

[62, 44]. Measuring the excitation spectra for higher energy transfers corresponding to

bound magnon excitation energies allows to discuss these excitations.

• The proposed plaquette phase [53, 63] for the intermediary phase of SCBO depending

the ratio α can be further investigated by inelastic neutron scattering, using pressure to

tune the strength of the interactions.

• SCBO has been proposed as a topological magnon insulator [60], and the predicted

Dirac-like dispersion of the triplon can be investigated experimentally using high-

resolution neutron spectroscopy.
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2.2 Effect of the Interlayer coupling

Most experimental and theoretical models of SrCu2(BO3)2 consider that the system has a

purely two dimensional character, which is equivalent to considering a negligible interlayer

coupling [44]. Nevertheless, a value for the interlayer exchange constant J ′′ of 8K was esti-

mated using bulk magnetic susceptibility and specific heat [47]. As there is a buckling of the

CuBO3 planes, creating a distance difference between Cu2+ ions of adjacent layers, there are

in fact two exchange constants J ′′, which for simplicity are averaged using a mean field type

approximation to obtain a unique J ′′. Compared to the main exchange coupling constant J of

84K, J ′′ is about an order of magnitude weaker. The interlayer coupling has been shown not

to have an effect of the size of the spin gap [47], but magnetic excitations could be affected.

Some arguments for of the negligible effect of J ′′ on the magnons can be found in [49], which

claims little Ql dependence of the n = 1,2 and 3 excitations from an observation of a rod-like

behaviour in inelastic time-of-flight measurements. Although rod-like scattering is character-

istic of 2D materials (see 1.1.8), this study was only qualitative, and the interlayer coupling

could still have a measurable effect.

This question is of crucial importance, as it is determinant in the analysis method of time-

of-flight measurements. As shown in section 1.1.8, the excitation spectra for a 2D system

obtained on time-of-flight spectrometer can be integrated along the irrelevant Q direction.

In order to check the validity of the TOF analysis method, a set of inelastic experiments were

carried out on cold and thermal triple axis spectrometers (table 2.1). The set of questions to

answer with these experiments are the following : Is there an energy variation due to Ql in the

singlet-triplet mode dispersion or within the multi-magnon continuum ? Is there an intensity

dependence of the modes on Ql which cannot be explained by the magnetic form factor ?

What is the value of the effective interlayer coupling J ′′ ?

Table 2.1: List of TAS experiment to evaluate the effect of interlayer coupling in SCBO

Instrument Energy range Sample Type of scans

TASP cold, Ei ∼ 5-8 meV multi-crystal mount Constant-Q scans
EIGER thermal, Ei ∼ 16-30meV single cystal Constant-Q scans

IN8 thermal, Ei ∼ 16-30meV single crystal Constant-∆E scans

2.2.1 Ql dispersion for the singlet-triplet mode

The first experiment was concerned with the possible Ql dependence of the dispersion of the

singlet-triplet mode. As described in 2.1.4, the singlet-triplet mode is weakly split due to the

Dzyaloshinskii-Moriya interaction, so that a cold instrument is necessary to obtain an energy

resolution sufficient to resolve each of the three modes. The cold triple-axis spectrometer TASP

at the Paul Scherrer Institute was set up with a vertically focusing PG(002) monochromator

and a horizontally focusing PG(002) analyser with fixed k f = 1.2 Å−1. The incident energy

Ei was in the range 5-8 meV and the SCBO multi-crystal mount was aligned with (110) and
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(001) in the scattering plane and cooled to 1.5K. Constant-Q scans were obtained for a set

of Ql values at both a 2D Brillouin zone center and a Brillouin zone boundary (π,π). The

measured excitations peaks were resolution limited (energy resolution given at 3 meV for

|Q| = 1 Å by a full-width-half-maximum of 0.15 meV), so that they were modelled by three

Gaussian functions. The resolution was nevertheless taken into account in details using the

Popovici method available in the trixfit routines (refer to 1.1.8).

Figure 2.5 shows the results of the fits after taking into account the resolution of the instrument.

For plotting purposes, the data at (1 1 0) and (1.5 1.5 0) has been multiplied by a scale factor of 5.

Indeed, a lower intensity for Ql = 0 was observed compared to higher Ql values on TASP. This

effect was only measured on this instrument, which hints toward a particular instrumental

geometry leading to more neutron absorption in the direction corresponding to Ql = 0.

(a) (b)

Figure 2.5: Fits of the TASP data for the 3meV singlet-triplet mode, shown with an offset.
Constant-Q scans for a) Q =(11L) and b) Q =(1.5 1.5 L).

Figure 2.6 shows the energy center of each triplet mode extracted from the fits of the TASP

dataset for both (11L) and (1.5 1.5 L) (resp. circles and squares).

Figure 2.6: Center of each of the singlet-triplet mode resulting from the fits of the TASP data
for Q=(11L) (circles) and Q=(1.5 1.5 L) (squares).
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No particular Ql dependence of the energy centers can be observed in these results and

the variations observed are within the energy resolution. It thus appears that the interlayer

coupling has no measurable effect on the dispersion of the singlet-triplet mode.

2.2.2 Ql dispersion for the Multi-magnon modes

Focusing on the Ql behaviour of the dispersion of the bound magnon modes at higher energy

transfers, the same experimental and analysis method was applied using a thermal triple axis

spectrometer. The thermal triple axis EIGER at the Paul Scherrer Institute was set up with a

doubly focusing PG(002) monochromator and a horizontally focusing PG(002) analyser with

fixed k f = 2.662 Å−1. The incident energy Ei was in the range 16-30 meV and a single SCBO

crystal was aligned with (110) and (001) in the scattering plane and cooled to 1.5K.

A set of Constant-Q scans were measured at (1 1 L) and (1.5 1.5 L) up to ∆= 12 meV and the

observed peak excitations were fitted with Gaussians, while taking into account the variation

of the resolution with increasing energies using the Popovici method available in the trixfit

routines, as for the analysis of TASP data. Figure 2.7 illustrates the results of the fits and the

data quality for Q=(1 1 L). The singlet-triplet mode at 3 meV was fitted separately and found

to be coherent with previous results.

Figure 2.7: Fit Result on EIGER data of the multi-magnon modes for Q=(1 1 L)

Figure 2.8 shows the energy centers ∆Ec of each mode at (1 1 L) in blue and ( 1.5 1.5 L) in

red for the different Ql values measured. Overall, there does not appear to be any significant

dispersion along Ql for any of the modes. It could be argued from the results that the ∼ 9 meV

mode has some dispersive behaviour, but it is more likely a combined effect of the decrease

in resolution and lower statistics of the data for weak modes at higher energy transfers. For

the bound magnon mode at 4.85 meV, which has the strongest intensity, it is clear that there

is no dispersion along Ql that could be attributed to interlayer coupling, within the energy

resolution of ∼ 0.25 meV .
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Figure 2.8: Energy centers ∆Ec of each of the multi-magnon mode (and singlet-triplet mode)
resulting from the fits of the EIGER data for Q=(11L) (blue) and Q=(1.5 1.5 L) (red).

In summary, there does not appear to be any measurable effect of the interlayer coupling on

the dispersion of the magnetic excitations in SCBO. No estimate of the effective coupling J ′′

could be obtained from these data, as the effect of the coupling was too weak to be detected.

No conclusive information on the intensity of each mode as a function of Ql was obtained

from these experiments, so that the possible modulation of intensity along Ql was measured

on the thermal triple axis IN8 with constant Q-scans.

2.2.3 Intensity variation along Ql

Following the conclusions of a dispersion-less behaviour of the singlet-triplet mode and

bound magnon excitations along Ql , the modulation of the intensity was measured on the

thermal triple axis spectrometer IN8 at the ILL. The instrument was set up with a Si(111)

monochromator, a PG(002) analyser and no collimation, with fixed k f = 2.662 Å−1. The single

SCBO crystal was aligned with (110) and (001) in the scattering plane and cooled to 1.5K.

Constant-energy scans are appropriate since there is is no observed Ql dispersion. A series

of Ql scans were thus carried out for L = −4 to 4 at constant energies between ∆E = 3 meV

for the singlet-triplet mode and ∆E = 11 meV for the multi-magnon modes for either (1 1 L)

and (1.5 1.5 L). However, the magnetic scattering was contaminated by spurious signal, as

illustrated in figure 2.9 for ∆E = 3 meV. This is not unusual for a thermal neutron scattering

experiment, as spurious signal can have various origins such as scattering from aluminium or

contamination from the second or third harmonic of the incident energy from the monochro-

mator. Furthermore, it is clear that these spurious signals are not magnetic in origin. Indeed,

constant-energy scans were done at 15K, a temperature at which the magnons in SCBO are

completely damped, and the same spurious peaks were observed (as shown by the black

curve of figure 2.9). Nevertheless, due to this spurious scattering, not all the excitation modes

observed on EIGER or TASP could be measured on IN8, as some modes could not have been
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analysed reliably. Only scans for the singlet-triplet mode, the first bound magnon mode and a

mode at 9 meV were used in this intensity study.

Figure 2.9: Constant-Energy scan at ∆E = 3 meV from IN8 experiment along Q=(11L) for 1.5K
and 15K

In addition, in order to remove the spurious scattering from the data, the 15 K data was

subtracted from the 1.5K data. Figure 2.10 shows the magnetic scattering as a function of Ql

for Q=( 1 1 L) and ∆E = 3 meV after subtraction of the spurious background.

Figure 2.10: Subtracted Intensity I = I1.5K − I15K for ∆E = 3 meV on IN8. The red line is the
result of the fit of the anisotropic magnetic form factor squared f (Q)2 for (1 1 L), with a scaling
factor as the only free parameter.
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In order to know whether the intensity variation differs from a simple form factor squared

behaviour as |Q| increases, the anisotropic magnetic form factor f (Q)2 along Q=( 1 1 L ) for

Cu2+ was calculated using the coefficient of j0(|Q|) and j2(|Q|) from the Crystallographic

tables [13] and equation 1.24. The anisotropic magnetic form factor was then scaled to the

data at Ql = 0 and the result is shown as the red line in figure 2.10.

The same procedure was also applied to the two multi-magnon modes by performing constant-

energy scans at ∆E = 4.85 and 9 meV. The scaling of the anisotropic form factor along Q=( 1 1

L) to the subtracted dataset for these scans is shown in figure 2.11.

Figure 2.11: Subtracted intensity I = I1.5K − I15K for a)∆E = 4.85 meV and b) ∆E = 9 meV. The
red line is a fit of the anisotropic magnetic form factor squared f (Q)2 for Q=(1 1 L), with a
scaling factor as the only free parameter.

Both figure 2.10 and figure 2.11.a-b show that, within the quality of the datasets, there is no

measurable deviation of the intensity from a simple form-factor like behaviour. In particular

for the singlet-triplet mode and the bound magnon mode at ∆E = 4.85 meV, the system

appears to behave like a two-dimensional system.

The interlayer coupling hence does not appear to have any effect of the intensity from the

magnons in SCBO that can be observed in neutron scattering results. SCBO can thus be

considered a proper 2D system for inelastic neutron scattering with typical resolutions larger

than 0.15 meV at ∆E ∼ 3 meV and 0.25 meV at ∆E ∼ 5 meV. This has important consequences

for the execution and analysis of time-of-flight neutron scattering experiment, as the data

can be integrated over the measured Ql , which allows faster mapping of the 2D S(Q,ω) and

improved statistics. This method will be exploited in section 2.3 and section 2.4.1.

In conclusion, the interlayer coupling has no measurable impact on the neutron excitation

spectra of SrCu2(BO3)2, for instrumental Gaussian resolutions with typical full-width-half-

maximum of 0.15 meV at 3 meV.
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2.3 Damping of the singlet-triplet mode with temperature

The finite temperatures properties of SrCu2(BO3)2 are particularly interesting, as the com-

pound shows unusually fast temperature damping. Indeed, the magnetizations plateau,

appearing in SCBO at fractional values of the saturation of the magnetisation [64], have al-

ready disappeared just above 1K. In addition, in inelastic neutron scattering, the singlet-triplet

excitations were observed to damp rapidly with temperature and to be completely damped at

15 K, while the energy of the spin gap is 34K [52]. Figure 2.12 shows this strong magnon decay

with temperature for 2K, 5.5K, 7.3K and 8.5K. In SCBO, the damping mechanism leads not

only to a decrease of the mode intensities, but also to a small positive energy transfer shift and

a broadening of the singlet-triplet excitations.

Figure 2.12: Damping of the singlet-triplet mode of SCBO from LET measurements along
Q = (h 1 0) for temperatures of a) 2K, b) 5.5K, c)7.3K and d) 8.5K.

Finite temperature drives changes in the spectral weight of the modes, which can be probed

by inelastic neutron scattering, but it can also have an effect on the position and shape of the

magnon spectrum, as discussed in [65]. In [66], thermal renormalization of a triplet excitation

was studied in TiCuCl3, with an observed shift in excitation energy with temperature without

loss of magnon coherence. The shift in spectral weight to larger energies hence appears to be

a many-body effect. Indeed, in the interacting boson picture, the hard-core constraint implies

that each dimer can only be in a singlet state or one of the three triplet states. A reduction

of the propagation of a triplet due to the occupation of some dimers by thermally excited

triplets is thus expected, hereby reducing the dispersion bandwidth. In addition, anomalous

dynamical line-shapes have been observed in strongly correlated states with temperature, for

example in a 1D alternating Heisenberg chain realised in Cu(NO3)2•2.5D2O [67].
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Hence, the spin correlations in SCBO are very sensitive to a small increase in thermal energy.

A real-space scenario has been proposed in [51, 68] in which correlated decay explains this

unusual temperature damping. As discussed in section 2.1.4, the frustrated interaction of

the Shastry-Sutherland model on a 2D lattice induces localized singlet-triplet excitations. A

neutron-excited singlet-triplet excitation will decay rapidly in the presence of a thermally

excited singlet-triplet, while it will be long-lived if there are none nearby. This scenario of

interacting bosons shows that the creation of a an excitation polarizes neighbouring singlets,

leading to an extended boson covering several dimers. These extended bosons decay when

they overlap with one another.

At low temperatures, there is only a small percentage of thermally excited triplets (2% at

6.8K and 9% at 10K), which means that the thermodynamical properties of SCBO are very

sensitive to perturbations, as expected in a frustrated system. In [51], the experimental

temperature dependence of the excitation was explained by an effective singlet-triplet radius

of R = 1.3a = 11.7 Å. This corresponds to a polarisation of six of the neighbouring dimers

(1.27 Å), which is similar to the polarisation obtained in theoretical studies calculating the

influence of an introduced spin vacancy on one Cu2+ position on the dimerized singlet ground

state [69]. Figure 2.13 from [51] illustrates this real-space image of extended bosons.

Figure 2.13: Real-space image of two overlapping singlet-triplet excitation from [51]. The mag-
netisation pattern is shown by up and down arrows around the central triplet with intensities
proportional to the magnetisation.

In this context, the singlet population was compared to the temperature-dependent spectral

weight of the singlet-triplet mode obtained from inelastic neutron scattering. The intensity of

the excitation is proportional to the number of singlets, since the neutron excites a dimer from

a singlet to a triplet state. It was found in [51] that the total spectral weight is consistent with

the calculated singlet population ns(T ) = 1
1+3e−∆/T for a spin gap ∆= 35K. From this, it was con-

cluded that, while the quasi-particle peak loses intensity well below the expected temperature,

the spectral weight is transferred to a broad feature corresponding to fast-decaying triplets.
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Chapter 2. The frustrated quantum magnet SrCu2(BO3)2

The excitations can thus be divided in two components : a sharp component corresponding

to the long-lived singlet-triplet mode, and a broad component, corresponding to the fast

decaying singlet-triplet. A finite temperature, a damped harmonic oscillator function (DHO)

from linear theory can be used to model the dynamical structure factor S(Q,ω) :

S(Q,ω) = [n(ω)+1]A(Q)
4ωΓ

π

1

(ω2 −Ω2
0)2 +4ω2Γ2

(2.10)

This function has been developed for the study of anharmonic phonons [70]. In this case,

A(Q) = Z (Q)
Ω0

, with Z (Q) a dimensionless structure factor which corresponds to the imaginary

part of the magnetic susceptibility χ′(Q). [n(ω)+1] is the Bose factor, andΩ2
0 =ω2

0 +Γ2 are the

renormalised frequencies, with Γ the damping parameter describing the line-width.

This function can be rewritten as a weighted difference of two Lorentzian functions, each

corresponding to the Fourier transformation of an exponential decay e−t/τ with ΓL = τ−1 the

half width at half maximum of the Lorentzian. The DHO function is then rewritten as :

S(Q,ω) = 1

ω0π
[n(ω)+1]A(Q)

(
Γ

(ω−ω0)2 +Γ2 − Γ

(ω+ω0)2 +Γ2

)
(2.11)

As shown in equation 1.25, the magnetic inelastic scattering intensity is proportional to the

dynamical structure factor, and the DHO function describes the line-shape of the magnetic

excitations. In addition, as discussed in [70], a DHO function satisfies both the detailed balance

factor (described in 1.1.5) and the condition of an odd imaginary part of the susceptibility.

In order to describe instrumental data, the lineshapes are modeled with DHO functions

convolved with a Gaussian resolution, which corresponds to a weighted difference of Voigt

functions. At 2K, only long-lived triplet excitations are present, and the obtained excitations

are resolution limited. The damping width Γ is zero, and the DHO function tends to a Dirac

function with energies ±ω0. At higher temperature, both the sharp and broad components are

present, and the work in [51] showed that two DHO for each excitation mode, one with Γ= 0

and another with a finite damping width ΓD HO , were necessary to reproduce the experimental

dataset.

Figure 2.14 illustrates this model for Q =(0.75 0.75 0), with 2K data and fit shown in green and

7.3K data and fit shown in black. The dashed lines correspond to the two components of the

fits at 7.3K, three DHO functions with Γ= 0, and three DHO function with finite ΓD HO .
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Figure 2.14: LET data and fits for Q =(0.75 0.75 0) at 2K (green circles and curve) and 7.3K
(black circles and curve). The dashed lines corresponds to 7.3 K and show the two components
of the fits : three DHO functions with Γ= 0, and three DHO functions with finite ΓD HO ' 0.19
meV.

In [51], the data were obtained using triple axis-spectrometers for a limited number of Q

points, so that the analysis was done assuming no particular Q-dependence of the damping

widths. The degeneracy of the singlet-triplet mode is slightly lifted by Dzyaloshinskii-Moriya

interaction, so that there are three weakly split triplets for no applied field. The resolution of

the data in [51] did not permit a clear difference between the damping of each triplet to be

established. The exchange of spectral weight between the sharp and broad DHO was charac-

terised in [51], but further information can be obtained from the large S(Q,ω) maps measured

by time-of-flight spectrometers. In addition, combining time-of-flight spectrometers with

the application of a field, which splits the triplets further apart, allows a detailed study of the

damping mechanism in SCBO.

2.3.1 Experimental details and analysis method

Datasets in applied fields of 0 T and 8 T were obtained on the cold time-of-flight spectrometer

LET, at ISIS, UK with the SCBO multi-crystal mount sample with (110) and (001) in the hori-

zontal plane. In 2.2, the magnon modes in SCBO were shown not to have any measurable Ql

dependence, so that the Q-maps were obtained by aligning the sample such that ki //c and

integrating over Ql . The incident energy was Ei =7 meV.

For the 0T case, the sample was mounted in a simple orange cryostat with a bore radius of

100 mm. The excitation spectra were measured at 1.5 K, 2 K, 5.5 K, 7.3 K, 8.5 K and 10K. In

the 8T case, the sample was mounted in a cryo-magnet with bore radius of 75mm. A crystal

was removed from the multi-mount sample in order to accommodate the reduced size of the
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Chapter 2. The frustrated quantum magnet SrCu2(BO3)2

sample space. The field was applied vertically, so that in this sample orientation the field was

applied parallel to (11̄0).

The fitting procedure was the following : the one-dimensional energy scans as a function of Q

were integrated over dQ, so that the dataset is effectively cut into Q squares. The 2K dataset,

where only the sharp component is present, was fitted with only one DHO with Γ = 0 per

mode, with the constraint σ1 =σ1′ =σ2 =σ3 =σ3′
where σ is the standard deviation of the

Gaussian resolution. The numbers 1, 2 and 3 refer to the three triplet mode, and 1’ and 3’ are

applicable only in the 8T case, for which there are 5 singlet-triplet modes.

From the 2K fits, one obtains the following constraints for the higher temperatures : The

Gaussian resolution σ and the ratio between I T 1, I T 2 and I T 3, as the spectral weight is not

redistributed between each mode when temperature increases. In the 8T case, a ratio between

T1 and T1’, as well as between T3 and T3’, for ω and the intensity were obtained and fixed.

These peaks are almost degenerate, only separated at 8T by ∼ 0.15 meV, so that they could not

be fitted independently at 6.3K.

At higher temperatures, the datasets were then fitted with one DHO with Γ = 0 and one

DHO with finite Γ per mode, with the following constraints : The energy centers are kept

identical between the sharp and broad mode ωsharp = ωbroad and the integrated intensity

ratio Ibroad
Isharp

is fixed from the results of each temperature in [51]. In summary, using the infor-

mation of the 2K fits, the only independant parameters for the higher temperature fits are(
I T 1,ωT 1,ΓT 1,ωT 2,ΓT 2,ωT 3,ΓT 3

)
2.3.2 Results at 0T applied field

The Gaussian resolution at ∆E ∼ 3 meV was estimated to be ∼ 0.06±0.01 meV . This value was

obtained by fitting the resolution-limited peaks of the singlet-triplet excitations at 2K fit from

one-dimensional constant-Q cuts with dQ=0.15 [r.l.u.]. This resolution was then fixed for the

subsequent fits at 7.3K

As shown in Figure 2.14, without any applied field, the three modes are only weakly separated

by the Dzyaloshinskii-Moriya interaction, and the data quality at 7.3K was not enough to

resolve the damping width for each triplet excitation peak separately as a function of Q.

Each triplet however appeared to be damped with a similar averaged Γ width with ΓT 1 ∼
0.18±0.05,ΓT 2 ∼ 0.23±0.05 and ΓT 3 ∼ 0.20±0.04 at 7.3K. In order to obtain a more reliable

Q-map of the DHO damping linewidth, the line-widths of the three triplet were then assumed

to be identical, hence leading to the additional constraint ΓT 1 = ΓT 2 = ΓT 3.

Figure 2.15 shows the obtained Q-map using this analysis method, with empty Q-squares

(white) corresponding to either non-converging fits or the absence of data at this Q point. No

particular Q-dependence is apparent in this Q-map, yet the challenge in resolving reliably

the three modes at 0T is apparent. The average damping width (from converging fits only) is

calculated to be ΓD HO = 0.198±0.08 meV .
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2.3. Damping of the singlet-triplet mode with temperature

Figure 2.15: Q-map of the finite DHO damping width ΓD HO for the LET dataset at 7.3K. Empty
Q-squares correspond to non-converging fits or the absence of data at these Q-points.

From these results, it is thus apparent that a reliable Q-dependence of the damping linewidth

ΓD HO can only be obtained by lifting further the degeneracy of the three triplet modes. This

can be done by applying a magnetic field, hereby further splitting the excitations into five

modes. It is interesting to note that at 0T and 7.3K, the three triplets appear to have similar

damping widths, within the incertitude of the fitting.1

2.3.3 Results at 8T applied field

As a magnetic field parallel to (11̄0) is applied, the degeneracy of both the upper and lower

mode is lifted by the Zeeman term, and there are five singlet-triplet modes. This field depen-

dence will be detailed further in section 2.6.2. At 8T, the excitations are past the critical field,

and the upper and lower modes are separated from the Sz = 0 central mode by about ±1 meV.

Figure 2.16 shows an energy slice along Q = (h 1 0) and an energy cut at Q =(1 1 0) for both 2K

(a,c) and 6.3K (b,d). The white lines in figure 2.16.a show the expected splitting into five modes

for the 8T field applied along (11̄0). As shown by Figure 2.17 and 2.16, the upper and lower

Sz =±1 modes are very close and appear as one broader peak with a maximum separation for

Q =(0.5 1 0) of ∼ 0.15 meV and a minimum of zero at Q =(1 1 0). This is taken into account in

the analysis, although the damping widths of each weakly split mode are correlated, as the

resolution is not sufficient to develop an analysis with five independent finite DHO widths.

The set of independent parameters of this analysis at 6.3K is thus
(
I T 1,ωT 1,ΓT 1,ωT 2,ΓT 2,ωT 3,ΓT 3

)
,

with the Gaussian resolution width and the relative integrated intensity of T1 with T1’ and T3

with T3’ fixed from the 2K fit results.

Interestingly, in the work described in [51], some fits were done with data obtained on a triple

axis spectrometer for an 8T field applied along c. For an applied field along c, there is also an

1A similar analysis and fitting procedure at 0T applied field was done for 5.5, 7.3, 8 and 8.5K in the thesis work
by Mattia Mena, with similar results.
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Figure 2.16: LET data at 8T applied field along (1-10). a) Energy slice at 2K along Q = (h 1 0),
with expected dispersion from calculated model in 2.6.2 with 8T field along (1-10) and g factor
of gx = g y = 2.05 . b) Energy slice at 6.3 K. c-d) One dimensional energy scans at Q = (1 1 0) for
T=2K and T=6.3K.

Figure 2.17: One dimensional Energy scan for Q = (0.5 1 0) showing the maximum splitting of
the lower and higher triplets into respectively T1 and T1’ and T3 and T3’. The black line is a fit
with five Γ= 0 DHO functions convolved with the resolution, and the dashed lines show the
energy centers of these modes obtained from the fits.
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additional weak splitting of the modes, maximum at Q =(110) with splitting of 0.37 meV and

minimum at Q=(1.5 0.5 0) where the modes are degenerate. The fits had only been done at

this latter Q point in [51], in order to avoid this further splitting.

In this case, the Gaussian resolution was estimated to be ∼ 0.08±0.01 meV from the 2K fit,

with dQ=0.11 [r.l.u.] This resolution was then fixed for the subsequent fits at 6.3K. Figure

2.18 shows the following resulting parameters from the 6.3K fits along (h h 0): the energy

centers ∆Ec , the ΓD HO damping width, the integrated intensity of both the sharp and broad

components, the sloping background parameters and the goodness of fits. These results

show the coherence of the analysis, with a constant background variation with Q that can be

explained by a geometrical inhomogeneity due to the use of a multi-crystal sample.

Figure 2.18: Results of DHO fits along (h h 0) at 6.3K. a) Energy centers of the five modes.
b)Finite Γ damping width for the upper (green), middle (red) and lower (blue) triplet modes.
c)Integrated intensity of the broad DHO modes with finite Γ. d) Integrated intensity of the
sharp Γ= 0 resolution-limited modes. e)Parameters of the sloped background. f) Estimated
goodness of fit χ2.

In [51], a temperature dependence on the energy centers of the modes was observed with

a shift of δω ∼ 0.05 meV between 2K and 7.3 K, both at zero field and 8T field for the three

Q points measured. This is coherent with the results obtained in this study at 7.3K and no

applied field (section 2.3.2) with an energy shift δω for the lower, center and upper mode of

respectively 0.044±0.02, 0.042±0.02 and 0.042±0.03 meV, with no particular Q-dependence

observed.
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At 8T, the results obtained from the fits as a function of Q, shown in figure 2.19, show on

the contrary that the energy shift is different between the upper, center and lower modes,

although it still does not have any particular Q-dependence. For the lowest triplet mode

(composed of two weakly split mode as described previously), the average shift of the energy

center between 2K and 6.3K is 0.043± 0.01 meV. For the center mode, the average shift is

smaller with ∼ 0.017±0.01 meV while for the upper mode the average shift is very close to zero

∼ 0.005±0.1 meV.

Figure 2.19: Q-dependence of the energy center shift δω for each singlet-triplet mode obtained
from fits of the 8T LET data at 6.3K. a) δω for the lower mode T1. b)δω for the center mode T2.
c)δω for the upper mode T3.

Figure 2.20 shows the Q-dependence of the finite ΓD HO damping width obtained from the fits

of the 8T LET data for each singlet-triplet mode. Three main observations can be made from

these results:

• I) The Q-dependence of the DHO damping width appears to have the same overall

behaviour for each of the triplet.
• II) The DHO damping width is larger around Q=(0.5 0.5 0) and roughly equal elsewhere

for each of the singlet-triplet mode.
• III) The DHO damping width of the upper singlet-triplet mode is on average almost

double the average widths of the two others modes. The latter have damping widths

comparable to the 0T results. Table 2.2 shows the average damping width obtained for

each singlet-triplet excitation.
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Figure 2.20: Q dependence of the ΓD HO width for each singlet-triplet mode obtained from fits
of the 8T LET data at 6.3K. a )DHO Damping width of the lowest mode T1. b) DHO Damping
width of the center mode T2. c) DHO Damping width of the higher mode T3.

Table 2.2: Average ΓDHO from both the 0T and 8T results. Only one ΓD HO width is obtained at
0T as each triplet damping width is correlated. At 8T, the damping width of T1 and T1’ (and T3
and T3’) are correlated, so that three damping widths are obtained in total.

Average ΓDHO [meV] T1 T2 T3
8T 0.192 ± 0.02 0.194 ± 0.03 0.332 ± 0.05
0T 0.198 ± 0.08

2.3.4 Discussion

I) Similar overall Q-dependent damping between the singlet-triplet modes Each triplet

appears to damp in qualitatively the same way, so that there is probably no particular distri-

bution of each thermally excited triplet mode in real space. This confirms that the simple

real space picture is overall correct even when taking Dzyaloshinskii-Moriya interaction into

account, and that the DHO damping widths of each singlet-triplet mode can probably be

correlated when no field is applied.
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II) Faster Damping around (π,π) point Figure 2.21 show the data and fits at Q =(0.5 0.5 0)

where the ΓD HO width is larger compared to another Q point (0.75 0.5 0). Figure 2.22 shows

the damping of the center peak at Q = (0.6 0.6 0) which corresponds to the maximum ΓD HO

width obtained, compared to another Q point (0.6 0.1 0). The Q-dependent effect is small, but

it is consistent for the whole analysis. The effect is visually easier to observe in the centre peak

as there is not splitting of the upper and lower modes into the weakly dispersive T1,T1’ and T3

and T3’.

Figure 2.21: One dimensional cuts for Q =(0.5 0.5) (blue circles) and (0.75 0.5) with dQ= 0.175
at 6.3K. The red and blue lines show the fit result for the five modes with both the broad and
sharp component. Red and blue dashed lines show only the broad component of the fitted
five modes. The DHO width ΓD HO is estimated to 0.14, 0.15 and 0.20 for Q =(0.75 0.5) and 0.26,
0.29 and 0.41 for Q =(0.5 0.5) for respectively T1, T2 and T3.

Figure 2.22: Center mode at 8T and 6.3K with fits, comparing two Q points : (0.6 0.6 0), which
shows the maximum DHO damping width ΓD HO=0.27, and (0.6 0.1 0), with ΓD HO=0.17 meV.

A neutron-excited triplet is thus shown to be more likely to damp close to the Brillouin zone

boundary (π,π) than in the other regions of Q-space, with fastest damping at Q =(0.6 0.6). No

theory currently explain this surprising behaviour, but it is an interesting effect of temperature

and field in SCBO.

58



2.3. Damping of the singlet-triplet mode with temperature

III) Faster Damping of the upper singlet-triplet mode T3 For the upper triplet T3, the n=2

bound magnon mode is in very close proximity (centered at 4.86 meV, as shown in 2.4.1 ).

However, as shown by figure 2.23, the two modes appear sufficiently separated, such that

the fitted damping line-width for T3 should not be affected. In [71], numerical results for

the dynamical structure factor for a two-leg spin ladder system were obtained as a function

of temperature and frustration. As a function of temperature, multi-magnon bound states

lying at low energy transfers were shown to be increasingly populated, concomitant with the

reduction of intensity of the triplon. This effect was expected to be strong close to a quantum

critical point. This interpretation was extended to the Shastry-Sutherland model for α close to

the phase transition, and can be relevant for SCBO. No low-lying bound-magnon modes were

observed as temperature increased in SCBO in these measurements, and the bound magnon

modes are still present at 6.3K with similar energy transfers compared to 2K. The exchange

parameters of SCBO at this applied field may thus not be close enough a phase transition for

this model to be applied in order to explain the temperature damping of the singlet-triplet

modes.

Figure 2.23: Energy cut at different Q points showing the energy range of the expected bound
magnon modes at a)2K and b)6.3K.

A significant difference between the 0T and the 8T case is the damping of the upper triplet.

When no field is applied, the upper triplet does not appear to damp faster than the other two

modes, while it is clearly the case at 8T. A possible simple and phenomenological explanation

for the faster damping of the upper triplet in field could be that it is due to the thermal

population of each mode at 6.3K in field. Indeed, a fast damping could take place when a

neutron-excited triplet with Sz =±1 annihilates with a thermally excited triplet with Sz =∓1

giving a total Sz = 0. At 6.3K and 8T field, the population of thermally excited triplet is not

equally distributed between the upper and lower modes, as they are separated by ∼ 2 meV.

The neutron-excited triplon of the upper mode is thus more likely to be in the polarised radius

of an thermally excited triplet of the lower mode, and so it would decays faster. On average,

the upper mode thus decays faster because such a triplet is more likely to appear in proximity

to a thermally excited triplet of the lowest mode. At zero applied field, all the triplets are very

close in energy transfer, with ∼ 0.2 meV between the upper and lower modes, and thus this

effect would be negligible.
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Finally, it is interesting to discuss the shift of the energy centers dω in this context. The shift is

largest for the lower modes with dω= 0.043 meV. This value is similar to the value of the global

energy shift obtained at 0T field for the three triplets fitted with interdependent parameters.

For the center mode, dω is reduced by a factor 2 (0.017 meV) at 8T, and it becomes nearly zero

for the upper modes (0.005 meV). Figures 2.22.a-b illustrate visually this behaviour, which

appears to be consistent with the thermal distribution of each mode at 6.3K and 8T. Indeed,

one can imagine a real-space picture where the polarisation of space around a thermally

excited triplet leads to the increase of the energy needed to excite another triplon with the

same Sz value. The renormalisation of the excitation energy would thus depend on the thermal

population of the triplets, with the largest energy shift for the most thermally populated lower

modes.

In conclusion, the obtained Q-dependence of the damping width ΓD HO strengthens the

real-space correlated-decay model, with each excited triplet appearing to be equivalently

distributed in space, but with different thermal population distributions due to the difference

in energy of the Sz =±1 and Sz = 0 modes in an applied field of 8T.
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2.4 Bound magnon excitations

Beyond the energy of the localised singlet-triplet modes, multi-magnon excitations are present,

with the two bound magnons mode appearing at ∆E ∼ 5 meV. The localised and dispersion-

less behaviour of the singlet-triplet modes is explained by the conservation of parity due to

the symmetry of the Hamiltonian, as the hopping of a triplet is only allowed through forming

a closed path of triplets. The singlet-triplet excitations hops to the next-nearest neighbour

dimer in the sixth order ot the perturbation, following the hopping process shown in figure

2.24.

Figure 2.24: Lowest-order hopping process for a singlet-triplet excitation to the next-nearest
neighbour. |tm〉 represents an Sz = m triplet state and |s〉 is a singlet. Figure reformatted from
topical review [47].

This constraint was thought to be lifted for bound magnons due to correlated hopping defined

as non-trivial two-particle hopping, shown experimentally by neutron scattering [44] and

expected to lead to a continuum of excitations. However, with the increase of resolution of

inelastic time-of-flight spectrometers, the bound magnon mode (n=2) was later shown to have

also a fairly dispersion-less behaviour [62, 52], which was attributed to repulsive interaction

between two triplet excitations. The question is then whether there is correlated hopping

allowing dispersion in higher order bound magnon modes leading to a continuum of magnetic

excitations or if the excitations are localized bound states of multiple triplets.

In order to investigate the multi-magnon excitations, two experiments were carried on time-

of-flight spectrometers at ISIS, with either cold neutrons to reach the lowest bound magnon

modes on LET and thermal neutrons on Merlin to give an upper bound to the magnons

excitations.

2.4.1 n=2-4 bound states

To investigate the lower bound magnons modes, an experiment was performed on the cold

direct time-of-flight instrument LET at ISIS using the multi-crystal mount with (110) and

(001) in the horizontal plane. As discussed in 2.2, SCBO is properly two-dimensional with

negligible effect of the interlayer coupling on the magnetic excitations. Hence the experiment

was carried out with ki //c and the data could be integrated over the accessed Ql range. The

dimension of the dataset is thus reduced from four dimensions with Q = (Qh,Qk,Ql ) and ~ω
to three dimensions Q = (Qh,Qk) and ~ω. The incident energies were Ei = 12 meV and 17 meV

with a resolution of respectively 0.27 meV and 0.45 meV at the elastic line. The sample was

measured at 1.5K and the datasets were normalised by vanadium measurements in order to
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obtain comparable intensities between the two incident energies.

Figure 2.25 shows energy slices along two different Q directions Q = (hh0) and Q = (h1̄0) at

1.8K. Both Q-directions clearly show flat and dispersion-less modes at ∆E =∼ 4.8,5.6 and 6.5

meV, so that the behaviour of the multiple triplet modes appears to be composed of discrete

excitations, still possibly ending in a continuum of degenerate excitations above ∆E ∼ 7 meV.

The singlet-triplet mode at 3.1 meV is also shown for reference (with saturated intensity, as

it has a much larger intensity compared to the bound magnons modes). The observed Q-

dependent intensity below 3 meV corresponds to background only, with some spurious events

from the tail of the elastic line which have no impact on the magnetic scattering.

Figure 2.25: Energy slices at 1.8K for Q along (hh0) and (h1̄0) showing discrete excitations
with dispersion-less behaviour. a) LET data for Ei = 12 meV integrated along Ql and binning
dE = 0.024 and dQ = 0.02. b) LET data for Ei = 17 meV integrated along Ql and binning
dE = 0.034 and dQ = 0.01.

Furthermore, the energy slices of figure 2.25 show an unusual magnetic structure factor

dependence on |Q|, beyond a simple magnetic form factor-like behaviour. In particular, at

Q =(0.5 0.5 0), the intensity is very weak compared to higher Q points. Triple axis spectroscopy

at 1.5K and 1.5K for Q = (110) showed that the n=1-4 modes are indeed magnetic, as they are

already strongly damped at 15K. A simple model of pairs of isolated dimers in an orthogonal

geometry cannot explain such a structure factor.

The equivalent Q points measured allow the mirror symmetrization of the data with respect to

[0 1 0],[1 0 0] and [1 1 0], which reduces the dataset to the triangle shown in figure 2.28.b and

improves statistics.
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Figure 2.26: a) Constant-energy map from the LET Ql -integrated dataset as a function of Qh
and Qk with energy integration over the singlet-triplet mode : [2.8,3.1] meV.
b) Reduced dataset after applying mirror symmetry over [0 1 0],[1 0 0] and [1 1 0].

To obtain the magnetic structure factor and quantitative values for the weakly dispersive

multi-magnon modes, the reduced dataset for Ei =12 and 17 meV was binned into Qh −Qk

squares. The scattered intensity as a function of energy transfer for each (Qh,Qk) pair (Ql-

integrated) were extracted and the excitations were then fitted with simple Gaussian functions

(and a constant background). From these fits, the energy centers ∆Ec , the amplitude and the

Gaussian widths of the measured multi-magnons modes could be obtained.

For reference, figure 2.27 shows an example of the typical reduced and normalised dataset

used for the fits at the Q =(0.5 -1 0) for both Ei of 12 and 17 meV.

Figure 2.27: Normalised intensity as a function of energy transfer ∆E for Q = (0.5 -1 0) from
the Ql -integrated, reduced and normalised dataset with a) Ei =12 meV and b) Ei =17 meV.
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Figure 2.28 shows the Qh −Qk maps of ∆Ec from which quantitative values of the weakly

dispersive multi-magnons modes are obtained and shown in Table 2.3. The two bound-

magnons mode is confirmed not to have any observable dispersive behaviour, with an energy

bandwidth of 0.17 meV, while the higher order bound magnons mode have slightly more

dispersive behaviour, with 0.36 and 0.66 meV bandwidth for respectively n=3 and n=4.

Nevertheless, although the dispersion is weak, there is a Q-dependent dispersion of the modes

leading to a broadening of the bandwidth. In particular, the n=2 bound magnon mode shown

in Figure 2.28.a is clearly at higher energy transfers around Q=(0.25,-0.75) and Q=(0.5,-1.5).

Given the instrumental resolution, it cannot be excluded that each of these nearly flat modes

have an internal structure and dispersion that cannot be resolved with this energy resolution.

In addition, the broadening of the bandwidth as the energy is increased is in favour of some

correlated hopping allowed for the higher order bound modes.

Figure 2.28: Energy center ∆Ec of SCBO multi- magnon modes n=2-4 from fits of LET Ql-
integrated reduced dataset showing the weak dispersion of the mutli-magnon modes

Table 2.3: Dispersion of SCBO multi-magnons modes n=2-4 from Gaussian fits of constant-Q
cuts from LET data

n=2 n=3 n=4

Energy center [meV] 4.86 ± 0.02 5.57 ± 0.04 6.31 ± 0.07
Energy Bandwith [meV] 0.17 0.36 0.66
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The weak dispersion of the n=2 bound magon state had been shown using the method of per-

turbative continuous unitary transformations [62], which contrasts with exact diagonalization

calculations. This perturbative method, starting from a Heisenberg Hamiltonian with intra

and inter dimer couplings, allows to obtain a continuous distribution of the excitation spectra.

In [62], the weakly dispersive bound magnon mode was understood by level repulsion, linked

to the small kinetic energy of the singlet-triplet mode. The individual bound states are thus

expected to be flat due to their energetic repulsion. Figure shows the comparison between the

LET dataset obtained in this experiment and the calculated spectral weight using perturbative

analysis of an effective Hamiltonian in [62].

(a) Normalised LET dataset along the high symmetry directions and Ei = 12 meV

(b) Calculated spectral weightby perturbative unitary transformation of an effective Hamil-
tonian, figure from [62]

Figure 2.29: Comparing calculated spectral weight using perturbative unitary transformation
of an effective Hamiltonian and the normalised LET dataset.
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The agreement of the dispersion for the n=2 bound magnon is good but the discrete higher

order magnons seen experimentally are not present in the numerical results. The spectral

weight is similarly distributed overall but does not completly match the experimental data.

Nevertheless, level repulsion appears as a coherent hypothesis for the n=2 bound magnon

mode. The Hamiltonian used in [62] did not include the Dzyaloshinskii-Moriya interaction, so

that anisotropies must have a significant effect on bound magnon beyond n=2.

To go further, the amplitude obtained from each Gaussian fit of the magnetic excitations

can be linked to the Q-dependent magnetic structure factor, with the magnetic form factor

squared included. Figure 2.30 shows the Qh−Qk maps of the amplitude of the n=1-4 magnon

modes, unfolded from the reduced dataset of fig 2.26.b.

Figure 2.30: Amplitude of SCBO multi- magnon modes n=1-4 from fits of LET Ql-integrated
reduced dataset unfolded shown as a function of Qh and Qk.

The magnetic structure factor is thus shown to have a strong Qh−Qk dependence which goes

much beyond a simple model of orthogonally arranged isolated dimers. Note that for the
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singlet-triplet mode n=1 (Fig. 2.30.a), the Dzyaloshinskii-Moriya splitting into three modes

has been ignored and that the resulting structure factor is averaged over the Sz = −1,0,1

singlet-triplet modes.

2.4.2 Upper bound on multi-magnon excitations

The excitation spectra obtained on LET hints towards an extension of the multi-magnons

towards higher energy transfers, and the energy transfer range accessible on cold time-of-flight

spectrometers was thus not sufficient to map the full extent of the magnetic excitations. In

order to place an upper bound on the multi-magnon excitations, the excitation spectrum was

measured on the thermal time-of-flight instrument Merlin at ISIS, using both Ei =35 meV and

Ei = 70 meV at 2K. The multi-crystal sample mount was measured with ki //c and the data

was Ql -integrated.

For Ei =35 meV, an asymmetrical background in |Q | was observed in the raw dataset. Hence

an empty sample holder was measured as a function of |Q| and subtracted from the data.

A background-subtracted energy slice is shown in figure 2.31.a along Q=(h -0.5 0). The flat

dispersion-less character of the multi-magnon modes is observed again, although the back-

ground subtraction did not completely remove all spurious signal between 0 and 5 meV (as

shown by the saturated dark red areas ). Figure 2.31.b shows the intensity as a function of Q for

six constant-energy scans with 3.45 ≤∆E ≤ 21.5 meV and this can be linked to the structure

factor along Q = (h -0.5 0) of the singlet-triplet mode, shown in figure 2.30 to be peaked at

Q = (1.5 -0.5 0).

Figure 2.31: MERLIN Excitation spectra for Ei =35 meV with Q = (h -0.5 0) at 2K. a) Multi-
magnon excitation spectra along Q = (h -0.5 0), with the background obtained from an empty
measurement subtracted from the Ql-integrated dataset. b) Constant-energy cuts with dE = 1
meV : Intensity as a function of Q = (h -0.5 0) for ∆E of 3.45 meV (blue), 6.5 meV(red), 10
meV(green), 13 meV (black), 17.5 meV(light blue) and 21.5 meV (magenta).

Overall, the structure factor for the energy transfers of 6.5, 10, 13 , 17.5 and 21.5 meV shows a
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similar behaviour, with a broadly peaked profile around Qh = 1.5. A short measurement at

20K (not shown) was used to check that the inelastic scattering corresponded to magnetic

excitations, as the magnons are completely damped above 15K.

From the Ei = 35 meV excitation spectra, it does not appear that the end of the multi-magnon

excitations was reached, so that another measurement was carried out with Ei =70 meV. No

background with an empty sample holder was measured in this case, so that the spectrum is

dominated by a strong and broad elastic line, as shown in figure 2.33.a, corresponding to a

resolution at the elastic line of 3.8 meV.

Figure 2.32.a shows the excitation spectra for Q =(h h 0) while figure 2.32.b shows energy-

integrated cuts along Q =(h h 0). For both, at large Q, above Q =(2.5 2.5 0), the spectrum

appears dominated by a strong spurious background, with an intensity increasing as Q in-

creases. Nevertheless, for the low Q data, the intensity up to the ∆E = 35 meV cut seems to

follow a similar broadly peaked behaviour to the Ei =35 meV lower energy excitations shown in

figure 2.31.b. From these results, the intensity observed for Q smaller than Q =(2.5 2.5 0) can

be attributed to magnetic scattering.

Figure 2.32: MERLIN Excitation spectra for Ei =70 meV with Q = (h h 0) at 2K. a) Energy slice
along Q = (h h 0). The data has been Ql-integrated. b) Constant-energy cuts with dE = 2 meV:
Intensity as a function of Q = (h h 0) for ∆E of 6 meV (blue), 10 meV(red), 20 meV(green), 25
meV (black), 35 meV(light blue) and 50 meV (magenta).

In order to extract the multi-magnon excitations for different Q =(h h 0) points, the constant-Q

cuts of the Ei =70 meV data at the elastic line were fitted with a Lorentzian function for five Q

points. Figure 2.33.a show the resulting fit for Q = (1.5 1.5 0). The Lorentzian fits for each Q=(h

h 0) with 0.5 ≤ h ≤ 2 were then subtracted from the constant-Q cuts in order to obtain only the

inelastic scattering, shown in figure 2.33.b.

The data of figure 2.33.b are presented with a vertical offset for each Q = (h h 0) points and the

black horizontal lines correspond to a constant fitted to the intensity above 50 meV, which can

be identified as a background level. The magnetic intensity appears to have a slow decrease
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from low to high energy transfers, reaching the level of the background around 43±3 meV for

each of the Q points studied.

Figure 2.33: MERLIN Constant-Q cuts for Ei =70 meV at 2K. a) Intensity as a function of energy
transfer ∆E for a constant-Q cut at Q = (1.5 1.5 0) with dQ = 0.2. The red line is a Lorentzian fit
of the elastic line. b) Inelastic intensity as a function of ∆E for constant-Q cuts at Q = (h h 0)
with dQ = 0.2 for h = 0.5 (green), h = 1 (red), h = 1.25 (dark blue), h = 1.5 (magenta) and h = 2
(light blue), shown with a vertical offset. A Lorentzian fit of the elastic has been subtracted
from the data. The black lines correspond to a fit of the background intensity above 50 meV.

An estimate of the upper bound of the multi-magnon excitations is thus ∼ 43 meV, with the

weak Q dependence of the intensity pointing towards very weakly dispersive discrete bound

magnon modes for n larger than 4. Nevertheless, the background levels and spurious effect

are strong in the Ei = 70 meV measurement, so that additional confirmation of the magnetic

nature of the excitations would strengthen the conclusions. Indeed, the extension of the

magnetic excitations to such large energy transfers (∼ 10 times the effective coupling J) is

surprising. Confirming the magnetic nature of this scattering would require a technically

challenging polarised neutron experiment.

In conclusion, careful characterization of the high-resolution excitation spectra obtained by

inelastic neutron scattering show that the bound magnon modes n=2-4 are localised and

appear as flat bands with very weak dispersion. Correlated hopping hence appears to be

limited by possible level repulsion, but may nevertheless allows a dispersion of the magnon

within the limited bandwidth of the bound magnon modes. Furthermore, the measured

structure factor of the bound magnons modes have unusual Qh −Qk dependence which

cannot be explained by simple interacting bosons calculations with intra and inter-dimer

coupling, and hence would require a calculation of the eigenvectors for an Hamiltonian which

includes Dzyaloshinskii-Moriya interactions. Finally, the magnon excitations appear to extend

well beyond the expected energy range, with magnetic scattering possibly up to ∆E = 43 meV.
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2.5 High pressure plaquette phase

The phase diagram of the Shastry-Sutherland model as a function of the ratio α of exchange

parameters has raised a large interest. This is due partly to the proximity of a possible quantum

critical point [72], and it has been studied using a combination of numerical, theoretical and

experimental approaches [7, 53]. The dimer singlet phase for α. 0.7 is well established. On

the other hand, for a large intra to inter-dimer ratio (α& 0.9), an antiferromagnetic ordering

has been observed [73, 74]. Quantum fluctuations are however thought to play a significant

role, in particular regarding magnetization plateaux [75]. In between these two parameter

ranges, for 0.7.α. 0.9, a large number of possible intermediary phases have been proposed,

with recent numerical results favouring a plaquette singlet phase with first order transitions

between the phases [63].

In a recent work [53], an inelastic neutron scattering experiment confirmed the presence of

a plaquette singlet state into the intermediary phase of SrCu2(BO3)2 by tuning the system

using hydrostatic pressure and measuring the excitation spectra with constant-Q scans for

temperatures around 0.5K. Two possible plaquette phases were proposed, either a "full"

plaquette with a diagonal bond, or a "void" plaquette phase.

Figure 2.34: SrCu2(BO3)2 phase diagram as a function of pressure and temperature from [53].
Also shown are the energy of the excitations as a function of applied pressure for the dimer
singlet phase and the intermediary plaquette phase.

Figure 2.34 shows the phase diagram of SrCu2(BO3)2 as a function of applied pressure and

temperature proposed in [53]. The exact dimer phase remains until 16 kbar with a decrease

of the spin gap from 3 mev to 2 meV as the applied pressure increases. Between 16 kbar and

20.5 kbar, SCBO was shown in [53] to enter a new intermediary phase, at which the spin gap

softening appears to stop, as the gap energy remains unchanged at ∼ 2 meV (labelled ∆).

70



2.5. High pressure plaquette phase

In addition, a new excitation (called LE) appears at low energy transfers (around 1 meV) with

a more dispersive behaviour (∼ 0.4 meV bandwidth).

The 4-spin plaquette phase, expected as the new quantum phase between ∼ 20 and 40kbar

applied pressure, is described by the following Hamiltonian, for either a "void" or a "full"

plaquette state :

Hvoid = J ′(~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4 + ~S1 · ~S4) (2.12)

Hfull = J ′(~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4 + ~S1 · ~S4)+ J (~S1 · ~S3) (2.13)

In the case of a "full" plaquette phase, a term J (~S1 · ~S3), which corresponds to a diagonal bond

between site 1 and 3, is added to the Hamiltonian of the "void" plaquette. Such isolated 4-spin

plaquettes have a singlet ground state and two excitations at low energy transfers labelled

T 1 and T 2 in [53]. The structure factor in the Qh −Qk plane of these two excitations were

computed in [53] for both the "full" and the "void" plaquette cases and are shown in figure

2.35.

Figure 2.35: Calculated structure factor for the two plaquettes states. Figure from [53].

From the experimental results, the intensity of the excitations LE at ∼ 1 meV and ∆ at ∼ 2

meV for the measured Q points were compared to the expected intensities from calculated

structure factor. In [53], the sample was aligned with a and c in scattering plane, and although

the measured structure factor slightly favoured the full plaquette phase, the evidence was only

fully conclusive in confirming the presence of a plaquette phase in the intermediate α ratio.

This type of inelastic scattering experiments with high-pressure set-ups are technically chal-

lenging, and an attempt at measuring the Q-dependence of the intensity of the excitations

was carried out to compare the intensity of the excitations with the calculated structure factor

to identify the relevant plaquette phase for the intermediary range of α in SCBO.
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The excitation spectrum in the intermediary phase was measured by inelastic neutron scat-

tering on the thermal triple axis spectrometer ThALES at the ILL, using a McWhan pressure

cell to reach an applied hydrostatic pressure of ∼ 24 kbar. The pressure set-up and calibration

is described in 1.1.10. The sample was aligned with a and b in the scattering plane, and the

whole pressure cell assembly was cooled to ∼ 200 mK. The optimal set-up to measure the LE

excitation close to the elastic line was found to be with Graphite PG(002) monochromator and

analyser, with radial collimation after the sample to improve energy resolution. Constant-Q

scans were measured using k f = 1.5 Å−1 to obtain a range of energy transfers from 0 to 3.3

meV, with typical counting times of 5 mn per point.

Figure 2.36 shows a constant-Q scan for Q=(2 2 0) at ∼ 24 kbar. It is clear from this scan that the

intensity of the LE and ∆ excitations are very weak and difficult to reliably differentiate from

the background. In [53], although weak, the relative intensity of the excitation with respect to

background were slightly larger. These weak intensities on the high-flux spectrometer ThaLES

could be due to the instrumental difficulties, such as a very small portion of the sample being

visible to neutrons.

Figure 2.36: Constant-Q scan at Q=(2 2 0) for an applied pressure of ∼ 24 kbar and at 180 mK
obtained on ThALES. The LE excitation is visible as a weak shoulder feature to the elastic line
for ∆E = 0.75 meV, and the ∆ excitation is fitted at ∆E = 1.96 meV

Overall, the excitation ∆was too weak to be reliably observed in this experiment, even at Q

points where a maximum of the structure factor was expected in both proposed plaquette

phase (such as Q =(020)). This could be due to the pressure cell masking the sample for certain

Q directions, which was a known problem during this experiment (observed directly by a loss

of intensity when measuring equivalent nuclear points). In addition, the∆ excitation observed

in [53] was on average a factor two to three weaker than the strongest LE excitation, as shown

in figure 2.37. Thus in this experiment, the ∆ excitation cannot be analysed in order to extract

the Q-dependence of the structure factor in the Qh −Qk plane.
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Figure 2.37: Intensity of the ∆ and LE excitation along Q = (h 0 1) from [53].

Regarding the LE excitation, a weak shoulder-like feature to the elastic line is apparent in

constant-Q scans around ∆E = 1 meV, and appears to be systematically above background.

In particular, the direction Q = (h h 0) was the least impacted by the potential masking of

the sample by the pressure cell materials, and corresponds to a Q direction in Qh −Qk space

where there can be measurable differences between the magnetic structure factors. Hence

the LE excitation was fitted with a Gaussian function with fixed width (σ= 0.24 meV) for a

series of constant-Q scans along Q = (h h 0) with h =0.75, 1 ,1.25, 1.5 and 2. The elastic line

was also fitted with a Gaussian, with an additional constant background. In these fits, the ∆

excitation was neglected, as it was found to be indistinguishable from background. The result

of these fits along with the obtained energy centres and amplitude of the LE mode for these

five Q points are shown in figure 2.38.

Figure 2.38: Constant-Q scans along Q = (h h 0) with h = 0.75, 1, 1.25, 1.5, 2 [r.l.u] measured
at T=180 mK. The data are shown with vertical offsets for clarity. The right panels show the
obtained energy centres and amplitude of the LE excitation mode obtained from the Gaussian
fits along (h h 0).
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These results should be interpreted with caution, due to the quality of the datasets. Neverthe-

less, the dispersive character of the LE excitation appears to be confirmed by this experiment,

with a minimum of the dispersion at Q =(2 2 0) and a bandwidth of ∼ 0.5 meV. The amplitude

of the modes along the Q = (h h 0) direction can also be compared to the calculated structure

factor from [53] shown in figure 2.35. In the case of the void plaquette, the T1 excitation would

have little to no intensity along Q = (h h 0), except at Q =(2 2 0). In the full plaquette case,

the T1 intensity would be expected to be less Q-dependent along (h h 0), with Q =(2 2 0)

still remaining with the largest intensity. When comparing the inelastic neutron scattering

intensities to the structure factor, it is important to note that the magnetic form factor squared

should be taken into account, as it decreases as |Q | increases, which could explain that no

strong LE mode is seen for h = 2. Overall, the observed intensity around h = 1 is comparable

to the intensity at h = 2, which would favour the full plaquette interpretation.

Nevertheless, these results are fairly unreliable given the technical difficulties faced in this

experiment. To clearly distinguish between the two proposed plaquette phases, another

attempt at measuring the excitation spectrum of SCBO while applying hydrostatic pressure

would be necessary.
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2.6 Dirac dispersion and topological magnons

Topological insulators are characterized by an insulating band gap and conducting gap-less

edge states protected by symmetry. Hence they are insulating in the bulk but have exotic

metallic phase at the surface due to topological order [76]. The quantum Hall effect is a famous

example of rich physics emerging in reduced dimensionality system for a 2D gas of electrons in

a large magnetic field, but it can also be observed in 3D materials due to topological effects [77].

Topological insulators have raised interest in the context of spintronics although spin transport

by electrons leads to dissipation effects. On the other hand, spin waves are electrically neutral

and thus have long range coherence, so that the magnon Hall effect is very promising for

dispersion-less spin-based electronics. Topological phases of bosons have thus attracted

interest in the context of analogues for the integer quantum hall effect, with protected edge

states without dissipation. Indeed, there is a particular interest for quantum states with an

insulating bulk but where magnons can be transported along edges or surfaces in materials,

which are called topological magnons insulators.

The first realisation of an effectively 2D topological magnon insulator was observed in a

Kagomé-lattice ferromagnet Cu[1,3-benzenedicarboxylate (bdc)] [78]. The crucial ingredient

that gives rise to topological properties in magnon insulators is the Dzyaloshinskii-Moriya

interaction from relativistic spin-orbit coupling, although accounting for dipolar interactions

in the absence of DM interactions also led to similar topological magnonic edge mode [79].

Calculation using integer Chern numbers in bosonic Bogoluibov-deGennes systems shows

the existence of a Dirac-like dispersion when the band gap closes at certain Q points. In the

case of [1,3-benzenedicarboxylate (bdc)], non trivial bands were observed for out of plane

Dzyaloshinskii-Moriya interaction, with Chern number of -1,0 and 1 for respectively the lowest,

the center and the highest energy bands.

The Hall effect usually relies on the Lorentz force acting on a charge current. However, neutral

quasi-particles (such as phonon or magnons) can carry heat current and thus can exhibit

a thermal hall effect [80]. Chern bands in electronics systems are probed by doping the

system to have the Fermi energy lying in the band gap, leading to a transverse electrical

conductivity. In a bosonic system, instead, a temperature gradient is thought to populate the

band differently at the edges. The rotational motion of the magnon is thus imbalanced, leading

to a transverse triplon current carrying energy that can be measured as a thermal current.

Indeed, the motion of a magnon wavepacket has a rotational motion along the edges, due to

the Berry curvature corresponding to the topological structure of magnon bands, enhanced

by band crossing [81]. Thermal conductivity hence comes from the edge magnon current

when a temperature gradient is applied. The magnon thermal hall effect has been observed in

an insulating ferromagnet Lu2V2O7 with a pyrochlore lattice due to Dzyaloshinskii-Moriya

interaction [82, 83].

As discussed in [84], the intrinsic Hall effect for magnons arises for specific lattice geometries

and/or for specific underlying magnetic order. In addition, flat magnon bands hold unique
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interest because the interaction energies between quasi-particles may dominate the kinetic

energy, leading to novel correlated states. In this context, SCBO is a good potential system to

have topological magnon effects, with Dzyaloshinskii-Moriya interactions expected to give

rise to topological effects. A prediction of a Dirac-like dispersion in a critical field of ∼ 1.4 T

was made in [60], accompanying the creation of topologically protected edge modes, and thus

possibly exhibiting a thermal Hall effect.

Previous ESR measurements [57] hinted towards the presence of a Dirac point with an observed

crossing of the triplon modes around an applied field of 1.4T along (001) as shown by figure

2.39. The Sz = 0 mode is not visible with this technique.

(a) Magnetic excitations spectra at 1.6K (b) Frequency-field diagram at 1.6K for B//c

Figure 2.39: a) ESR Excitation spectra and b)ESR frequency-field diagram from [57], showing a
crossing of the modes around 1.4T for B//c.

The estimated spin gap from ESR is 722 GHz=2.985 meV. Highest and lowest mode may deviate

from a linear behaviour close to 0T. In addition, the other excitations (labeled Ti ) in fig. 2.39.b

appeared to be at higher energies around 1.4T, and they do start to cross the Sz =±1 triplon

excitations from ∼ 5T. Far infra-red spectroscopy [85] also evidenced a crossing of the modes

only in the case of a field parallel to (001), and showed a possible avoided crossing between

the upper triplet with a singlet for a field of ∼ 2.5T, explained by DM interaction.

In order to investigate the presence of a Dirac-like dispersion for an applied field of 1.4T in

SCBO, the excitation spectra was measured using neutron inelastic scattering.

2.6.1 Experimental details and analysis method

The experimental challenge in measuring the dispersion of SCBO at the critical field to identify

the presence or absence of a Dirac-crossing lies in the energy resolution needed in order to

resolve the triplons. Indeed, in the absence of a field, the singlet-triplet mode is only weakly

split by ∼ 0.2 meV. The experiment was thus done on two cold time-of-flight spectrometers

with an incident energy of Ei = 4.2 meV : AMATERAS, at J-Parc, Japan and IN5, at ILL using the

single crystal mount with (100) and (010) in the horizontal plane.
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Fields of 0.7, 1.4 and 2.1T were applied along (001) using a vertical cryo-magnet. The sample

was inserted and cooled to 1.5K, and rotated about the vertical axis in order to cover a large area

of reciprocal space (Horace-type scans). The area of reciprocal space accessed at ∆E = 3 meV

in the IN5 experiment is shown in figure 2.40 for an energy transfer of∆E = 3 meV, obtained by

integrating over Ql and ±0.05 meV. Although the datasets from the spectrometer AMATERAS

are consistent with the IN5 dataset, the quality of the energy slices were not sufficient to

discuss the possibility of a Dirac-like dispersion at the critical field, and thus were not used in

the analysis.

Figure 2.40: Constant-energy cuts for ∆E = 3 meV integrated over ±0.05 meV (and over Ql ) on
IN5 for a) 0T and b) 1.4T.

In order to interpret the observed dispersion in the inelastic spectra, the data were integrated

over Ql =[-1,1], symmetrized with respect to (0 k 0) to improve statistics, and binned along

the different Q directions shown in figure 2.41 with dQ = 0.025 and dE = 0.01 meV.

Figure 2.41: Four different Q directions in reciprocal space analysed from the IN5 dataset

An example of the resulting energy slice is shown in figure 2.42a for an applied field of 2.1T,

and the fits were done for the one-dimensional cut obtained by integrating over Q with ±0.05

r.l.u shown in figure 2.43. The peaks are resolution limited, so that the one-dimensional cuts

with an applied field of 2.1 T were fitted with five Gaussians with identical Gaussian widths as

the only constraints. The free parameters were thus: σ(Q), I1−5(Q), ω1−5(Q).
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The intensity of the excitations (proportional to the dynamical structure factor) has no field

dependence, so that I1−5(Q) were fixed for the subsequent fits at the applied field of 1.4T

(figure 2.44).

(a) Energy center ω1−5 for
direction Γ to (π,0).

(b) Intensities I1−5(Q) as a function of ζ
for direction Γ to (π,0).

(c) Fits of energy center ω1−5 for
direction Γ to (π,π).

(d) Intensities I1−5(Q) as a function of ζ
for direction Γ to (π,π).

Figure 2.42: Results of fits for IN5 data for applied field 2.1T. a) and c) show energy slices
along two particular directions with the fitted energy centers ω0 of the five modes shown as
white circles. b) and d) show the intensities I(Q) for each of the five modes for the same two Q
directions.

Figure 2.43 shows one-dimensional cuts for Q =(0.15 2 0) close to Γ and Q =(0.75 2 0) at both

applied field of 1.4T and 2.1T with the resulting fits (black curve). The result of the fits for the

energy centers ω1−5 of the five modes at the critical field of 1.4T are presented in figure 2.44

for directions Γ to (π,0) and Γ to (π,π) both with and without the IN5 data, showing that there

are only three modes apparent at the equivalent Brillouin zone centers Γ : Q =(0 2 0), (1 2 0)

and (1 3 0).
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(a) Intensity as a function of energy transfer
for Q =(0.15 2 0) at 2.1T.

(b) Intensity as a function of energy transfer
for Q =(0.15 2 0) at 1.4T.

(c) Intensity as a function of energy transfer
for Q =(0.75 2 0) at 2.1T.

(d) Intensity as a function of energy transfer
for Q =(0.75 2 0) at 1.4T.

Figure 2.43: Comparing data and fits for 2.1T and 1.4T applied fields for Q =(0.15 2 0) and
Q=(0.75 2 0).

2.6.2 Results and Discussion

The experimental results are compared with the dispersion obtained from the triplon Hamil-

tonian derived in [60], in which the behaviour of the triplon in momentum space corresponds

to pseudo spin-1 objects coupled to a pseudomagnetic field. The Hamiltonian hopping matrix

in [60] is given by :

M(k) = [ℑ−2Kγ4(k)]1+d (k) ·L (2.14)

with d (k) the pseudomagnetic field, 1 the 3x3 identity matrix, L a vector of 3x3 matrix and

γ4(k) = cos(kx )cos(ky ). ℑ corresponds to the measured spin gap, i.e to an effective coupling

constant. K corresponds to the strength of the second neighbour dimer-dimer interaction

which locally shifts the triplon energies and creates a small dispersion with a Q dependence,

but has no effect on topological properties (see supplementary materials of [60]). Intradimer

and interdimer in-plane Dzyaloshinskii-Moriya interactions are interdependent and are taken

into account with a linear combination D̃ ||, as detailed in 2.1.3. An out of plane inter-dimer

DM interaction D ′
⊥ is also included.
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(a) Energy centers ω1−5 for direction
Γ to (π,0) with IN5 data

(b) Energy centers ω1−5 for direction
Γ to (π,0) without the data

(c) Energy centers ω1−5 for direction
Γ to (π,π) with IN5 data

(d) Energy centers ω1−5 for direction
Γ to (π,π) without the data

Figure 2.44: Results of fits both with and without IN5 data at the critical applied field of 1.4T

Figure 2.45 shows the triplet dispersion along the high symmetry directions Γ to (π,π) and Γ to

(π,0). The experimental data was obtained on the cold time-of-flight instrument IN5 with the

Brillouin zone center Γmeasured at Q =(0 2 0). The white curves correspond to the calculated

eigenvalues of the hopping matrix M forℑ= 3.075 meV and no applied magnetic field. The pa-

rameters (in meV) are the following : ℑ= 3.075, K = 0.0013 ·ℑ = 0.0384, d z = 0.03 ·ℑ = 0.0922,

d p = 0.023 ·ℑ = 0.071, hz = 0. d z is the out of plane inter-dimer DM, and d p the hopping term

d p = dd J p
2J with J p the inter-dimer exchange parameter and dd the intra-dimer DM.

In SCBO, the application of a vertical magnetic field can tune the system through a topo-

logical transition. In the model described, the applied magnetic field hz is included in the

pseudomagnetic field d (k) which drives the transition. A small applied hz opens a non-trivial

bandgap with three well-separated bands. When the field reaches a threshold hc , the three

bands touch at the center of the Brillouin zone Γ, which becomes a spin-1 Dirac point and is

characterised by d (k) = 0. When the field is increased further, a trivial band gap opens.

Figure 2.46 shows experimental data of the triplon bands as the field is increased to the critical

field of 1.4T. The white circles correspond to the obtained energy centers ω1−5 from fits of
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Figure 2.45: Triplon dispersion from IN5 data. White line correspond to the calculated eigen-
values of the dispersion.

the IN5 data and the red line corresponds to the calculated spin-1 Dirac cone dispersion for

hz · gz = 0.06 ·ℑ = 0.1845 meV.

The two panels of figure 2.46 show two different areas of reciprocal space measured on IN5

which correspond to equivalent Γ to (π,0) and Γ to (π,π) directions. The eigenvalues of the

dispersion for the two panels are thus equivalent, but the central modes have a different

structure factor, as expected from the scattering intensities in the constant-energy slices

shown in figure 2.40 at the two Brillouin zone center Q =(0 2 0) and at Q =( 1 2 0). Figure 2.47

shows the same energy slices, calculated dispersion and fitted eigenvalues for an applied field

of 2.1T, beyond the critical field, showing further separation of the triplon bands. From the

results shown in figures (2.46 and 2.47), it appears that, within the resolution, the calculated

dispersion matches the experimental data for the main features. In particular, in the crucial

region close to the Γ point, the three modes appear to merge with a linear behaviour into the

expected Dirac point at the applied field of 1.4T.

In order to see the evolution of the dispersion of the triplon as a function of an applied field

along (001), figure 2.48a-d shows the experimental IN5 data with the calculated eigenvalues

for applied fields of 0, 0.7, 1.4 and 2.1T.

Figure 2.49 shows the evolution of triplet excitations with applied vertical field at the Γ point

Q =(0 2 0), which clearly shows the crossing of the triplon bands at the critical field, and can

be compared to electron spin resonance (ESR) measurements (figure 2.50).

Effect of Parameters at the critical field hz Using the overall match between the fitted and

calculated dispersions, the influence of the parameters at the critical field can be tested and

understood. As previously stated, ℑ in this model Hamiltonian corresponds to an effective

coupling which is responsible for the size of the spin gap. From the IN5 analysis, it is estimated
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Figure 2.46: IN5 Energy slice and fits of the triplon dispersion (white circles) at the critical field
of 1.4T. Red line corresponds to the calculated dispersion.

Figure 2.47: IN5 Energy slice and fits of the triplon dispersion (white circles) for an applied
field of 2.1T. Red line corresponds to the calculated dispersion.
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Figure 2.48: Calculated dispersion (red lines) superimposed on the IN5 excitation spectra
around Γ at Q =(0 2 0). a) no applied field with three modes with lower and upper mode
degenerate between Sz =±1. b) At 0.7T, the degeneracy is lifted and the Sz =±1 modes split.
c) 1.4T : Critical field with Dirac crossing at the Brillouin zone center Γ. d) 2.1T : trivial band
gap opens up and modes are split further.

Figure 2.49: Energy centers ω1−5 of the triplet excitations for the 4 fields measured on IN5
at the Γ point Q = (020) from Gaussian fits of the IN5 dataset (blue circles) and from the
calculated eigenvalues (black lines).

in SCBO to ℑ = 3.075 meV. K parametrizes the effect of the nearest triplon hopping. The

Sz = 0 mode is flat if K = 0. This parameter is crucial in order to obtain the right calculated

eigenvalues at Q = (π,π) and (π,0) to match the experimental data, but has no impact on the

presence or absence of a Dirac point.
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Furthermore, the Dzyaloshinskii-Moriya interactions are crucial, as expected for topological

magnon insulators[83], in order to obtain a Dirac crossing at Γ. Concerning the out-of-plane

inter-dimer DM d z : if d z = 0, there are only three modes and no crossing of the bands, with

very little dispersion. As d z is increased, the degenerate upper and lower modes split and start

dispersing towards the Sz central mode. If d z increases further, the modes move again away

from the central mode and there is no crossing. This parameter is very sensitive to variations

and determinates the critical field as hc = 2d z
gz

. The second Dzyaloshinskii-Moriya parameter

is the linear combination of the in-plane inter-dimer and intra-dimer DM, which corresponds

to a hopping term d p in the effective Hamiltonian. If d p = 0, there is a crossing in the region

of the Γ point, but it does not appear to correspond to a Dirac point, with no linear dispersion,

and with possibly several band-crossing points. As d p is increased from zero, a Dirac cone

starts to form. The value of this parameter can be increased well beyond the estimated value

for SCBO, as there is still a Dirac crossing for 3 ·d p. The eigenvalues of the dispersion are

sensitive to this parameter at the (π,0) point, allowing its estimation from experimental data.

Differences between calculated and experimental dispersion Although the agreement be-

tween the calculated eigenvalues for the dispersion and the data is good, there are features of

the experimental dispersion that cannot be captured by the model. In particular for the lowest

and uppermost mode, there is a weak dispersion of the upper band of about ∼ 0.05 meV that

is not captured by the dispersion, most visible in the excitation spectra of figure 2.46 and 2.47.

The largest deviation is at the Brillouin zone center Γ. Figure 2.50 shows the discrepancies

between the fits and the calculated eigenvalues from the model.

The precise differences between the calculated eigenvalues and the energy centres from the

fitted experimental dispersion at the Γ point Q = ( 0 2 0) for the uppermost and lowest mode

of the triplet excitation are summarized in Table 2.4. The deviations appear to increase slightly

with increasing applied field.

Table 2.4: Energy center of the five modes for the 4 fields measured on IN5 at the Brillouin
zone center Q =(020) either calculated from the dispersion with adjusted parameters or as
results of Gaussian fits of the IN5 data

Applied Field //c
[T]

Calculated eigenvalues
[meV]

Result of Gaussian fits
[meV]

0 2.814
3.183

2.828 ± 0.006
3.164 ± 0.010

0.7 2.721
3.275

2.692 ± 0.010
3.229 ± 0.017

1.4 2.629
3.367

2.609 ± 0.008
3.346 ± 0.012

2.1 2.537
3.459

2.524 ± 0.006
3.419 ± 0.009

In addition, there are some surprising intensity variations of the triplon in the excitation
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Figure 2.50: Brillouin zone center Γ corresponding to Q =(0 2 0) for a) 0T, b) 0.7T, c) 1.4T, the
expected critical field and d) 2.1T

spectra in applied field which cannot be explained fully by the model, visible for example

in Fig 2.42b. These variations are also apparent in the raw data and do not appear to be an

artefact of the measurements. In particular, for ∆E ∼ 3.05 meV, there is a sharp intensity drop

at the following Q points : Q = (0 2.32 0) and Q = (0 1.68 0), which correspond to Γ(020)±(0 0.32

0), as well as at Q = (± 0.67 2 0), which corresponds to Γ(±120)± (0.33 0 0). This hints towards an

hybridization of the triplon, or an avoided crossing with another type of excitation that cannot

be measured by neutron scattering, or to an excitation too weak compared to the background.

Nevertheless the dispersion is well-reproduced using this set of interactions, in particular in

the crucial region of the expected Dirac point.

Deviation from Dirac crossing The exact confirmation of a Dirac point in SrCu2(BO3)2

using neutron scattering is limited by the best resolution that can be obtained around ∆E = 3

meV. It is nevertheless interesting to discuss the maximum possible deviation from a Dirac

crossing. Using the ESR value of the out of plane DM interaction, the calculated critical field
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hc = 2d z
gz

is 1.316 T, so that the experimental data should show a very small gap at the Γ point

due to the difference between the critical and applied field. The calculated gap for d z = 0.867

and hz =0.1845 would then be ±0.016 meV.

To set an upper limit on the size of the deviation from a Dirac point, the data was fitted at the

Dirac point Q = (0 2 0) while fixing a deviation ±δE of the two modes from the energy centre

of the Sz = 0 mode. Figure 2.51 shows the dependence of the goodness of the fit in χ2 on the

deviation δE with a minimum at δE=0.02 meV. This small deviation is coherent with the field

difference between experimentally applied field and the calculated critical field for SCBO.

Figure 2.51: Dependence of the goodness of fit χ2 on the deviation δE from the energy center
ED at the Dirac point position

In conclusion, from the high-resolution study of the triplet modes in an applied field along

(001), the obtained dispersion confirms the validity of the model Hamiltonian derived in [60].

The main features of the excitation spectra of SCBO for the triplon modes is well reproduced

by this Hamitonian. Within the accessible resolution of the measurements, the presence of a

Dirac-like dispersion from the Brillouin zone center is confirmed, with a maximum energy

gap at the Dirac point of 0.02 meV, corresponding to good accuracy to the difference between

the calculated and the applied field.

During the writing of this document, we were made aware of a theoretical and experimental

work carried out on the topological properties of SCBO [86]. This work is not in contradic-

tion with our results and strengthens the conclusions regarding the non-trivial topological

properties of SCBO in an applied field. Nevertheless, a weak additional dispersive mode was

observed in their LET experimental data which is not clearly visible in the excitation spectra

measured on IN5 for similar incident energies and resolutions. This dispersive mode was

explained in [86] as a hybridization between a singlet bound state of two-triplons with the

singlet-triplet modes.
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2.7 Conclusions and Outlook

Three types of conclusions can be obtained from this experimental work on SrCu2(BO3)2.

• The first is technique-oriented and concerns an optimal set-up for time-of-flight exper-

iments and data analysis. Interlayer coupling was shown to be negligible when measuring

excitation spectra, even for high-resolution experiments with typical resolution of 0.15 meV

at ∆E = 3 meV. The data can thus be integrated over Ql , which allows faster mapping of the

2D S(Q,ω) with improved statistics. This has little impact on other experimental techniques,

although it does further confirm the 2D nature of magnetism in SCBO.

• The second type of conclusion is strongly experimental. These neutron scattering results

on the multi-magnon excitation spectra, the magnetic structure factor of the bound magnon

modes and the correlated decay of the singlet-triplet modes with temperature are very detailed

experimental characterisation of SrCu2(BO3)2. These results are, however, mostly ahead of the

current theoretical modelling of the magnetic excitations in SCBO, hereby limiting their full

interpretation.

In particular, the proposed correlated decay model was found to be a good phenomenological

model to understand the unusual temperature damping of each of the singlet-triplet modes

as a function of its thermal population. Nevertheless, the measured Q-dependence of the

damping width, showing faster damping around Q = (0.6 0.6) is a surprising result which is

not currently fully understood.

Considering the multi-magnon excitations, careful characterization of the high-resolution

excitation spectra showed that the bound magnon modes n=2-4 are localised as flat bands with

very weak dispersions. Correlated hopping appears to be limited by possible level repulsion,

although it may nevertheless allow the magnons to disperse within the limited measured

bandwidth. Furthermore, the measured structure factors for the bound magnon modes were

shown to have unusual Qh−Qk dependence which cannot be explained by simple interacting-

bosons structure factor calculations with intra and inter-dimer coupling only. Modelling

of the bound magnon modes using an Hamiltonian which includes Dzyaloshinskii-Moriya

interactions is thus likely be necessary to understand these results. Finally, the magnon

excitations appear to extend well beyond the expected energy range, with magnetic scattering

possibly up to ∆E ∼ 43 meV.

The results detailed in this chapter provide a very careful characterisation of collective mag-

netism in SrCu2(BO3)2 to which further modelling of these aspects can be compared and

assessed, testing further our understanding of fundamental quantum magnetism.

• This chapter also shows that inelastic neutron scattering is a powerful experimental tech-

nique to discuss theoretical predictions. The constant improvement of spectrometers allows

deeper insights into magnetism by increasing the possibility to measure weak effects. This

type of experimental work faces many technical challenges, particular in the case of complex
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sample environments. Technical difficulties, such as the one encountered in this work to

measure the excitations for an applied high pressure, may lead to unreliable results. Neverthe-

less, a further attempt to measure the excitations in the plaquette phase in SCBO will benefit

from the lessons learned in the attempt reported here. Beyond these challenges, careful and

detailed data analysis is also necessary in order to find identify interesting weak effects.

A Dirac-like dispersion had been predicted for SrCu2(BO3)2 by careful modelling of the triplet

excitations as a function of field, using an Hamiltonian that included the Dzyaloshinskii-

Moriya interactions [60]. The high-resolution inelastic measurements of these modes allowed

the refinement of the model parameters, making it directly comparable to the excitation

spectra of SCBO at fields up to 8T. The comparison detailed in this work gave evidence that

SCBO can be considered a topological magnon insulator, with a thermal Hall effect expected

for an applied vertical field in the range ∼ 1.3− 1.4 T. Hence, in this part of the work, the

theoretical prediction was shown to reproduce the experimental spectra with good accuracy

in the crucial region (∼ 3 meV) while small differences in the dispersion were shown to exist

for the uppermost and lowest modes. Further calculations of the eigenvectors of the mode

dispersion would permit a comparison with the measured intensity of the modes.

Outlook As discussed throughout this chapter, SCBO is an highly unconventional mate-

rial, where frustration prevents magnetic order and where the increase of temperature does

not lead to a renormalisation of the spin gap and conventional damping of the magnon. In-

steade, magnon damping is driven by a Q-dependent and strongly unconventional mechanism

which is dependent on the thermal population of each mode. In these type of compounds,

anisotropies do play a large role and often tip the balance towards complex states of matter.

They are to be understood as deviations from expected behaviours, and are often only ob-

served when pushing the limits of experimental techniques, for example in terms of accessible

reciprocal space, resolution or sample environment (pressure, field). In the broader picture,

these weak effects are the ones to focus on, as studying in detail what drives these exotic

behaviours deepens our understanding of the driving fundamental properties of matter. As

often with low-dimensionality systems, generalities are hard to come by, as the dominant

interactions and the strong correlations differ from compound to compound and create spe-

cific case studies, fascinating both on their own, or as a point of comparison. For example,

other Shastry-Sutherland lattices do exist in materials, although spin-1/2 realisation are so

far confined to SCBO. TmB4 possesses such a lattice, and displays a rich frustration-driven

magnetic phase diagram, where magnetisation plateaux makes it a possible magnetic ana-

logue of the quantum Hall effect [87]. In another direction, strongly correlated spin ladder

systems and their frustration-driven properties can and are compared to SCBO in order to

discuss proximity and possibility of quantum critical points [71].

The interest in topological properties of materials and protected edge modes has now become

a thriving field of research, and with the advent of possible topological magnons insulators,

materials showing such unconventional behaviours may not be as scarce as what may have
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been thought. Already thoroughly investigated and characterised materials such as SCBO may

in this context reveal further surprising properties under specifically targeted investigation of

their unconventional behavior. In this context also, the possibility of various neutron sample

environments such as applied magnetic field and hydrostatic pressure allow to move in the

parameter space of the magnetic phase diagrams in order to explore new areas previously only

accessible in theoretical works or numerical simulations. Nevertheless, in the research field of

frustrated magnetism and low-dimensional compounds, one should not remained confined

to neutrons, and other experimental scattering and energy-dispersive techniques may well be

significant contributors of our fundamental understanding of dynamical properties.
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3 MPS3

3.1 The family

Transition metal phosphorus trisulfides (MPS3), with M=Mn,Fe,Ni and Co, are quasi-two

dimensional antiferromagnets on an honeycomb lattice. They form in a monoclinic structure

with space group C2/m. The transition metal atoms are placed at 4m position, and form a

honeycomb lattice in the (a,b) planes, which are weakly bound by Van der Waals forces. The

transition metal ions have a 2+ electronic ionization state and carry a localised magnetic

moment. These compounds exhibit antiferromagnetic behaviour at low temperature and are

considered good examples of quasi-two-dimensional materials in both their crystallographic

and magnetic structure (see review in [88]). Within the MPS3 family, substituting the transition

metal ion for another has a drastic impact on its magnetic properties, with behaviours ranging

from Heisenberg-like to strongly anisotropic (Ising or XY).

Figure 3.1: Common crystallographic structure of the MPS3 compounds showing the honey-
comb arrangement of the transition metal planes separated by the sulfur atoms

Crystallographically, the transition metal is in the center of an octahedron formed by sulfur

atoms. All the MPS3 structures show a close-packed stacking of sulfur anions in the ABC
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sequence (CdCl2 type). [88, 89]. These atoms are connected to the two phosphorus atoms

above and below the transition metal plane. Figure 3.1 shows the general crystallographic

structure of the MPS3 compounds. The plane are weakly bounded by Van der Waals forces

due to the position of the sulfur atoms, and can be easily intercalated (for example with

lithium[90]).

The magnetic layers are thus separated by the sulfur atoms, which reduces the strength of the

interlayer magnetic interactions. It has recently been shown that both NiPS3 ([91]) and FePS3

[92] can be exfoliated to a monolayer. While the antiferromagnetic ordering of NiPS3 was

shown to be strongly influenced by interlayer coupling in [91], Raman spectroscopy showed

that FePS3 continues to exhibit Ising-type antiferromagnetic ordering even as a monolayer.

Exfoliation of these compounds is thus an interesting testbed for fundamental magnetism,

and these Van der Waals materials have also recently been singled out for their potential to be

magnetic analogues to graphene [93].

In addition, this type of two-dimensional magnetic systems on a honeycomb lattice is interest-

ing from a more theoretical point of view[94], as it has a low coordination number. Stability

phase diagrams can be build depending on the strength and sign of the exchange parameter

J1,2,3.... In spin 1/2 systems, it could lead to large quantum fluctuations.

Although their crystallographic structure are very similar, each member of the MPS3 family

(M=Mn,Fe,Ni,Co) has very different magnetic properties.

MnPS3 appears to be an Heisenberg antiferromagnet below TN = 7 K with a propagation

vector k = 0 and the moments pointing with an ∼ 8° angle from the c* axis [95]. The critical

behaviour of the magnetic properties showed a deviation from an ideal Heisenberg-like be-

haviour, explained by a small XY anisotropy [96].

On the contrary, FePS3 is anisotropic and has the properties of an Ising antiferromagnet below

TN = 123K with S=2 moments normal to the (a,b) plane. Each moment is ferromagnetically

coupled to two of its nearest neighbours and antiferromagnetically coupled to its third, creat-

ing ferromagnetic chains coupled antiferromagnetically in the (a,b) plane [97].

NiPS3 orders with a propagation vector k = [010] with the S=1 moments in the (a,b) plane,

pointing mostly towards a. A Heisenberg Hamiltonian with weak XY anisotropy has been

proposed for NiPS3, although not fully consistent with the critical behaviour [35].

Within this family, there are still many open question about the magnetic properties of its

members, related to their magnetic structure, magnetic excitations and critical properties. In

particular, for FePS3 and NiPS3, the objectives were to use neutron scattering to provide new

insight into their fundamental magnetism . Detailed scattering measurements and analysis of

the excitation spectrum of FePS3 were thus coupled to other experimental techniques in order

to discuss the magnetic propagation vector, the exchange interactions driving the dynamical

response as well as the critical properties at the Néel temperature. Insight on the anisotropies

of NiPS3 were also gained from inelastic neutron scattering on a powdered sample.
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3.2 FePS3

As mentioned in the previous section, FePS3 orders below TN ∼ 120 K in an antiferromagnetic

structure with the S=2 high-spin Fe2+ moments normal to the (a,b) planes. In FePS3, each mo-

ment is ferromagnetically coupled to two of its nearest neighbours and antiferromagnetically

coupled to its third, resulting in antiferromagnetic coupled ferromagnetic chains.

3.2.1 Introduction to the magnetic structure, magnon dynamics and critical prop-
erties

Conversion between space groups

The structure of FePS3 has a monoclinic space group C 2/m, with cell parameters am=5.95,

bm=10.3 and cm=6.72 Å, α= γ= 90,β= 107.16° [2]. Nevertheless, indexing the Bragg peaks can

also be done using an hexagonal space group. Indeed, the X-ray refinement in [2] showed that

the b/a ratio is precisely
p

3. In addition, the value of β necessary for an undistorted unit cell

with trigonal symmetry can be calculated to be 107.16 degrees, equal to the cell parameter

of FePS3. Thus for FePS3, in the monoclinic space group, the following conditions have been

shown to be accurate to a good precision:

bm =p
3am

am =−3cm cos(β) (3.1)

Indexing either with the monoclinic space group or the hexagonal space group is therefore

possible, with the [010] direction equivalent between the two, as shown in figure 3.2. The c*

axis is perpendicular to the (a,b) plane in both hexagonal and monoclinic system.

Figure 3.2: Monoclinic unit cell (solid lines) and hexagonal unit cell (dashed) lines for FePS3.
The spheres represent the Fe2+ ions. The dark spheres are included in the hexagonal unit cell,
while the light spheres are included in the monoclinic unit cell but not in the hexagonal one.
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Rotational twinning and magnetic domains

Due to the equivalent indexing between monoclinic and hexagonal space groups and the weak

inter-plane binding, rotational twinning is likely to be present in FePS3 samples in the form of

multiple domains rotated by 120° about the c* axis. As shown recently in [98] during crystal

growth, every so often there can be a rotation of the structure by 120° about the normal to the

(a,b) plane. Hence there are three possible in-plane orientations of the monoclinic unit cell,

with the correspondence of the Miller indices between them given by the following rotation

matrices :
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Due to this rotational twinning, magnetic domains are expected in FePS3 samples. The

domains may have a different size distribution.

Ferromagnetic chains

There are three possible orientations for the ferromagnetic chains on a honeycomb lattice,

with 120° rotation between them. Due to the presence of rotated magnetic domains, however,

it can be difficult distinguish the correct orientation of the ferromagnetic chains, as illustrated

by figure 3.3, which shows that magnetic scattering using a 120°-rotated domain would lead to

a different ferromagnetic chain orientation.

The moment positions and orientations can be used to calculate the magnetic structure factor

for each possible orientation of the ferromagnetic chains using :

FM (Q) =∑
j
µ j exp2πi [hx j +k y j + lz j ] (3.3)

The sum is done over all the moments in the magnetic unit cell which, for an Ising system, each

have a magnetic moment ±µ j . The orientation of the ferromagnetic chains shown in figure

3.3, with the chains along the monoclinic a axis, has non-zero magnetic structure factors for

Q = (0 1 l ± 1
2 ) and zero magnetic structure factors for Q = ( 1

2
1
2 l ± 1

3 ).
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3.2. FePS3

Figure 3.3: Ferromagnetic chains along the am axis. The black rectangle corresponds to the
monoclinic unit cell drawn with respect to domain I. Black and grey circles represent the
magnetic moments respectively parallel or anti-parallel to c*. The green and blue dashed
rectangles represent respectively the ±120°- rotated monoclinic unit cell with respect to
domain II and III.

Propagation Vector

The propagation vector was shown to be k=[0 1 1
2 ] in [99], but later measurements [100] were

thought to contradict this propagation vector, and a new magnetic propagation vector was

proposed for FePS3. In the latter work, the measured crystal was known to be twinned, and

elastic scans were performed along ( 3
2

1
2 l ), identifying peak a l= lnuc ±0.34, as shown in figure

3.4. Using these elastic scans as well as Laue diffraction patterns, this study concluded that

the propagation vector was k = [ 1
2

1
2 0.34]. This propagation vector is incommensurate, with

δ=±0.34 instead of δ= 1
3 , and it was attributed in [100] to a short range ordering of moments

between the layers. Such a propagation vector leads to a magnetic Bragg peak at both ( 1
2

1
2

-0.34) and ( 1
2

1
2 +0.34).

Figure 3.4: Elastic scans along ( 3
2

1
2 l ) from [100], showing peaks at lnuc ±0.34, which were

attributed to one crystallite (labeled B)
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Finally, previous studies of FePS3 [34, 101] showed a broad feature in the neutron powder

diffraction pattern for Q between 0.65 and 0.85 Å−1 (corresponding to 8. 2θ. 13° in figure

3.5). Figure 3.5 from [34] shows that the lowest magnetic Bragg peak for the propagation

vector k = [01 1
2 ] is expected at Q =(0 1 1

2 ) with |Q|=0.78 Å−1, so that this propagation vector

was unable to account for the broad feature. This was an argument in favor of k = ( 1
2

1
2 0.34)

propagation vector [100]. Indeed, using the propagation vector k = ( 1
2

1
2 0.34), this scattering

was shown to be indexed as a series of peak with l between -2/3 and 1/3.

Figure 3.5: Neutron powder diffraction scans of FePS3 from [34] shown with a vertical offset.
A vertical line around 2θ ∼ 12° shows the lowest magnetic peak for the propagation vector
k = (01 1

2 )

The magnetic dynamical structure factor

The dynamical structure factor was derived for a two-dimensional honeycomb lattice from

linear spin wave theory in [97]. The magnetic structure was decomposed into four interlocking

Bravais lattice with 120° between ah and bh , with bh = 2ah .

Even though FePS3 is thought to be Ising-like, the exchange interactions were modelled using

an Heisenberg Hamiltonian with a large single-ion easy-axis anisotropy :

H =−∑
i , j

Ji , j Si ·S j −∆
∑

i
(Sz

i )2 (3.4)

The exchange interaction Ji , j depend on the proximity to the neighbouring moments. Four

different exchange parameters are taken into account, with three intra-planar parameters for

the nearest neighbour interaction J1,2,3 and the inter-planar couplings J ′ and J ′′. Figure 3.6

shows these distances schematically with J1 and J2 the nearest and next nearest neighbour

along the ferromagnetic chains, and J3 the exchange interaction between the chains. J ′ and J ′′

are the inter-plane exchange parameters, which are set to zero in this two-dimensional model.
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3.2. FePS3

Figure 3.6: Exchange parameters shown as a function of the distances between the Fe2+

moments. Black circles represent the moments on one (a,b) plane and grey circles represent
the moments on another (a,b) plane displaced along the c axis. J1, J2 and J3 are the intra-plane
exchange parameters and J ′ and J ′′ are the inter-plane exchange parameters.

Following the work in [97], using the Holstein-Primakoff transformation and Fourier trans-

forming, the effective Hamiltonian can be written in the following form :

HM = 2S


A B∗ C D∗
B A D C

C D∗ A B∗
D C B A


A = 2J2 cos(2πh)−∆− J1 +2J2 +3J3

B = J1 exp( 2πi
3 [2h + k

2 ])(1+exp(−2πi h))

C = 2J2(cos(πk)+cos(2π[h + k
2 ]))

D = exp( 2πi
3 [2h + k

2 ])

× (J1 exp(−2πi [h + k
2 ])+ J3(2cos(πk)+exp(−2πi [2h + k

2 ]))

(3.5)

with h, k and l given with respect to the magnetic unit cell.

Diagonalising the Hamiltonian gives two pairs of degenerate magnon modes with dispersion:

ω2
Q = r ±p

s

r = A2 +|B |2 −C 2 −|D|2
s = 4|AD∗−C D∗|2 −|BD∗−DB∗|2)

(3.6)
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The explicit expressions for the eigenvectors of this Hamiltonian can be found in [102], derived

for a similar form of Hamiltonian which is also applicable for FePS3.

Figure 3.7 shows the dispersion along high-symmetry directions obtained from the 2D Hamil-

tonian and the exchange parameters in [97]. These exchange parameters were obtained in

[97] by fitting the neutron inelastic data from a powder sample. The data were integrated over

Q, which corresponds to the powder average of the dispersive spin waves, using the dynamical

structure factor derived from the Hamiltonian.

Figure 3.7: Simulated dispersion along high symmetry directions derived from the Hamiltonian
on two-dimensional honeycomb lattice. The inset shows the two-dimensional Brillouin zone.
Figure from [97].

Theses directions are given with respect to the magnetic unit cell. It can be converted to

in-plane monoclinic units using:[
h

k

]
m

=
[

1 0

1 1

][
h

k

]
h

(3.7)

Figure 3.8 shows the result of the analysis in [97] done by fitting the powder data, from which

the intra-planar exchange parameters were estimated. The gap of ∼ 16 meV is well reproduced

using these fitted exchange parameters. The nearest neighbour exchange is ferromagnetic and

the anti-ferromagnetic behaviour is due to exchange between the third nearest neighbours.

Within this analysis, the second nearest neighbour exchange J2 is ferromagnetic, although

very close to zero. The anisotropy is large compared to the exchange parameters J1,2,3, which

is consistent with an Ising-like behaviour. Furthermore, the strength of the obtained coupling

constants hinted towards a quasi one-dimensional ferromagnetic behaviour.

These estimated exchange parameters in FePS3 were based on powder neutron scattering data

where individual magnon dispersions cannot be measured. In order to test their validity, the

results were compared with susceptibility measurements and stability conditions for an Ising

Hamiltonian from mean field calculations.
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3.2. FePS3

Figure 3.8: Inelastic neutron scattering for a powder sample of FePS3 with fits of the Q-
integrated magnons from the analysis in [97].

Critical properties

The critical properties on FePS3 have been discussed in previous studies [103, 104, 105, 106, 97].

The evidence for a first order transition is two-fold: First, in [103], the temperature dependence

of the magnetic hyperfine field measured by Mössbauer spectroscopy combined with the

observed temperature dependence of the lattice parameters measured by X-ray diffraction

both point to a first order transition. Figure 3.9 from [103] shows that the change of lattice

parameters with temperature is discontinuous, although the monoclinic space group C 2/m

remains valid at all temperatures. The results of differential scanning spectrometry [104] also

contribute to strengthen the conclusions for a first order transition, with a sharp peak in heat

capacity around TN . The sharp peak in the temperature dependence of the specific heat,

characteristic of a first order transition, was also measured in [106, 107] and shown to be well

reproduced by taking into account a magneto-elastic effect.

Figure 3.9: The relative deviations of the lattice parameters of FePS3 from the room tempera-
ture values obtained from X-ray diffraction. Figure from [103].

On the other hand, a study the effect of magnetic ordering on the spin-dependent Raman

scattering from phonons showed a strong enhancement of the quasi-elastic component [105].

This was interpreted as critical scattering due to an increase of short-range spin fluctuations

close to the Néel temperature. Broad inelastic scattering above TN was also observed in

inelastic neutron spectroscopy in [97].
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3.2.2 Neutron experiment and discussion

To summarise, discrepancies on the magnetic structure were shown to exist in the literature [99,

100], with two different magnetic propagation vector proposed to explain neutron diffraction

studies.

In addition, a first model of the powder excitation spectra was proposed by [97] based on a

two-dimensional model. An extension to three dimensions and confirmation of the expected

dispersion by measuring the full S(Q,ω) would allow to test and refine this model.

Furthermore, the nature of the phase transition has been under discussion in FePS3. The

phase transition was concluded to be first order based on Mössbauer spectroscopy [103]

and calorimetry measurement[104, 106], strengthened by the change in lattice parameters

accompanying the onset of magnetic order. However, Raman spectroscopy for temperature

around the Néel temperature TN ∼ 120K showed strong inelastic scattering attributed to

magnetic critical scattering [105].

A set of questions can thus be asked about this member of the MPS3 family for which neutron

scattering experiments will provide insight:

• What are the consequences of rotational twinning in FePS3 ?

• Is the propagation vector k = [ 1
2

1
2 0.34] or k = [01 1

2 ] ?.

• What is the impact of interlayer coupling on the magnetic excitation spectra ?

• Can the Heisenberg Hamiltonian with single ion anisotropy be used to model the mag-

netic excitation spectra ?

• Is FePS3 a quasi two-dimensional material or close to a one-dimensional system ?

• What is the nature of the phase transition in FePS3 ? What are the critical properties of

FePS3 ?

A set of experiments were hence carried out in order to answer these questions (see table

3.1), with either a single crystal, co-aligned crystals in order to increase the sample size or

powdered samples.

Table 3.1: List of neutron scattering experiments for FePs3 with sample list

Instrument Problematic Sample
IN3 rotational twinning single crystals 4 and 5 - rotated
D10 magnetic propagation vector single crystal 5

TAIPAN interlayer coupling single crystals 4 and 5
IN8 interlayer coupling single crystals 4 and 5

IN20 interlayer coupling single crystals 4 and 5 - rotated
Merlin Excitation spectra and exchange parameters 17 co-aligned crystals

IN4 Critical properties powder pellets
D7 Critical properties powder pellets
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3.2. FePS3

Due to rotationnal twinning, a distribution of 120°-rotated magnetic domains are expected

in single crystals of FePS3. An elastic neutron scattering experiment was thus carried out

using using two co-aligned FePS3 crystals with (110) and (001) in the scattering plane, in order

to obtain a characterisation of the domains in these specific crystals. The two co-aligned

crystals were cooled to 10K and magnetic Bragg scattering was measured on the IN3 triple axis

spectrometer at ILL, with a graphite PG(002) for both the monochromator and the analyser

and 40’ collimation.

Figure 3.10 shows the obtained elastic scans along ( 1
2

1
2 l ), (0 1 l ) and ( 1̄

2
1
2 l ). These scans

correspond to three different rotations of the co-aligned single crystals : 0°, +60° and -60°

about the (001) direction (domains I, II and III) and the observed peaks thus confirm the

presence of magnetic domains rotated by 120° from each other in the (a,b) plane. The peaks

in the scans along ( 1
2

1
2 l ) and ( 1̄

2
1
2 l ) are estimated to be at l ∼ N + 1

3 and are absent at N − 1
3 ,

with N an integer. For the scan along (0 1 l ), the Bragg peaks are at l ∼ N ± 1
2 . Precise values

for l could not be obtained due to the instrumental resolution of the IN3 spectrometer and

the large sample mosaicity (discussed in 1.2.3). In addition, it is clear from figure 3.10 that

these samples have domains with significant population differences, with the scans along (0 1

l ) showing an intensity one order of magnitude larger than the other two scans.

Figure 3.10: Elastic scans along l corresponding to three 60° rotation of the sample about c∗
obtained on IN3 at 10K.
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Several conclusions can be drawn from this dataset. First, the presence of 120°-rotated

magnetic domains in a single crystal is confirmed, which is important in the understanding of

neutron excitation spectra. Indeed, in an inelastic neutron experiment, all the domains would

contribute to the scattering and the measured data would be the sum of the cross sections

from all the domains.

In addition, it is clear from this that carefully choosing the domain from which to scatter is

necessary in order to obtain high quality datasets. Indeed, choosing the sample orientation

where the largest domain is aligned with (010) and (001) in the scattering plane (orientation II

for this specific crystal) will yield a better signal-to-noise ratio for the measured spin waves, as

shown in section 3.2.2.

Finally, it allows to explain the discrepancy in the literature between the two magnetic propa-

gation vector proposed in [100, 99], as discussed in more details in the next section.

Magnetic structure

The data obtained on IN3 and shown in Figure 3.10 has notable differences with the study

described in [100] which concluded on a propagation vector k = [ 1
2

1
2 0.34]. Such a propagation

vector would lead to a magnetic Bragg peaks at both ( 1
2

1
2 -0.34) and ( 1

2
1
2 +0.34) which is clearly

not the case in the dataset obtained on IN3 for single crystals shown in figure 3.10.

In addition, the Bragg peaks measured and indexed in [100] using the propagation vector

k = [ 1
2

1
2 0.34] can also be indexed using the propagation vector k = [01 1

2 ] from [99] by rotation

between the magnetic domain I,II and III (using equation 3.2). Table 3.2 shows a few examples

of these peaks, indexed in [100] using k = [ 1
2

1
2 0.34], but that can also be indexed by k = [01 1

2 ]

by rotating to another domain.

Table 3.2: Examples of indexing of magnetic peaks in [100] which can be explained using the
propagation vector k = [01 1

2 ] by 120° rotation in (a,b) plane from either domain II or domain
II to domain I

hkl indexed in [100] hkl by ±120° rotation hklnuc ±k( 1
2 − 1

2 −0.66
)

I I I ( 0 1 − 1
2 )I (020)−k

( 1
2 − 11

2 −0.66)I I (−3 2 1
2 )I (−310)+k

(−1
2 − 5

2 0.34)I I I (−1 2 1
2 )I (−110)+k

( 3
2

1
2 −0.34)I I (−1 2 1

2 )I (−110)+k

( 3
2

1
2 −1.34)I I (−1 2 − 1

2 )I (−130)−k

Hence from these results the correct propagation vector would be k = [01 1
2 ] as concluded in

[99]. Nevertheless, three issues still need to be discussed in order to confirm this propagation

vector. The first is that one Bragg peak indexed in [100] , ( 1
2

3̄
2 -0.34) cannot be indexed using

any 120° in-plane rotation. The most likely explanation is a miss-indexing of the peak in the

previous work, or a spurious signal at this position, as one unique mismatch would not be
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3.2. FePS3

expected from a wrong propagation vector. The second issue is that the work by [100] found

an incommensurate propagation vector with δ=±0.34 instead of δ= 1
3 , attributed to a short

range ordering of moments between the layers . This is not taken into account in the k = [01 1
2 ]

propagation vector. However, given the overall mosaicity of all the FePS3 samples measured

(between 4-10 degrees), it is unlikely that any diffraction study can be precise down to ±0.01

[r.l.u]. Furthermore, an incommensurate propagation vector would be due to either a periodic

variation of the moment size, or non-collinear components of the moments, which would

both be unlikely for FePS3, a good 2D Ising system with high spin Fe2+ moments.

Finally, an argument against the propagation vector k = [01 1
2 ] was its inability to index the

broad scattering feature observed in [100] for a powdered sample at Q between 0.65 and 0.85

Å−1, as the first allowed magnetic Bragg peak is (0 1 1
2 ) at 0.78 Å−1. The feature begins at a Q

which can be indexed with (0 1 0). However, these measurements were done using powdered

sample, and it is likely that grinding FePS3 crystals destroys long-range order along the c* axis,

while keeping the in-plane structure. Indeed, materials in these family of compounds have

been shown to be very soft and prone to distortions (for example NiPS3 in [35]). This broad

feature, which is only present in powdered samples, can thus be explained as a Bragg rod

along c* appearing at (010) and extending along l . This interpretation restores k = [01 1
2 ] as a

coherent propagation vector.

The magnetic structure was further confirmed from measurements on the diffractometer D10

at ILL, using one single crystal (labelled 5). The nuclear structure was refined from 2K data

and the structural parameters were obtained, with a residual w R f 2 = 10.7% and χ2 = 5.29 for

the space group C 2/m with lattice parameters a = 5.94(4) Å, b = 10.26(2) Å, c = 6.60(6) Å and

β= 108.3(7)°. The obtained structural parameters are consistent with the literature [2], within

the limited accuracy of the refinement due to crystal size and mosaicity.

Regarding the magnetic structure refinement1, the BasIreps program of the FullProf suite [108]

was used to determine the irreducible representations compatible with the crystal symmetry

and the propagation vector k = [01 1
2 ], and the symmetry operators for the resulting four

representations are shown in table 3.3.

Table 3.3: Symmetry operators for the four possible irreducible representations in the case of
the propagation vector k = [01 1

2 ]

Symmetry 1 Symmetry 2 Symmetry 3 Symmetry 4
1: (0,0,0) 2: (0,y ,0 ) -1: (0,0,0) m: (x,0,z)

IRep(1) 1 1 1 1
IRep(2) 1 1 -1 -1
IRep(3) 1 -1 1 -1
IRep(4) 1 -1 -1 1

Irep(4) was found to be the only one leading to a good match between the measured Bragg

1 refinement carried out by Andrew Wildes, ILL
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peak intensities and the calculated structure factor, and the result of both the nuclear and

magnetic refinement at 2K are shown in figure 3.11. The results of the nuclear refinement

were used as fixed parameters (structural and thermal) in the magnetic refinement. The

refined moment direction was found to be approximately normal to the (a,b) planes, with

a moment amplitude of 4.52±0.05 µB , obtained with residuals w R f 2 = 21 % and χ2 = 24.9.

These results are consistent with previous studies[99, 100] and the expected moment from the

S = 2 high-spin state of Fe2+.

Figure 3.11: Observed versus calculated nuclear (left) and magnetic (right) structure factor
from refinement using neutron diffraction data obtained on D10.

The magnetic propagation vector is thus confirmed to be k = [01 1
2 ] and not k = [ 1

2
1
2 0.34], with

the orientation of the ferromagnetic chains along the monoclinic a axis. This confirms the

validity of the magnetic structure proposed in [99], and the presence of domains explains the

data and interpretation proposed in [100].

Furthermore, all studies of single crystals of FePS3 need to take into account rotational twin-

ning, in particular for characterizing excitation spectra. The distribution between each of

the three 120°-rotated domains can be estimated using diffraction studies on either nuclear

or magnetic peaks. For example, a population ratio between the domains of 0.78:0.13:0.09

was estimated for a specific crystal (labelled 5) using the integrated intensity of nuclear peaks

measured on the diffractometer D10.
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Interplanar dispersion

FePS3 is considered a quasi-two dimensional material and thus the interlayer coupling is

expected to be negligible. In [97], the modelling of the density of states from spin wave

calculation was done based on a two-dimensional Hamiltonian, which represents relatively

well the density of states. However, it could be possible to have a dispersion along c*, which

would complicate analysis of the excitation spectra from a powdered sample.

There are two different inter-planar exchange parameters J ′ and J ′′, with exchange pathways

between the sulphur layers which are between different sublattices. The distance only differs

by less than 0.2 % (difference estimated in [89] to be within 0.005 Å), which is within the

tolerance of the hexagonal indexing. Furthermore, the effect of the interlayer coupling is

expected to be weak, so that the neutron scattering analysis will only take into account one

averaged parameter for the interlayer coupling (referred to as J ′).

In order to evaluate J ′ from the measured dispersion along c*, triple axis experiments were

performed on thermal spectrometers with single crystals of FePS3 oriented with (110) and (001)

in the scattering plane. Constant-Q scans were performed to follow the dispersion of the spin

waves along the Ql direction. Measurements focused either on∆E ∼ 16 meV, corresponding to

the spin gap energy, and on the maximum energy spin waves at ∆E ∼ 40 meV, as was expected

from the calculated dispersion in [97] shown in figure 3.7.

The dispersion along two particular Q directions were studied : Q =( 1
2

1
2 l ) and Q =( 1 1 l )

in monoclinic unit cell, which correspond for a +120° in-plane rotation to respectively (0 1

l + 1
6 ) and (0 2 l + 1

3 ) and for a -120° in-plane rotation to respectively ( 1̄
2

1
2 l + 1

3 ) and ( 1̄ 1

l + 2
3 ). For the first Q direction, a peak is expected at the eigenvalue of 16 meV corresponding

to a contribution from only one of the domains, while for the second Q direction, a peak

is expected for an eigenvalue of 40 meV, with a contribution from each of the domains. In

addition, there is a broad bump around 25 meV which corresponds to the superposition of the

dispersive spin waves from the different domains.

Figure 3.12: Inelastic neutron scattering on IN8 for Ql =−2.667 [r.l.u.]. The energy transfer ∆E
range is 12 to 28 meV for Q = (0.5 0.5 -2.667) and 29 to 50 meV for Q = (1 1 -2.667).
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Figure 3.12 illustrates the type of scattering measured at the Brillouin zone centers (0.5 0.5

-2.667) and ( 1 1 -2.66) on the IN8 spectrometer in ILL with a graphite PG(002) analyser and

no collimation. A Si(111) monochromator was used for the measurements of the spin gap at

∆E ∼ 16 meV with k f =2.662Å−1, while the high energy spin waves at 40 meV were measured

using a Cu(200) monochromator with a k f = 4.1 Å−1. Although presented on the same figure,

the resolution of the 16 meV feature and the 40 meV features are not at all similar, due largely

to the change of monochromator and the different values of Q.

In order to increase the relative intensity of the 16 meV mode with respect to the broad

scattering from spin waves in other domains, another experiment was carried out on the

thermal triple axis IN20 with the sample rotated by 60 degrees such that the largest domain

was in the scattering plane. Figure 3.13.b shows the 16 meV mode measured on IN20 at Q =(0.5

0.5 l ) corresponding to (0 1 l + 1
6 ) for the largest domains, while figure 3.13.a shows the 40 meV

mode measured at Q=(1 1 l) obtained on IN8. Figure 3.13.a-b both show that there is no clear

dispersion along l , as the energy centres of each peaks appear constant as Ql varies from a

Brillouin zone center (BZC) to a Brillouin zone boundaries (BZB).

Figure 3.13: a)Intensity of the ∼ 16 meV mode measured at Q = (0.5 0.5 l ) with varying Ql
between Brillouin Zone centers (BZC) and Brillouin zone boundaries (BZB) on IN20. The
sample was rotated by 60 degrees to measure the magnetic scattering from the largest magnetic
domain. b)Intensity of the ∼ 40 meV mode at Q = (1 1 l ) with varying Ql between Brillouin
Zone centers (BZC) and Brillouin zone boundaries (BZB) on IN8.

In order to put an upper bound on the dispersion along Ql and to quantifying the interlayer

coupling J’, each dispersion mode was fitted using a damped harmonic oscillator (equation

2.10). The renormalised Q-dependent frequencies Ω0 are given by the eigenvalues of the

Hamiltonian and the structure factor A(Q) is given by the eigenvectors of the effective Hamilto-
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nian in equation 3.5. This function was then convolved with the instrumental resolution using

the Monte Carlo algorithm trixfit (refer to 1.1.8), with the interlayer exchange parameter J ′ as

the only free parameter in the calculation of the eigenvalues. An additional broad Gaussian

background was added in order to account from the magnetic scattering from the spin waves

of the other two domains.

Figure 3.14 shows the results of the fits for both the 16 meV mode from IN20 data and the

40 meV mode from the IN8 data for some of the measured Q points. It can be seen that the

asymmetrical shape of the modes is well represented when taking into account the instrumen-

tal resolution. The damping width Γwas constrained to the same value for all the fits with a

resulting estimate of Γ∼ 0.58±0.1 meV.

Figure 3.14: Fit results for of S(Q,ω) convolved with the instrumental resolution fonction. The
interlayer coupling J ′ was a free parameter of the dispersion. a) Fits of the IN20 Constant-Q
scans for Q=(0 1 l ) of the ∼ 16 meV mode. b) Fits of the IN8 Constant-Q scans for Q=(0 2 l ) of
the ∼ 40 meV mode. This peak is a superposition of the 40 meV excitation of the three domains
at in-plane Q=(0 1), (1 1) and (1̄ 1).

For each of the constant-Q scans measured on IN8 and IN20, each peak was fitted for indepen-

dent interlayer exchange coupling J ′. The resulting J ′ values obtained from each independent

fit is shown in figure 3.15, and an estimation of J’= −0.0073±0.0003 meV was obtained by

fitting the J ′ distribution with a constant.
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Figure 3.15: Interlayer exchange coupling J ′ as a function of Ql obtained from fits of S(Q,ω)
convolved with the instrumental resolution from both the IN8 ∼ 40 meV mode and the IN20
∼ 16 meV mode. The red line is the fitted average parameter for J ′

The obtained interlayer exchange coupling J ′ is negative, coherent with the expected anti-

ferromagnetic coupling in between the planes. In addition, we conclude from the very weak

exchange parameter J ′ obtained that the spin waves are close to dispersionless in the Ql

direction. This is also clearly shown by the eigenvalues for both ∼ 16 and ∼ 40 meV modes

obtained from the fits and presented in figure 3.16, where the dashed lines show the calculated

weak dispersion along Ql for J ′ =−0.0073.

Figure 3.16: Fitted energy centers as a function of Ql of the ∼ 16 meV and ∼ 40 meV modes
obtained from IN8 and IN20 data. The dashed lines show the calculated dispersion for the
obtained average J ′ =−0.0073.

FePS3 is thus shown to be a good approximation of a two-dimensional system, and studies

of the excitation spectra can thus focus on the in-plane high symmetry directions showing a

more dispersive behaviour, and the data can be integrated over Ql .
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Excitation spectra in the (a,b) plane

The magnetic excitation spectra of FePS3 in the (a,b) plane were measured on the Merlin

thermal time-of-flight spectrometer at ISIS, using the sample made of seventeen co-aligned

crystals (described in 1.2.2). As FePS3 was shown to have negligible interlayer coupling, the

sample was oriented with ki //c* and the data were integrated over Ql in order to obtain the

magnetic excitation spectra along and perpendicular to (0 k 0) (discussion of this method in

1.1.8). Multiplexing was possible on the Merlin spectrometer, and thus the scattering for two

incident energies were collected at the same time : 31.8 meV and 75 meV at a temperature of

7 K. The datasets were are analysed in monoclinic units as energy slices of S(Q,ω) either along

(0 k 0) or perpendicular to (0 k 0), the latter corresponding to slices along Q = (h k −h/3) for

several values of k.

Figure 3.17.a shows a slice in reciprocal space at k = 1 for the incident energy Ei =75 meV. This

corresponds to the high symmetry direction (0,0) to P shown in the inset of figure 3.7. The

dispersion along this direction was expected to be highly dispersive from the results of [97],

and this single crystal data show that it is indeed the case. The colorbar is in arbitrary units

and will be the standard for the colorplots of all the energy slices from the Merlin dataset.

Figure 3.17: a) Merlin energy slice along Q = (h 1 -0.333h) for an incident energy Ei of 75 meV
and a temperature of 7K.
b) One-dimensional cut of the energy slice along Q = (h 1 -0.333h) at constant energy transfer
∆E = 20 meV with energy integration dE = ±0.5. The red line is a fit of the spin waves by
Gaussian functions.
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One dimensional cuts were extracted from these energy slices and fitted with Gaussian func-

tions in order to extract the spin wave energies ∆Ec as a function of Q. Figure 3.17.b shows an

example of the fit of a one-dimensional cut for (h 1 −0.333h) at an energy transfer of ∆E = 20

meV with an energy integration of dE =±0.5 meV.

Figure 3.18a-c shows the results of the fits of the spin wave dispersion energies, represented as

white circles superimposed on the energy slices along a) (h 1 -0.33h) for Ei = 75 meV, b) (h 1.5

-0.33h) for Ei = 75 meV and c) (0 k 0) for Ei = 31.8 meV. For Figure 3.18a-b, the fits were done

for constant-energy scans with dE =±0.5 meV, while for the perpendicular direction (0 k 0)

shown in figure 3.18.c, the fits were done for constant-Q scans with dQ =±0.075 [r. l. u.].

Figure 3.18: Merlin Energy slices at 7K along three high symmetry directions with results of the
fits of the spin wave energies shown as white circles. a) Energy slice along ( h 1 -0.33h) for an
incident energy Ei = 75 meV. b) Energy slice along ( h 1 -0.33h) for an incident energy Ei = 75
meV. c) Energy slice along ( 0 k 0) for an incident energy Ei = 31.8 meV.

In figure 3.18a and c, there is some inelastic scattering signal for which the extracted energies

were not taken into account in the refinement of the exchange parameters. Indeed, they

appear inconsistent with the expected spin wave dispersion : around h = 0 and ∆E ∼ 25 meV

for figure 3.18.a and dispersive modes up to ∆E ∼ 25 meV in figure 3.18.c. These features are

due to the spin wave dispersion of the two other magnetic domains, which have been shown

in section 3.2.1 to be rotated by 120° in the (a,b) plane.

Additional spurious scattering that cannot be explained by spin waves of the other domains is

also present in figure 3.18.c as an arc of intensity from ∼ 24 meV at (0 0.5 0) to 17 meV at (0 2.5

0) and extra scattering in the top right-hand corner. However, this scattering was also present

for an empty sample holder, so that they can be identified as instrumental background and

not as magnetic contributions.

From the work done in [97], the spin wave dispersion was expected to be extremely weak in

the energy slice along (0 k 0). However, figure 3.18.c shows that the spin wave dispersion is

larger than expected, although still relatively weak. It seems that FePS3 is no so close to being

one-dimensional material as what was previously thought, with more exchange interaction

than expected between ferromagnetic chains.
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The obtained spin wave energies were then fitted with the expression for the spin-wave

dispersion given in eq. 3.6 obtained from the diagonalisation of the effective Hamiltonian. In

this case the model is extended to three dimensions in order to take into account the averaged

weak interlayer coupling J ′ =−0.0078 meV obtained in the previous section.

The model for a three-dimensional magnetic unit cell is shown in Figure 3.19, comparing one

of the magnetic sublattice to the monoclinic unit cell. The in-plane vectors of the magnetic

unit cell amag and bmag are identical to the previously used ah and bh in [97], and the trans-

formation matrix for the Miller indices between a magnetic sublattice and the monoclinic unit

cell is :h

k

l


m

=

1 0 0

1 1 0

0 1
2 1


h

k

l


mag

(3.8)

Figure 3.19: One of the four interlocking primitive sublattices used to calculate the dynamical
structure factor, compared to the monoclinic unit cell. Red and blue spheres correspond
respectively to spin up and spin down moments. amag = ah = am and bmag = bh = 2ah

correspond to the two dimensional hexagonal unit cell used in [97] with γmag = 120°. The

lattice parameter cmag = am
3

√
7+ tan2β, with αmag = 126.7° and βmag = 83.1°.

The overall form of the effective Hamiltonian HM is the same as the 2D Hamiltonian on a

honeycomb lattice in [97], and adding the interlayer coupling J’ only leads to the following

modifications of the components A, C and D in the Hamiltonian given in eq 3.5 :

A = 2J2 cos(2πh)−∆− J1 +2J2 +3J3 +4J ′

B = J1 exp( 2πi
3 [2h + k

2 ])(1+exp(−2πi h))

C = 2J2(cos(πk)+cos(2π[h + k
2 ]))+ J ′ cos(π[k +2l ])

D = exp( 2πi
3 [2h + k

2 ])

× (J1 exp(−2πi [h + k
2 ])+ J3(2cos(πk)+exp(−2πi [2h + k

2 ]))

+2J ′ exp(πi
3 [h +k])cos(π[h +k +2l ])

. (3.9)
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The obtained best exchange parameters are listed in Table 3.4 and compared with the results

that had been obtained from the fit of the density of states in [97]. Figure 3.20 shows the

resulting dispersion for four directions of the excitation spectra using the new exchange

parameters, showing overall agreement of the calculated dispersion with the data.

Table 3.4: Exchange parameters in meV obtained from the excitation spectra from single
crystals on Merlin compared to the exchange parameters from [97]

J1 J2 J3 J ′ ∆

Best fit parameters 1.46(1) -0.04(3) -0.96(5) -0.0073(3) 2.66(8)
Parameters from [97] 1.49 (3) 0.04 (3) -0.6(2) - 3.7(3)

Figure 3.20: Merlin Energy slices at 7K along four high symmetry directions with the calculated
dispersion using the best fit exchange parameters shown as white curves.

These new exchange parameters were then used to simulate S(Q,ω) for one domain, using

an artificially broadened Damped Harmonic Oscillator function such as the one described in

equation 2.10. The damping Γwidth was increased in order to take into account the instru-

mental resolution. In order to compare with the scattering neutron intensity, the calculated

intensities were multiplied with the isotropic Fe2+ magnetic form factor squared. Figure 3.21

shows the result of the simulation for one domain along Q directions that can be compared

directly with the energy slices shown in Figure 3.20. In addition, the dashed lines represent the

expected spin wave dispersion of the other two domains.
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3.2. FePS3

Figure 3.21: Simulation of S(Q,ω) for one magnetic domain using the best estimates for the
exchange parameters in FePS3. The dashed lines correspond to the simulated dispersion of
the spin waves from the other two domains.

Overall the agreement is good, with the modelled intensity variation corresponding roughly

to what was observed in the experimental data, in particular for the dispersion along (0 k

0) and (h 1 -0.33h) in figure 3.20.b and d. Some discrepancies with the dispersion observed

in the neutron data exists do exist, visible in particular in the wider and rounder shape of

the calculated dispersion along (h 0.5 -0.33h) and (h 1.5 −0.33h) shown in 3.20.a and c. This

cannot be resolved within this set of exchange parameters, and appears to come from the

increase of J3. A balance between J3 and the anisotropy∆ cannot thus be completely obtained,

so that they may be compensating for additional weak effects that are not taken into account

when using this particular Hamiltonian to describe the spin waves in FePS3. In particular, the

construction of this Hamiltonian only takes into account equivalent exchange parameters

for equivalent distances between the moments. However, each moment is ferromagnetically

coupled to two of its nearest neighbour and antiferromagnetically to the third. Considering

non-equivalent exchange interactions between equidistant neighbours could be a possibility

in order to reproduce more closely the measured magnetic dynamical structure factor.

To conclude this study of the magnon dynamics, FePS3 is found to be a good model compound

for a quasi two-dimensional anti-ferromagnet, with an interlayer coupling that has a negligible

effect on spin waves dispersion. In addition, modelling the exchange interactions using an
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Heisenberg Hamiltonian with a single ion anisotropy appears to reproduce the essential

characteristics of the excitation spectra obtained using inelastic neutron scattering, and the

exchange parameters previously evaluated from the density of states in [97] could be refined.

Furthermore, FePS3 is shown not to be as close to a 1D compound as expected. Indeed, the

obtained exchange coupling between third nearest neighbour J3 is estimated to a substantially

larger value than for the powder data, with the magnitude of the anisotropy correspondingly

decreasing. Although weak, the spin waves clearly show a dispersive behaviour along (0 k 0)

as shown in figure 3.20.d.
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Critical properties

In order to expand the discussion on the phase transition in FePS3, the temperature de-

pendence of both the magnetic Bragg peaks,the spin gap and the quasi elastic scattering

in powdered samples were studied on the thermal time of flight spectrometer IN4 and the

polarised diffractometer D7 at the ILL.

Concerning the experiment on the thermal time-of-flight spectrometer IN4 , the FePS3 powder

pellets were stacked in Al foil with mutually orthogonal axis in an attempt to minimize pre-

ferred orientation and inserted in a helium cryo-refrigerator. Initial measurements showed no

difference in the inelastic spectra as a function of sample rotation, so that the rotation was kept

fixed for the subsequent measurements. The temperature dependence of the magnetic Bragg

peaks was measured using a wavelength of 3 Å, while the inelastic response were measured

using a wavelength of 1.1 Å, giving a resolution of 3.8 meV at the elastic line.

The intensity of the Q = 1.61 Å−1 Bragg peak was integrated over the full energy range for

each measured temperature between 1.5K and 150K with an incident wavelength of 3 Å. The

resulting temperature dependence of magnetic order parameter was then fitted using the 2D

Ising model on a honeycomb lattice which was derived for S=1/2 in [109], following the work

in [100] :

M(T ) =
(
1− 16z3(1+ z3)(1+ z2)3

(1− z2)6

) 1
8

(3.10)

with z = e−2K for K = 2S J
kB T . The critical exponent 1

8 corresponds to a typical Ising power law

computed for the Onsager’s exact solution for the 2D Ising model on a square lattice.

Figure 3.22: Temperature dependence of magnetic order obtained from integrating the mea-
sured intensity corresponding to the Bragg Peak at Q = 1.65 Å−1. The red line is a fit of the data
by the equation 3.10 with parameter 2S J = 6.19±0.01 meV (71.83 K).
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This model only takes into account one exchange parameter J for a nearest neighbour anti-

ferromagnetic interaction, which is known not be sufficient to describe fully the interactions

in FePS3. Nevertheless, the obtained J = 6.19
2S = 1.55 meV for S = 2 is close to the best fit value

shown in Table 3.4, so that this model describes well the temperature dependence of the

magnetic order parameter in FePS3.

The inelastic scattering was also measured on IN4 with λ= 1.1Å for temperatures between

1.5K and 294K. Figure 3.23 shows the obtained excitation spectra as a function of |Q| at 1.5K.

The expected scattering from magnon is clearly visible at low Q, with a spin gap of ∼ 16 meV,

and the excitations extend up to ∼ 40 meV. However, as Q increases, the spectrum becomes

clearly dominated by non-magnetic excitations from ∼ 10 meV, which can be attributed to

phonon excitations.

Figure 3.23: Inelastic spectra at 1.5K as a function of |Q| obtained on IN4 with wavelength 1.1A.
The high Q part of the spectrum is clearly phonon dominated.

In order to establish the temperature dependence of the spin gap, the phonon contributions

to the inelastic spectra were estimated and subtracted from the dataset, to obtain only the

magnetic scattering such as shown by figure 3.24 for 1.5K. The obtained spectrum is phonon-

free and the magnon density of state is clearly separated from the background. Nevertheless,

there is additional spurious scattering around ∼ 7 meV between 3 and 6 Å, which is likely an

artifact of the analysis.
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3.2. FePS3

Figure 3.24: Magnetic excitation spectra at 1.5K as a function of |Q| obtained on IN4 with
wavelength 1.1A after phonon substraction showing the density of states of the spin waves
between ∼ 16 meV and ∼ 40 meV.

The phonon subtraction was performed for each measured temperature using the following

procedure, which will be detailed in the case of the 1.5K spectra.

The coherent differential scattering cross section for one phonon scattering is given in [9] as :(
d 2σ

dΩdω

)
coh

=k f

ki

(2π)3

v0

∑
τ

∑
j ,q

1

ω j

∣∣∣∑
i

b̄ip
mi

exp(−2W )exp(i Q ·Ri )(Q ·e j
i )

∣∣∣2

× [n(ω)+1]δ(ω−ω j )δ(Q−q−τ)

(3.11)

which includes the dynamical structure factor
∣∣∣∑i

b̄ip
mi

exp(−2W )exp(i Q ·Ri )(Q ·e j
i )

∣∣∣2
showing

that the intensity is proportional to a factor (Q · e j
i )2 with e j

i the polarization vector of the

phonon mode. Thus the intensity of the phonon mode follows a quadratic dependence on |Q|.
This factor also means that only the component of the displacement along the direction of

momentum transfer is probed by neutrons. In addition, the intensity of a phonon depends

inversely on its energy as shown by the 1
ω j

factor, and the Bose factor [n(ω)+1] is also energy

dependent.

The higher Q excitation spectrum shown in figure 3.23 follows this characteristic intensity

dependence, and thus it can be clearly attributed to phonons. All these factors will be taken

into account in order to model the phonon intensity as a function of |Q| and ω. The exact

dispersion of the phonons in FePS3 were not calculated (although phonon dispersion curves
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were derived in [110]), and a phenomenological energy dependence was obtained for each

temperature.

To summarize the procedure, the elastic line was first fitted with a Lorentzian function at low

temperature and low Q. The phonon modes were then obtained by fitting constant-Q cut

of the inelastic spectra with Gaussian functions at low temperature and for a high Q. The

Q-dependence of the phonon modes was then obtained by fitting a constant-energy cut of the

inelastic spectra at low temperatures. Finally, these parameters were fixed, and the intensity of

the obtained phonon excitations was scaled as a function of temperature.

The fitting procedure of the inelastic scattering at constant-Q was done at Q = 6.7 Å−1, chosen

as large as possible in order to have no magnetic scattering in the spectra. Indeed, as detailed

in 1.1.6, the magnetic intensity is proportional to the magnetic form factor squared f (|Q|)2 and

thus decreases as |Q| increases. Figure 3.25 shows the isotropic magnetic form factor squared

f (|Q|)2 for Fe2+ from which it is clear that there is only phonon scattering in the constant-Q

cut at Q = 6.7 Å−1.

Figure 3.25: Isotropic magnetic form factor for Fe2+. At |Q| = 6.7 Å−1, the magnetic form factor
squared is reduced to less than 1.5%

Figure 3.26 shows the result of the fit of to phonon modes for the constant-Q cut at Q = 6.7

Å−1 ( with dQ = 0.1 Å−1) with Gaussian functions, with the line-shape of the elastic peak fixed

from a Lorentzian fit done at low Q. Indeed, the elastic line of the time-of-flight spectrometer

IN4 has an asymmetric line-shape, and the phonon excitation around 10 meV can be well

separated from the elastic line by fixing its fitted parameters. From this we obtain the intensity

of the phonon modes as a function of energy for Q = 6.7 Å−1.
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Figure 3.26: Result of the fit of the constant-Q cut at Q = 6.7 Å−1 (dark blue line). The individual
phonon modes are fitted with Gaussian functions (green curves). The elastic line (cyan curve)
was fitted by a asymmetrical Lorentzian function fixed from low Q cuts.

In order to obtain the variation of the phonon scattering intensity as a function of Q, the

phonon mode at 50 meV was fitted with a quadratic function. Figure 3.27 show the Q2

dependence of the phonon intensity.

Figure 3.27: Fit of the 50 meV phonon mode as a function of Q for the phonon-dominated
region.

Finally, the Bose factor can be computed as a function of energy and temperature. As the

temperature increases, this factor will be very important in order to properly account for the

phonon modes. For each data points in (2θ,ω) space, the corresponding |Q| was calculated.

Fixing the previous results for the energy-dependence, the Q-dependence and the Bose factor,

the phonon intensity is then calculated as a function of |Q| and ω for each data points, and

subtracted from the measured scattered intensity. Converting the obtained spectra into (|Q|,ω)

space, a phonon-free excitation spectrum is obtained, such as the one shown in figure 3.24.

This procedure was followed for each temperature, modifying the Bose factor accordingly.
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In order to obtain the temperature dependence of the magnetic density of states, the phonon-

subtracted dataset in (2θ,ω) space was integrated over the low 2θ angles (13-28 degrees),

corresponding to Q < 4.2 Å−1. Figure 3.28 shows the resulting inelastic spectra for a few

selected temperatures, which only contains magnetic scattering. The gap appears to be

renormalised towards lower energies as the temperature increase, and to go rapidly towards

zero close to the Néel temperature. There is some apparent residual scattering at 150K around

10 meV, which can be attributed to strong ferromagnetic quasi-elastic scattering coming up

against the kinematic constraints of the measurement.

Figure 3.28: Magnetic scattering as a function of energy transfer after phonon subtraction
for selected temperature : at base temperature at 1.5K (red), at temperature close to the Néel
temperature, and well above the Néel temperature at 294 K (black).

Figure 3.29 shows the evolution of the spin gap as a function of temperature, obtained from

the IN4 data after phonon subtraction and integration over the low 2θ angles. The gap appears

to fall rapidly close to the Néel temperature, and broad and intense quasi elastic scattering

starts to develop above TN . From this it is not obvious whether the gap goes down to zero

close to the critical temperature, due to the overlap with strong quasi-elastic scattering, for

which the DHO width can be estimated to be ΓQE ∼ 10 meV.

The resulting temperature dependence of the spin gap can be compared with the inelastic

spectra obtained on Merlin for an Ei of 31.8 meV. Figure 3.30 shows energy slices along (h 0.5

−0.33h) for four temperatures, two below the Néel temperature (7K and 109K) and two above

(133K and 300K). The arc of weak scattering around 23 meV stays constant with temperature,

and was shown to be spurious by measurements of an empty sample holder.
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Figure 3.29: The low angle inelastic spectra as a function of temperature, after phonon-
substraction, showing the evolution of the spin gap and the quasi-elastic scattering close to
the Néel temperature.

Figure 3.30: Energy slices of the Ei = 31.8 meV Merlin dataset on a single crystal (experiment
describe in 3.2.2), showing the spin wave dispersion along Q=(h 0.5 -h/3) at four temperatures:
a) 7K, b) 109K, c) 133K and d) 300K.
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The inelastic spectrum along (h 0.5 −0.33h) shown in figure 3.30 helps to clarify the tem-

perature dependence of the gap just above the critical temperature. Indeed, the gap does

completely disappear, as shown by figure 3.30.c at 133K. Combining with the IN4 results, the

spin gap is thus shown to renormalise from 16 meV to ∼ 10 meV as the temperature increases

from 1.5K to ∼ 115K, and then it drops down rapidly to zero close to the critical temperature.

This drop of the spin gap appears to be concomitant with the onset of strong quasi-elastic

scattering, which dominates the spectrum well above the critical temperature.

To focus on the nature and the temperature dependence of the quasi-elastic scattering around

the Néel temperature, a polarised neutron experiment was carried out using the diffuse

scattering spectrometer D7 at ILL, using the powder-pellets sample of FePS3 inserted in a

helium cryo-refrigerator. The instrument was configured with an incident wavelength of 3.2 Å,

corresponding to Ei =9.61 meV. As no energy analysis was used, and with a wavelength cut-off

set based on the sample width (∼ 13 mm), each detector measured the scattering energy-

integrated between -45 and 9.61 meV. All the data was scaled using the D7 calibration method

(see 1.1.9), with the size and shape of the quartz and vanadium approximately matching the

sample. The scattering from the sample was also converted to absolute units (barns sr−1

f.u. −1).

Initial measurements were performed with XYZ polarisation analysis at 1.4K, 140K and 300K,

in an attempt to separate the magnetic scattering and the combined nuclear coherent and

isotropic incoherent scattering from the nuclear spin incoherent scattering. However, as the

sample showed preferred orientation, the magnetic scattering was not independent on the

direction of Q, and the separation failed at 1.5K and 140K. At 300K, the impact of preferred

orientation was lower, and figure 3.31 shows the three cross sections obtained.

Figure 3.31: Magnetic (blue), incoherent (red) and combined nuclear coherent and spin
incoherent scattering (green) cross sections obtained on D7 for FePS3 at 300K.
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Figure 3.31 shows a surprising large nuclear spin incoherent cross section compared to the

contribution of FePS3 alone, which can be calculated from tabulated values[10] to be 0.0075

in barns sr−1 f.u. −1. A usual source for large incoherent cross-section would be hydrogen, and

thus it is likely that water has been adsorbed in the powder samples of FePS3 (frequent in this

family of compounds, in particular for NiPS3[111, 112]).

Due to the large preferred orientation, the experiment was then carried out with the polariza-

tion directed along Z only . In this case, the spin flip cross section corresponds to 2/3 of the

nuclear spin incoherent cross section added to the magnetic cross section for the magneti-

zation perpendicular to Q and Z. The temperature dependence of the spin-flip cross section

measured is shown in figure 3.32, which shows the expected loss of intensity of the magnetic

Bragg peaks at TN . In addition, the intensity of the lowest Bragg peak is transferred to strong

scattering intensity in the forward direction just above TN .

Figure 3.32: Spin-flip cross section as a function of temperature for FePS3 with polarisation
along Z

In order to study this transfer of intensities towards lower Q, the spin-flip cross section was

integrated over two Q-ranges as a function of temperature. The first Q-range corresponds to

integrating over the magnetic Bragg peak around Q ∼ 1.65 Å−1 and the other corresponds to

the low Q < 0.4 Å−1, well below the lowest magnetic Bragg peak. Figure 3.33 presents these

integrated intensities as a function of temperature, which clearly shows that the onset of the

low Q scattering corresponds to the decrease of the magnetic Bragg peak intensity.

As the strong magnetic scattering above TN is at far lower Q than any magnetic Bragg peak,

it can be attributed to an increase of ferromagnetic short ranged correlations. As the long-

range magnetic order disappears at TN , it thus appears to concomitant with an increase of
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Figure 3.33: Spin-flip cross sections integrated over two different Q range: in blue is shown the
integrated intensity of a magnetic Bragg peak for 1.5 <Q < 1.7 Å−1 while in red the integration
is done over the Q < 0.4 Å−1 range.

ferromagnetic short-range order. These results are consistent with previous inelastic scattering

spectra obtained in [97], from which a transition to strong one-dimensional ferromagnetic

fluctuations was suggested.

Regarding the critical properties of FePS3, the magnetic order transition is shown to be well

modelled by a 2D Ising model on a honeycomb lattice. In addition, the spin gap measured as

a function of temperature is shown to drop abruptly to zero close to TN , concomitant with

an increase of strong quasi-elastic scattering. Polarized neutron results indicate the onset

of ferromagnetic short-ranged correlations close to TN so that the quasi-elastic scattering

appears to be largely magnetic. As evidenced by the drop of the spin gap close to TN , it appears

that the magnetic anisotropies in FePS3 follow a first order transition, which is coherent

with the previous measurements of specific heat, lattice parameters changes and Mössbauer

spectroscopy [103, 106, 104]. There is no long-range magnetic order above TN , however

quasi-elastic short-ranged magnetic correlations appear close to the transition temperature

and persist up to room temperature. As discussed in 3.2.1, there are strong ferromagnetic

interactions along the chains at low temperatures, and weak antiferromagnetic interactions

between the chains. The short-ranged ferromagnetic correlations appearing at the critical

temperature could then well be along this chain direction, with no correlations between the

chains. One can imagine either one-dimensional ferromagnetic short-ranged order, or two

dimensional short-ranged order due to the collinear stacking of the chains perpendicular to

the (a,b) plane. Neutron scattering on powdered samples cannot confirm or infirm either of

these hypothesis, although they are consistent with the observed magnetic scattering around

TN .
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3.2.3 High-field magnetisation

A tricritical point, derived in thermodynamical theoretical studies of 2D Ising system on a

honeycomb lattice in a transverse field[113, 114, 115], may exist in FePS3 at large fields (above

50T). Investigation of the magnetisation of FePS3 at such high fields requires pulsed fields

such as the ones available at the High magnetic Field lab of Los Alamos National Laboratory,

USA.

Beyond the 2D Ising model on a square lattice solved by Onsager[116], the unsolved 2D Ising

model in external non-zero magnetic field, despite its apparent simplicity, is a model that

predicts possible tricritical points and quantum phase transition. Of particular interest is

the 2D honeycomb lattice in a transverse field, which has the lowest coordination number

(z = 3) for 2D lattices. The thermodynamics of this type of lattice have been studied using the

following Hamiltonian :

H =−∑
i , j

JSz
i ·Sz

j −∆
∑

i
(Sz

i )2 −Ω∑
i

Sx
i (3.12)

with J the magnetic exchange parameter,∆ a single ion anisotropy andΩ an external transverse

field. Using this model for S = 2, a tricritical point was reported in [115, 113, 114] depending

either on the ratio of the anisotropy to the exchange or on the transverse field applied to the

exchange, with possible quantum phase transition. The importance of the field direction is

shown in [117], with calculations using a random field instead of a transverse field yielding

no tricritical point. Figure 3.34 shows an example of the predicted tricritical point in [113]

for a 2D Ising system with S = 2 in a transverse field, with a possible tricritical point at the

junction between first order and second order phase transitions between a disordered phase

and ordered phases, for a ratio ∆/J =−1.32 and a ratioΩ/J ∼ 1.1.

FePS3 is a potential candidate compound for testing these theories, as it has an honeycomb

lattice and a large single ion anisotropy, and has been shown to behave as a 2D material.

FePS3 has more exchange interactions, so that it is difficult to estimate whether the ratio of

anisotropy to the exchange corresponds to the value necessary for tricritical point. An rough

estimation of the critical field can be obtained in [115], given by

Ω= S
8

5
p

5
J (z −1) (3.13)

with z the coordination number. In the case of FePS3, using an estimate of J = J1 = 1.46 meV,

S = 2 and z = 3, the estimated critical field is 4.18 meV, which corresponds to ∼ 72 T. Using the

results in [113], the estimated field would rather be ∼ 28T . An estimated value for the ratio

anisotropy to exchange parameter in FePS3 is ∆/J =−1.82.

Evidence for a critical point in a Kagomé lattice with S = 5/2 had been found in the antiferro-

magnet KFe3(OH)6( SO4 )2 [118], with a corresponding theory described in [119] predicting a

tricritical point at Tc =47.3K and Hc =12.9 T. The signature of a possible tricritical point in this
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Figure 3.34: Ground-state phase diagram as a function of anisotropy ratio (D/3J) and the
transverse field ratio (Ω/3J ) calculated in [113]. The tricritical point Tr is between a disordered
phase D and two ordered ferromagnetic phases O1 and O2. The dotted line denotes a first-
order transition, and the solid line a second-order transition.

compound was found by combining magnetization measurements and neutron spectroscopy

to understand the nature of transitions as function of field and temperature, making high field

measurements a starting point for searching for a tricritical point in FePS3.

In FePS3, no tricritical point is expected for a longitudinal field. The high field magnetization

in this orientation was already measured in [120, 121] for a maximum applied field of either

38 and 45 T. These previous results show a transition as a two step process, with an hysteresis

smaller than 2T for base temperature,as shown by Figure 3.35 from [121]). These results have

been reproduced in [120].

An experiment to measure the magnetisation in a 65 T pulsed field was carried out at the High

magnetic Field lab of Los Alamos National Laboratory, USA. The extraction technique was

used, with a probe measuring dM/dt for two configurations, either with the sample inside

the probe’s coil or without the sample (corresponding to measuring the background). The

data was then time-integrated for both configurations. Background subtraction was done

by simple subtraction of the two configurations (with and without the sample). The magnet

was calibrated and checked using 10T pulse, adjusting the gain to optimize the signal to noise

ratio. The 65T pulses lasted about 10 ms. For faster cooling down to 4K, the sample space was

flooded with liquid helium.

Two samples with different alignment were measured, one with a field applied along the

moment direction c*, and one with the field applied in the (a,b) plane, along b.
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Figure 3.35: Results for H//c* from [121] with a maximum pulsed field up to 45 T showing a
two step process with a small hyteresis

Applied Field along c* Figure 3.36 shows the magnetisation as a function of applied field at

4K and 100 K for respectively a 65 T pulsed field and a 50 T pulsed field. At 4K, a very large

hysteresis is present, with a transition at 44.05 T when the field increases, and a transition at

23.9 T when the field decreases. At 100K the hysteresis is still present, but the magnetisation

does not show any sharp transitions. These results show large discrepancies with the two-step

process with a small 2 T hysteresis previously measured in [99].

Figure 3.36: Magnetisation as a function of applied field H//c* at 4K and 100K showing a very
large hysteresis at base temperature. The direction of the arrows shows whether the data was
obtained upon an increase or a decrease of the applied field.
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Applied Field along b For the second sample, the magnetisation was measured for a trans-

verse field H//b, with maximum pulsed fields between 30 and 65T. Figure 3.37 shows the

magnetisation curve as a function of maximum applied field. Focusing on the 65 T pulse,

when the field increases a linear behaviour is observed up to 35 T, followed by a broad tran-

sition up to 45 T, and another linear behaviour from 45 T to the maximum field. When the

field decreases, we observe a linear behaviour down to 21.5 T, a sharp transition, and a linear

behaviour back to zero. The sharp transition as the field decreases is not observed for a maxi-

mum applied field of 30, 38, 44 or 47 T. This transition only appears for 50,55 and 65 T, with a

different amplitude and at slightly varying fields.

Figure 3.37: Magnetisation as a function of field for different maximum field. Applied Field
along b.

These variations as a function of maximum applied field for pulses > 50 T are shown in

figure 3.38 for maximum applied fields of 50, 55 and 65T. No sharp transition appeared for a

maximum applied field lower than 50T. The transition field increases as the maximum applied

field increases and the variation of magnetisation is also larger with larger maximum field.

Figure 3.39 shows the temperature dependence of the magnetisation for three different temper-

atures (4, 25 and 50K). Although smaller (5T), there is still an hysteresis at higher temperatures,

but the transitions appears to be a gradual two step process instead of a sharp transition. The

behaviours when the field is ramped up and down seems to become more symmetrical.

As mentioned in the set-up, the sample were immersed in liquid 3He(for faster cooling) for

both H//c* or H//b measurements. To check the reproducibility of the measurements, a

65T pulsed magnetization measurement was done after warming up to 200K, and cooling
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Figure 3.38: Transition field and amplitude of the transition as a function of the maximum
applied field for sample 2. Applied Field along b.

Figure 3.39: Magnetisation as a function of field for different temperatures (4K, 25K, 50K).
Applied Field along b.

back to 4K without flooding sample space with liquid helium. In that case, the sample is

surrounded by gaseous helium. This 4K measurement is shown in figure 3.40, compared to

another 4K pulse for which there was liquid helium around the sample. Surprisingly, these two

magnetisation profiles show very large discrepancies : in the 4K data without liquid helium

around the sample, the size of the hysteresis is drastically reduced to ∼ 5T , and the transitions

show a symmetrical slow two-step process at higher transition fields compared to the other

measurements. Hence it appears that heat exchange with liquid helium plays an important

role in the thermodynamic properties of FePS3.
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Figure 3.40: Magnetisation for 4K and 65T pulse at different time during the experiment.
Applied Field along b.

Dependence of magnetisation on the presence of liquid or gaseous helium A follow-up

experiment was carried out2 at the High magnetic Field lab of the Los Alamos National

Laboratory in order to compare the effect of the presence of either liquid or gaseous helium in

sample space on the transitions.

In figure 3.41, the data obtained for H//c* shows that when the liquid helium is replaced

by exchange gas, the sharp transition with a large hysteresis is replaced by with a smaller

hysteresis and a two step smooth transition at 35 and 39T for increasing applied field and

41 and 39.5T for decreasing field. The magnetisation behaviour observed in [121, 120] was

thus retrieved in the gaseous helium case. From these results, it appears that the transition

field and behaviour of these transitions, as well as the size of the observed hysteresis is very

dependent on the heat exchange with the environment. Note that the magnetisation data do

not return to the same value at zero field. As this was not observed in the first experiment, it is

likely to be an artefact of the analysis.

The magnetisation was also measured both in liquid and gaseous helium for the other field

orientation H//b, and the results for a maxiumum applied field of 65 T are shown in figure

3.42. In that case the magnetisation data in gaseous showed qualitatively similar transitions to

the liquid helium case. This contrasts with previous results shown in figure 3.40, where the

magnetisation at 4K after boiling off the liquid helium resulted in a smooth two step process

with a small hysteresis, closer to what was measured at 25 and 50K . It is therefore likely that

the sample was not effectively in thermal equilibrium at 4K before the field pulse in the first

experiment.

In conclusion, for an applied field along b, the magnetisation data is characterised at low

temperatures by a smooth transition as the field increases, and a sharp transition as the field

decreases. As the temperature is increased, the sharp transition moves to higher field, and

2by Andrew Wildes
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Figure 3.41: Magnetisation for a 50T pulse depending on whether the sample is in liquid or
gaseous helium. Applied Field along c*.

Figure 3.42: Magnetisation for a 65T pulse depending on whether the sample is in liquid or
gaseous helium. Applied Field along b.

the hysteresis reduces in magnitude, with smoother two-step transitions appearing (shown in

figure 3.39). This change with temperature from a sharp to a smooth transition suggests that a

tricritical point may be present within this temperature range, with a first order transition at

low temperature and a second order transition at higher temperatures (above 25 K).

In this case, the applied field was oriented along b, and thus perpendicular to some of the

ferromagnetic chain. As discussed in 1.2.3, the identified (0 k 0) direction from a Laue pattern

could also be identified as (h h 0) or (h h̄ 0). In addition, there are 120°-rotated magnetic

domains in the sample due to rotational twinning, so the field is perpendicular to the ferro-

magnetic chains from only one domain. Characterisation of the domain population of the

measured sample would allow to quantify this.

Moreover, it would be interesting to measure the magnetisation for a transverse field along the

direction of the ferromagnetic chains (along a), to observe whether it has a strong impact on
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the magnetisation properties. This would also allow to compare with the model derived in

[113] for a tricritical point between disorder and ferromagnetic order.

Furthermore, the difference between liquid and gaseous helium shows the impact of non-

adiabatic measurements on magnetisation. In liquid helium, the heat exchange is more

efficient, so that the sample is likely to cool down during the field pulse, leading to drastically

different magnetisation behaviour. On the other hand, a more adiabatic measurement can be

done in exchange gas, with little heat exchange between the sample and its environment.
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3.3 NiPS3

3.3.1 Introduction to the magnetic structure

Similar to MnPS3, the paramagnetic susceptibility of FePS3 is shown to be largely isotropic

[35] above the Néel temperature TN =155K. The magnetic structure is similar to FePS3, with

ferromagnetic chains that are antiferromagnetically coupled. However, the S = 1 moments

are pointing in the (a,b) plane in NiPS3, creating a zigzag-type magnetic order, similar to the

two-dimensional XY antiferromagnet BaNi2(AsO4)2 [122] and the S = 1/2 compound Na2IrO3,

which has been proposed as a realisation of the Kitaev-Heisenberg model [123].

The study of the magnetisation and magnetic structure in [35] combined susceptibility mea-

surements and neutron diffraction on both powder and single crystals. The results showed

discrepancies with previously published results. In particular, the susceptibility above TN was

shown to be isotropic, unlike the anisotropic behaviour measured in [124, 125]. Furthermore,

the magnetic propagation vector was confirmed to be k =[0 1 0] with the moments pointing

mostly along a, unlike the previous conclusion in [88] of moments along c. Figure 3.43 from

[35] shows the proposed magnetic structure of NiPS3 with various orientations, along with the

results of the refinement of the magnetic structure.

Figure 3.43: Figure from [35] showing the observed versus calculated structure factor of
NiPS3 using the best model, along with the obtained magnetic structure viewed with different
orientations.
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These discrepancies are explained by two sources of errors. The first is preferred orientation

of powder samples due to the softness of the materials which leads to a sliding of the weakly

bound planes when grinding, which is also thought to be the case for FePS3 in the results

in 3.2.1 and 3.2.2. The second difficulty with these sample is their sensitivity to glue, which

leads to modification of the susceptibility depending on whether or not the sample is glued

to a support. Careful considerations of these difficulties in [35] confirmed the magnetic

propagation structure as k =[0 1 0], as previously identified in the review [88], however the

moments are shown to point mostly along a. In addition, the strongly anisotropic susceptibility

observed in [124, 125] were explained by the strain of the glue which conserves the magnitude

of magnetization but increases measured anisotropies.

3.3.2 Spin waves

Based on anisotropic susceptibilities measured in the 45 to 65 K range, an Heisenberg Hamil-

tonian with a single-ion anisotropy was used to describe the system in [125]. The nearest

neighbour exchange parameter J and single ion anisotropy D were calculated using from a

modelling of the anisotropic susceptibility to be J =−5 meV and D = 1.39 meV. The nearest

neighbour interaction is stated as antiferromagnetic despite the similar magnetic structure

of NiPS3 to FePS3. In addition, the study in [35] showed that the compound was much less

anisotropic than previously though. Nevertheless, this rough estimation suggests that the

spin waves will disperse in the 15-20 meV energy range, which is a range suitable for thermal

neutron experiments. In addition, an excitation was found at ∆E ∼ 65 meV energy transfer

from Raman spectroscopy and were interpreted as anomalously broad two magnon process

[126]. Neutron inelastic scattering is well suited in that case to measure and check whether

this 65 meV feature is indeed magnetic.

A set of four successive experiment was carried out in order to investigate of the spin wave

dynamics on 10.5g powder samples : triple axis spectrometry on TAIPAN (ANSTO), polarised

time-of-flight spectrometry on D7 at ILL and thermal time-of flight experiments on MARI

(ISIS) and IN4 (ILL). Only results from MARI and IN4 will be shown and discussed. The

common sample for these experiments was composed of three compressed pellets of NiPS3

powder stacked with 90 degrees rotation to each other in order to limit the effect of preferred

orientation discussed in 3.3.1.

The first conclusive experiment was carried out on the direct thermal time of flight instrument

MARI at ISIS. The three pellets were stacked in Al foil and cooled to 4.7K. The slices of energy

as a function of |Q | were obtained at incident energies Ei of 15, 30, 110 and 200 meV in order

to check both the low energy excitation and the 65 meV energy transfer range. In addition, the

high incident energy scans allowed access to the lowest Q range, at the cost of resolution in

energy.

Figure 3.44a shows the intensity as a function of |Q | for an incident energy of 30 meV . There

are strong phonon modes at large Q and a broad feature around Q = 1.2 Å−1 and∆E = 3.5 meV,
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which could correspond to the weak signal observed on D7. In addition, there appears to be a

very steep dispersive magnon mode centred at Q = 0.6 Å−1 which starts to appear at ∆E = 6

meV. The position Q = 0.6 Å−1 corresponds to a strong magnetic Bragg peak.

(a) Incident energy Ei = 30 meV (∼ 65 hrs) (b) Low Q data for Ei = 200 meV (∼ 40 hrs)

(c) Full Q range for Ei = 110 meV (∼ 25 hrs)

Figure 3.44: NiPS3 scattering intensity as a function of |Q | for three incident energies Ei on
MARI : a) 30 meV, b) 200 meV and c) 110 meV). The arrows show the observed inelastic
scattering attributed to the magnetic excitations in NiPS3

The results of the scan for an incident energy of 200 meV are shown in figure 3.44b, zoomed

on the low |Q | scattering. This confirms the presence of a magnetic scattering at very low Q

(close to the kinematic limits) which appears to disperse to Q = 1.2 Å−1 at ∆E ∼ 45 meV. This

mode appears to be limited to 55 meV. It is likely that the scattering starting at Q = 1.5 Å−1

from ∆E=10-30 meV corresponds to the beginning of the phonon mode. Furthermore, figure

3.44c shows the results for an intermediate incident energy of 110 meV. It is clear from this

that there are no excitations at the estimated bound magnon energy of 65 meV in the Q range

accessed.
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Finally, an additional experiment was done on the thermal time of flight spectrometer IN4 at

ILL. As the minimum scattering angle is higher on IN4, the kinematic constraints did not allow

the low Q magnetic scattering to be measured, so that the aim of this experiment was to check

the 3.5 meV feature around 1.2 meV seen on MARI. The sample was composed of the three

compressed pellets stacked in Al foil held in a Cadmium slab. Angle between the beam and

the Cd slab was about 45 degrees. Two incident energies Ei were measured : 8.74 meV and 31

meV, for a set of 5 temperature between 1.7K and 300K in order to discriminate phonons and

magnons. The resulting map (Ei =8.74 meV at 1.7K is shown on figure 3.45 ) shows no evidence

of magnetic scattering in the accessible Q range. The 3.5 meV feature observed at Q=1.2 Å−1

on MARI can then be attributed to a spurious event.

Figure 3.45: Incident Ei = 8.75 meV for NiPS3 on IN4 (∼ 15 hrs) showing no evidence of any
magnetic scattering in accessible (~ω,Q) range

From this set of experiments, it can be concluded that the spin waves in NiPS3 are strongly

dispersive and present only at very low Q. A rough estimation of the spin gap from the results

on MARI would be 6 meV. The excitation appears to disperse from 6 meV at Q = 0.6 Å−1

to 1.2 meV with a maximum energy transfer of 55 meV. No evidence of the bound magnon

mode seen in Raman spectroscopy could be found in any of these experiments. The best

suited instrument in order to reach these very low Q values in the interesting energy transfer

range would be a time of flight spectrometer for small scattering angle inelastic scattering

such as BRISP at the ILL. This would allow to check for the presence of a spin-gap below 6-8

meV, expected to be small based on the largely isotropic susceptibilities measured in [35]. A

complementary measurement on the time-of-flight spectrometer MAPS at ISIS with a large

incident energy of Ei ∼ 500 meV would allow to focus on the spectral weight at larger energy

transfers.
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3.4 Conclusions and Outlook

Several conclusions can be reached from focusing on the magnetic excitation spectra of

FePS3. The magnetic structure of FePS3 has been clearly shown to have the propagation vector

k = [01 1
2 ], confirmed by refinement of the structure from diffraction measurements. These

new neutron scattering results, compared to pre-existing data clarified the discrepancies

between propagation vectors proposed in the literature. In addition, rotational twinning has

been shown to lead to 120°-rotated magnetic domains about the c* axis, so that any further

study of the dynamical or critical magnetic properties of FePS3 should take these domains

into account both for planning experiments and analysing data. Rotational twinning is likely

to happen in other members of the MPS3 family, which may thus have a non negligible effect

on collective magnetism.

Taking into account the magnetic domains, the excitation spectra of FePS3 was then success-

fully modelled by a Heisenberg Hamiltonian with a single ion anisotropy on an honeycomb

lattice extended to three dimensions. This brought insight on the strength and nature of

the interactions in FePS3. The interlayer coupling was shown to be very small, making this

compound a good 2D model system. Furthermore, the overall spectra was well reproduced by

the model after refinement of the coupling constants J1, J2, J3 and of the single ion anisotropy

∆. FePS3 appears to be further from a 1D model than what was previously expected, with

weak couplings between the ferromagnetic chains. Although a fully satisfactory equilibrium

between the interaction J3 and the anisotropy ∆ could not be found, this simple Hamiltonian

was shown to explain well the measured spin waves.

The properties of FePS3 at the phase transition are also particularly interesting. Previous

contributions from various experimental techniques already existed, each probing different

properties. Around the Néel temperature, FePS3 appears to have properties which follow

a first order transition. In particular, the temperature-dependence of the spin gap shows a

sharp drop to zero close to TN , so that the magnetic anisotropy disappears following a first

order transition. Furthermore, the temperature-dependence of the magnetic order parameter

was confirmed to follow the behaviour of a 2D Ising model on a honeycomb lattice. On

the other hand, polarized neutron results identified the magnetic nature of the quasi-elastic

scattering close to TN . The hypothesis of a transition from a 2D magnetic long-ranged order

to 1D ferromagnetic short-ranged correlations is consistent with the measured quasi-elastic

spectra. Powdered samples do not allow to check the direction of the ferromagnetic short-

ranged correlations, so that single-crystal measurements should be considered. The expected

scattering has been shown to be at low Q and to extend up to 20−30 meV, so that a thermal

time-of-flight spectrometer with a low angle coverage would be necessary, with an analysis

further complicated by the magnetic domains. Nevertheless, insight on the correlations

could be obtained by measuring the quasi-elastic excitations along and perpendicular to

(0 k 0) around the transition temperature in a well-characterised single crystal, for which the

population ratios between the domains are known.
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Finally, magnetization measurements at high pulsed magnetic fields do hint towards the

presence of a tricritical point in FePS3 in the 40-50 T range, with the measured transitions

strongly dependent on heat exchange between the sample and the bath. Drastic differences

between the magnetisation as a function of applied field exists upon an increase of temper-

ature, with varying transition fields, large hysteresis, and amplitude variations observed for

the two sample orientations tested (along c* and along b ). Measurements with the field in

the (a,b) planes, but along the ferromagnetic chain direction (along a) would also give further

insight on these transitions. Experiments beyond magnetisation could be attempted, although

the required fields are out of the reach of current magnets designed for neutron scattering.

Interestingly, although the crystallographic structure of NiPS3 is very close to FePS3, the

inelastic neutron scattering experiments showed that the energy range of the excitations

in NiPS3 was unlike what was expected from previous measurements of MnPS3 and FePS3.

Magnetic scattering was only observed at low Q, and although kinematic constraints limited

this study, the spin waves in NiPS3 were shown to be strongly dispersive up to 40 meV and

appear gapped. The ∼ 6 meV spin gap gives some insight on possible anisotropies in NiPS3

at low temperatures. Further measurements are needed in order to resolve the spin waves

density, using thermal time-of-flight instruments with good resolution for a high incident

energy and a small angle coverage in order to access low Q and energy transfers both around 5

meV and up to 40 meV. Single-crystal experiment could be considered, provided sufficiently

large good single crystals can be obtained.

This work largely focused on FePS3 with additional work on NiPS3, but the interest in the

magnetic structure, the dynamical and critical properties is not limited to these two transition

metals, and other members of the MPS3 family such as CoPS3 may be equally interesting. In

addition, synthesising compounds with a ratio of two different transition metals may lead

to increased anisotropies or to induced frustration, opening further the possibilities for this

family. An example of such compounds is Mn1−x Fex PS3 with 0 ≤ x ≤ 1, where measurements

of magnetisation and specific heat for different doping ratios demonstrated the existence of a

rich magnetic phase diagram [107].

The materials discussed in this chapter behave largely as conventional magnets with magnetic

order below a transition temperature. In addition, they are not spin 1/2 so that quantum

fluctuations are not at the largest. However, studying the fundamental properties of con-

ventional magnets still raise a large interest, in particular regarding reduced dimensionality.

Albeit conventional, magnetic order and magnetic excitations investigations test fundamental

magnetism in order to understand the balance between the strength of the exchange couplings

and their origin by confronting real materials to model systems. In addition, interesting new

behaviours and exotic states of matter upon the application of magnetic field, pressure or at a

transition temperature cannot be excluded, and are worthy of both theoretical and experimen-

tal investigation. As in the investigated MPS3 family, the variation of the transition metal leads

to drastic changes in the magnetism, which illustrates the sensitivity of magnetic properties to

their environment. In addition, turning to the application side, two-dimensional magnetic
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compounds with weak Van der Vaals forces on a honeycomb lattice have been proposed as

potential "magnetic graphene", placing such reduced-dimensionality systems in the context

of novel devices, where magnetic properties have to be very well characterized and controlled

[93]. The competing interactions becomes crucial in these cases, as well as the temperature

dependence of magnetic order, and well-understood two-dimensional test materials are in

that respect particularly sought after.
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A Ferromagnetism in dilute Mn-doped
ZnO

A.1 Introduction to ZnO-DMS

Dilute Magnetic Semiconductors (DMS) have transition ions substituting for the host semicon-

ductor material. Due to the coupling of the localised d electrons of the magnetic ions to the

extended electrons of the semiconducting band, DMS have a variety of promising properties

[127]. Among these, ferromagnetic DMS have attracted interest as possible components for

spintronic devices. In the effort towards controlled electron spin current, some important

properties are high Curie temperature and large magnetisation, which makes ZnO a promising

candidate in this context [128].

The experimental finding of room-temperature ferromagnetism in Mn2+doped ZnO [129] was

followed by a theoretical treatment of high temperature ferromagnetism in dilute magnetic

oxides and nitrides [130]. This prediction included a rich magnetic phase diagram as a function

of the bound polaron overlap γ3δ and the dopant concentration x, containing both insulating

and metallic ferromagnetic, antiferromagnetic and spin glass phases. Transition-metal doped

ZnO (TM-ZnO) were suggested to be promising hosts for room-temperature ferromagnetism,

due to the large bound polaron radius expected.

However, the room-temperature ferromagnetism results were disputed and an abundance of

contradicting views on DMS arose, with ferromagnetism found in some Mn and Co-doped

ZnO studies [131], and not in others [132] (for a review of reported results, see [133]). The main

question in all these cases concerns the nature of ferromagnetism in transition-metal doped

zinc oxide [134, 128, 135] and whether it depends on the fabrication method[127]. Indeed,

in the context of potential spintronics applications, it is crucial to distinguish whether the

ferromagnetic properties come from an homogeneous distribution of the transition-metal

ion, or from a segregated phase within the semi-conducting matrix[135]. In addition, the

experimental difficulty of the detection of non-homogeneous spin distribution and potential

contamination further complicates the debate [136]. The most commonly used probe of the

presence or absence of clustering, phases and impurities in the samples are XRD patterns[137,

131, 129]. For this, however, elemental contrast between Mn and Zn is poor.
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Polarised neutron scattering is a powerful technique for distinguishing between short-ranged

nuclear and magnetic order so that it is well-suited to clarify the question of the nature of

ferromagnetism in Mn-doped ZnO. They can be combined with standard XRD measurements

and magnetisation measurements in order to explain the discrepancies between the results of

previous studies of Mn-doped ZnO.

A.2 Sample characterisation

Sample Growth

ZnO crystallises in the wurzite structure, with each Zn2+ cation coordinated tetrahedrally by 4

O2− anions. Mn2+ is in principle highly soluble in the host matrice, substituting for Zn2+ and

hole-doping the material. O2− vacancies are also present. Issues such as secondary phases

and Mn2+ clustering have been encountered depending on the synthesis method, and several

synthesis methods have been explored to minimize this effect, such as the decomposition of

hydrozincite [138].

Powdered Zn1−x Mnx O samples were prepared using two synthesis methods, a conventional

solid state method and a soft chemistry route 1.

In the first method, Mn-doped ZnO was synthesized by the solid state reaction from Mn

carbonate and Zn oxide. A stoichiometric mixture of ZnO and MnCO3 was ground in acetone

and annealed in an 8%H2 in N2 atmosphere at 400°C. The composition of the sample was

measured by EDX (Energy dispersive X-ray spectroscopy) and the Mn doping was estimated to

x = 2 %. The second synthesis method involved decomposition of Mn-doped zinc carbonate

produced by hydrothermal treatment of an aqueous solution of Mn nitrate, Zn nitrate and urea,

similarly to the method in [138]. The obtained Mn-doped Zn carbonate was then decomposed

into Mn-doped ZnO by heat treatment at 400°C in a forming gas (8%H2 in N2), introducing

oxygen vacancies to have a larger δ parameter. The actual concentration of Mn in the ZnO

materials was measured by X-Ray fluorescence with a 30µm size probe. These measurements

show that Mn doping of x=0.59(1), 1.14(1), 1.57(2) and 3.28(2) atomic % were obtained (see

Table A.1). As the hydrozincite decomposition proceeds at low temperature, the homogeneity

of the transition metal’s distribution in the hydrozincite matrix is preserved, provided the

concentration of the transition metal is lower than its solubility in ZnO. No gradient in the Zn

distribution could be seen in the XRF measurements, so that the sample were homogeneous.

Finally, a pure ZnO sample, for which no magnetic scattering is expected, was used as a control.

Table A.1 shows a summary of the samples with their corresponding Mn2+ concentrations and

an abbreviation system for reference.

1sample synthesis by A. Magrez and D. Fejes at the GCMP, EPFL
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Table A.1: List of growth method and Mn2+ concentration for each sample, with reference
code

Code Growth method Mn2+

doping %
S2 solid state ∼ 2
H3.28 decomposition of hydrozincite 3.28 ± 0.02
H1.57 decomposition of hydrozincite 1.57 ± 0.02
H1.14 decomposition of hydrozincite 1.14 ± 0.01
H0.59 decomposition of hydrozincite 0.59 ± 0.01
ZnO from supplier 0

XRD Measurements

Most of the works on ferromagnetism in MnZnO used X-ray diffraction (XRD) as their main

technique to evaluate the Mn homogeneity in the ZnO matrix [131, 129, 132]. In our case,

XRD measurements were carried out on an Empyrean diffractometer (Panalytical)2. The

X-rays were generated by the Kα emission line of copper, so that the diffraction patterns were

measured with Cu Kα radiation (λ= 1.54Å).

Figure A.1: X-Ray diffraction patterns for the five Mn2+ doped samples. The top panel
shows the diffraction profile around Q=2.83 Å−1 (2θ=40.6°), which corresponds to the (2
0 0) Bragg peak position of MnO. The bottom panel shows the diffraction profile around Q=4
Å−1 (2θ=58.8°), corresponding to the (2 2 0) Bragg peak position of MnO.

Fig. A.1 shows the XRD measurements of the Mn2+ doped samples around respectively Q=2.83

2by A. Magrez, GCMP, EPFL
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Å−1 and Q=4 Å−1, corresponding to expected positions for the (200) and (220) Bragg peaks

of MnO. The presence of MnO is clearly observed in S2, the sample grown by the solid state

method. In H3.28, there may be an indication of the presence of MnO at the scattering angle

corresponding to (200) with a very broad signal, but no clear peak appears at the expected Q

position for the (220) Bragg peak. For the rest of the samples (H1.57, H1.14 and H0.59), there is

no indication of the presence of MnO.

Magnetic susceptibility

DC magnetic susceptibility was measured using a SQUID magnetometer (Quantum Design

MPMS). The magnetisation as a function of field was measured at 5K using a conventional

hysteresis field sweep between ±5 T.

Fig. A.2 presents the results of the SQUID magnetisation measurements as a function of

magnetic field at 5K. The magnetisation of S2 in Fig. A.2.a shows a clear hysteresis from which

a 6480 Oe coercive field can be deduced. Similarly, a smaller hysteresis can be observed in

Fig. A.2.b for H3.28, with an estimated coercive field of 301 Oe. Very close examination of the

magnetisation for the lower doping H1.57, H1.14 and H0.59, shown in the insets of A.2.c-e, shows

no clear hysteresis, with an upper limit on the coercive field of 19, 10 and 5 Oe for H1.57, H1.14

and H0.59 respectively.

With the hypothesis of paramagnetism, the magnetisation as a function of field can be mod-

elled by a Brillouin function [139] :

M = 1

2
g NµB

[
(2J +1)coth[(2J +1)

gµB B

2KB T
]−coth[

gµB B

2KB T
]

]
(A.1)

with :

• J the total angular momentum quantum number

• N represents the number of ions in the sample

• T the temperature [K]

• B the applied field [T]

• µB Bohr magneton [J/T]

• KB Boltzmann constant [J/K]

• g Landé factor g=2

In the case of Mn2+, J= 5/2 and a Brillouin function with N as a free parameter (and a weak

constant background) was used successfully to model the data as shown in Fig A.3a-c ,thus

confirming the paramagnetic behaviour.
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Figure A.2: Magnetisation as a function of field at 5K. Panel a corresponds to the sample
grown with the solid state method S2, while panels b-e concern the samples grown via the
decomposition of hydrozincite H3.28, H1.57, H1.14 and H0.59. Calculated Brillouin function for
S=5/2 is shown in red for panels c-e. The inset shows the region around H=0; only S2 (a) and
H3.28 (b) show any hysteresis.

A.3 Polarised neutron scattering results

The polarized neutron experiments were performed on two polarized diffractometers, D7

[24] at ILL, France and DNS[25] at FRMII, Germany. On DNS, the incident wavelength was

4.13 Å, while two incident wavelength were used on D7: λ =3.1 and 4.8 Å. The samples all

weighed ∼ 10g and were loaded in aluminium cans of 20mm diameter and 6 cm height. A

set of coils around the sample position rotated the polarization into one of three orthogonal

directions for XYZ polarization analysis[23], and the outgoing polarization was analysed by

another set of supermirror benders. A total of six cross sections were collected : spin flip and

non-spin flip for each field orientation at the sample position. The different contributions to

the scattering cross section (magnetic, spin incoherent and nuclear and isotope incoherent)

were then separated by a linear combination of these cross sections. All the data was scaled

using the D7 calibration method (see 1.1.9) and converted to absolute units ( barns sr−1 f.u.
−1). The scaling to absolute unit was checked to be correct within 10%. This check was done

by fitting the powder diffraction pattern from the ZnO crystallographic information file (cif)
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Appendix A. Ferromagnetism in dilute Mn-doped ZnO

(a) Brillouin function fitted to H1.57 (b) Brillouin function fitted to H1.14

(c) Brillouin function fitted to H0.59

Figure A.3: Calculated Brillouin function with the prefactor and a weak background constant
(∼ 10−4) as free parameters

to the D7 data in absolute units for pure ZnO, with resolution and a scaling factor as free

parameters. The obtained scaling factor was 0.93.

The polarised neutron data were analysed to separate the magnetic, nuclear and spin incoher-

ent cross sections, allowing a comparison of the samples with respect to the synthesis method

and the Mn2+ doping level. Figure A.4 shows the nuclear cross section for each of the sample,

including the pure ZnO reference. The ZnO nuclear Bragg peaks are resolution limited, and

thus were used to obtain the instrumental resolution. An upturn starting at Q lower than 0.7 is

observed, which is possibly due to multiple scattering.

The strong Bragg peaks at Q =2.23 , 2.43 and 2.54 Å−1 correspond respectively to the ZnO

nuclear structure peaks (1 0 0), (0 0 2) and (1 0 1). The inset shows a zoom of the nuclear

and isotope incoherent scattering away from the Bragg peaks, which contains both diffuse

scattering from substitutional disorder as well as small peaks not expected from the ZnO

structure. Sample H0.54 features weak peaks at Q =1.25 and 1.95 Å−1 while sample H1.14 and

H1.57 have the same weak peaks at Q = 1.25 and 1.95 Å−1 and an additional sharper peak at

1.73 Å−1. MnO has no Bragg peak within this Q-range. In order to identify these weak peaks, a
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Figure A.4: Nuclear and isotope incoherent cross section for all the samples. The strong Bragg
peaks at Q =2.23 , 2.43 and 2.54 Å−1 correspond to ZnO nuclear structure peaks. The inset is
a zoom on the low Q scattering, showing very weak Bragg peaks probably corresponding to
impurity phases

powder diffraction pattern was simulated for various possible impurity phases of Mn:ZnO 3

within the same Q-range: Chalcophanite,Mn2O3 cubic and orthorombic, MnO2, Mn(OH)2,

ZnMnO3, Hydrozincite, ZnMn2O4, MnOOH, Zn(OH)2 and MnO2xH2O. However, none of these

impurity phases corresponds to the observed weak peaks, so that they may come from an

external contamination, with no expected effect on the magnetism.

In addition, the inset of the low Q scattering data shows that sample H3.28 has the strongest

nuclear diffuse scattering cross-section, followed by H1.57 and H1.14 with very similar cross

sections, and then H0.54. Finally, S2 shows the lowest cross sections, which is equivalent to

the scattering of the pure ZnO sample. The magnitudes of diffuse scattering are evidence that

the hydrozincite samples do have site disorder, while the solid state sample has very little

diffuse scattering, which is consistent with separate phases. In addition, no clear features

corresponding to nuclear short range order were observed in the nuclear cross-section.

The main polarised neutron scattering results are presented in Fig. A.5, which shows the mag-

netic cross section as a function of Q obtained for all samples. The magnetic cross sections

are presented in Fig. A.5. Panel a and b of Fig. A.5 shows that the magnetic cross section of S2

and H3.28 have clear features at Q ∼ 1.24 Å−1, which is the expected Q position for the ( 1
2

1
2

1
2 )

MnO magnetic Bragg peak. These features are broader than simple Bragg peaks, and reflect a

3done by G.J. Nilsen at STFC, UK
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segregation of MnO inside ZnO with a distribution of particle size that cannot be established

exactly. To address this, the data were fitted using two Voigt functions, assuming a Gaussian

resolution extracted from the width of the nuclear peaks and a Lorenzian broadening. One

results in a narrow and more intense peak at Q=1.24 Å−1, corresponding exactly to Q for the

( 1
2

1
2

1
2 ) of MnO, while the second gives a smaller and broader peak around Q = 1.48 Å−1. This

type of scattering has been observed previously in studies of MnO nanoparticles [140] with a

particle size distribution average of 100 Å. A rough estimation of the correlation length of the

nanoparticles observed in S2 are 43 ± 5 and 14 ± 4 Å while they are of 16.7 ± 3 and 4.8 ± 0.7

Å for H3.28.

Figure A.5: Magnetic cross section. Blue stars correspond to λ = 4.1 Å(DNS), blue circles
to λ = 3.1 Å(D7), while green diamonds correspond to λ = 4.8 Å(D7). Panel a shows to the
sample grown with the solid state method, while panel b-e concern samples grown via the
decomposition of hydrozincite. Pure ZnO is shown in panel f. The solid red line is a fit of the
cross section using Voigt functions for the magnetic Bragg peaks and the Mn2+ form factor for
the paramagnetic background.

The analysis of the magnetic scattering cross section for S2 and H3.28 shows clearly the presence

of segregated MnO in the ZnO matrix. In addition, clear ferromagnetic behavior was observed

in the magnetisation measurements (Fig A.2). It is therefore likely that ferromagnetism in
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Figure A.6: a) Magnetic cross section of sample S2 at three different temperatures : 1.5K (blue),
130K (green) and 200K (orange) and plotted with an offset. Black lines are fit of the data by two
Voigt functions and the Mn2+ form factor b) Magnetic cross section of sample H1.57 at three
different temperatures : 1.5K (blue), 50K (red) and 130K (green) and plotted with an offset.
Black lines are fit of the data by Voigt functions and the Mn2+ form factor.

these samples comes from uncompensated surface spins of the MnO nanoparticles, which

had been observed in several studies[141, 140].

At 1.57% Mn2+ doping (Figure A.5.c), very weak and narrow peaks are observed again at the

same Q position. Their intensity relative to the background is much lower than for the higher

doping, and would correspond to a MnO volume fraction in ZnO matrice of 0.06%. These

peaks disppear at 50 K (see figure A.6.b), well below TN ∼ 122K for MnO, and their peak width

is smaller than the resolution width, hence they may be an artefact of the measurement.

For Mn2+ dopings of 1.57% and below (Fig. A.5.c-e), the spectrum is dominated by diffuse

form-factor-like scattering, as expected for paramagnetic behavior. The cross section of the

more lightly doped samples H1.14 and H0.59 show only paramagnetic behavior in the measured

Q range, and were fittted with the Mn2+ form factor. Fig. A.5.f shows the magnetic cross

section for the pure ZnO sample, which is zero as expected, providing a baseline for the other

measurements.

Effective moment

Within the assumption of a paramagnetic behaviour, the Q-intercept of the magnetic cross

section dσ
dQ (Q = 0) can be used to calculate the effective moment µe f f from the spin-only

equation for the magnetic cross section [9]:

dσ

dΩ
(Q =O) = 2

3
(
γr0

2
)2g 2S(S +1) (A.2)
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Table A.2: Effective moment of Mn2+ obtained from the Q=0 intercept of the magnetic cross
sections

Mn2+ doping [%] Estimated µe f f [µB /atom] Q=0 intercept
1.57 4.87 ±0.05 1.82·10−2 ±3 ·10−4

1.14 4.91 ±0.05 1.35 ·10−2 ±3 ·10−4

0.59 4.62 ±0.28 6.18 ·10−3 ±7 ·10−4

with µe f f =
√

g 2S(S +1), we obtain :

dσ

dΩ
(Q =O) = 0.049 ·µ2

e f f (A.3)

In the case of Mn:ZnO : x is the Mn2+ doping percentage :

µe f f =
√

dσ
dΩ (Q =O)

x ∗0.049
µβ = 5.92µβ (A.4)

Table A.2 shows the Mn2+ effective moment µe f f obtained from the form factor fits of the

lightly doped samples, taking into account the Mn2+ concentration. Broadly speaking, the

values are close to the expected µe f f =
√

g 2S(S +1) = 5.92µB for Mn2+.

Volume fraction

From the integrated intensity of the ZnO nuclear peak (1 0 0) and the MnO magnetic Bragg

peak (0.5 0.5 0.5) in the polarised neutron data, we can estimate the volume fraction V f of

MnO nanoparticles in the ZnO matrix for the samples that showed clear Bragg peaks in the

magnetic neutron cross section.

The intensity of a nuclear Bragg peak is given by :

In = N

V0
·multn ·LPn ·F 2

nλ
3 (A.5)

with N the number of unit cells in the sample, V0 the volume of the unit cell, LPn the Lorentz

polarisation factor, multn the multiplicity of Bragg reflection and Fn the nuclear structure

factor.

The intensity of a magnetic Bragg peak is given by :

Im = Nm

V0m
·multm ·LPm · γr0

2

2
· g 2F 2

mλ
3 (A.6)
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with Nm the number of magnetic unit cells in the sample, V0m the magnetic unit cell volume,

LPn the Lorentz polarisation factor, and Fm the magnetic structure factor.

The magnetic structure factor Fm includes µ⊥ and the magnetic form factor f.

The volume fraction is thus given by :

V f =
NmV0m

NV0
= Im

In

V 2
0m

V 2
0

mul tn

mul tm

LPn

LPm

F 2
n

F 2
m

1

(γr0

2 )2
(A.7)

For the (1 0 0) nuclear Bragg peak of ZnO :

• multiplicity of 6

• F 2
n = 1.1933

• for λ = 4.13Å(DNS data), the Q=(110) peak is at 2θ = 92.52 degrees so that LPn =
1

2si n2(θ)cos(θ) = 1.385

• Integrated intensity of normalised Gaussian function (resolution limited) obtained from

fits of DNS data. For sample H3.28, In = 14.59 and for sample S2, In = 24.26

• ZnO has an hexagonal lattice with a=b=2.249 Åand c=5.229 Åso that V0(Z nO) =
p

(3)
2 a2c =

47.802 Å3

For the (0.5 0.5 0.5) magnetic Bragg peak of MnO :

• multiplicity of 8 [142]

• for λ= 4.13Å(DNS data), the Q=(0.5 0.5 0.5) peak is at 2θ = 48.1 degrees so that LPm =
1

2si n2(θ)cos(θ) = 3.297

• Integrated intensity of the two Voigt function obtained from DNS data, thus taking into

account both the sharp and broad magnetic peaks. For sample H3.28, Im = 1.64 and for

sample S2, Im = 0.89

• MnO is cubic with a=4.41 Å, so that V0(MnO)= a3 = 85.76 Å3. Magnetic unit cell volume

is thus V0m = 8V0(MnO)= 686.13 Å3

• µ2
⊥ = 2

3 < g S >2= 50
3 with S = 5

2

• gyromagnetic ratio γ= 1.913 and classical electron radius r0 = 2.818 ·10−15 m

• for | Q |=
√

3 · (0.5 · 2π
a )2) = 1.228Å−1 (a=4.43 Å), the Mn2+ squared form factor is f 2 =

0.812

• The magnetic structure factor of MnO is Fm =|∑mag (τm) |µ⊥ f = 32µ⊥ f [143].

F 2
m = 322 · 50

3 f 2 = 1.707 ·104 f 2 = 1.386 ·104

For H3.28, the MnO volume fraction is estimated to V f = 8.6 ·10−3 = 0.86%, while for S2, the

MnO volume fraction is estimated to V f = 2.8 ·10−3 = 0.28%. These value take into account

both the sharp feature corresponding to the ( 1
2

1
2

1
2 ) magnetic Bragg peak of MnO and the

broader feature corresponding to the segregated MnO nanoparticles with a size distribution.

In the case where only the sharp magnetic Bragg peak is considered in the integrated magnetic

intensity, the MnO volume fraction becomes 0.14 % for H3.28 and 0.23 % for S2.
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A.4 Conclusions

Previous experimental results had placed Mn:ZnO in the ferromagnetic phase of the magnetic

phase diagram of the theoretical prediction mentioned in the introduction[130] for doping

of 2.2% and for temperatures up to room temperature. This theory suggests that room tem-

perature ferromagnetism and other magnetic phase in DMS are caused by the coexistence of

defects and dopant cation at small doping. The band created by the defects hybridizes with

the d orbital of the dopant, and spin are polarised via Hund’s exchange. However, from these

polarised neutron scattering results, we do not observe any spin glass or ferromagnetic phase

in Mn:ZnO, which implies that either the defect concentration is too low, that the polaron

radius γ3δ is not sufficiently large, or that the bands are not close enough to hybridize. In that

context, we thus conclude that Mn:ZnO is restricted to the paramagnetic region of the phase

diagram for all cluster-free doping percentage even at 2K, at least in the case of these synthesis

methods.

While magnetisation measurements showed clear evidence for ferromagnetism in S2, the

2% doped sample grown by the solid state method, neutron polarisation analysis and XRD

measurements confirm that there is segregation of manganese into MnO. However, while XRD

does not clearly show the presence of MnO in H3.28, the neutron scattering data demonstrated

that the ferromagnetism appearing in the magnetisation measurements is strongly linked

to the formation of MnO nanoparticles. Size estimates of the nanoparticles could also be

obtained from fits of the polarised neutron data and are typically 20-50 Å. Lower Mn2+ doping

result in paramagnetism with no indication of ferromagnetic short-range order, neither in

polarised neutron scattering nor in magnetisation measurements. This leads to the conclusion

that ferromagnetic correlations in these Mn2+ doped ZnO samples do not come from substitu-

tion of the zinc by manganese in the ZnO matrix. Instead, MnO nanoparticles form and the

ferromagnetism most likely comes from unpaired spins at the nanoparticle boundaries.

Co doped ZnO has also been attracting attention in the context of spintronics, as it has the

largest moment of the transition metals. As shown in several XRD and magnetisation studies

of Co doped samples [144, 145] (with higher doping percentage than for Mn-doped ZnO :

∼ 1−20%), contradicting view exists on the origin of ferromagnetism in Co:ZnO, with a strong

dependence on the fabrication method. Further polarised neutron scattering investigation

would provide valuable information on the origin of ferromagnetism in Co-doped Zno, in

particular whether there is segregation of the cobalt or if it substitutes homogeneously for the

zinc.
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B Incommensurate magnetic correla-
tions in new superconductors

Doping-dependent phase diagrams of high temperature superconductors have shown that

antiferromagnetic order is found in close vicinity to the superconducting phase in both

cuprates and iron pnictide and chalcogenide systems[146, 147], so that looking at the interplay

between magnetism and superconductivity is at the heart of research in unconventional

superconductors [148]. The discovery of iron-pnictide and chalcogenide superconductors

has sparked the studies of the interplay between magnetic structure, magnetic dynamics

and superconductivity in this family of compounds. In iron pnictides and chalcogenides,

the superconducting state appears either upon doping or by the application of pressure in a

metallic parent compound, in contrast to cuprates where parents are usually in a correlated

insulating state. Superconductivity has been found in a number of compounds involving

3d transition metals, and was recently discovered in binary pnictides MnP and CrAs under

pressure [149, 150].

Discussed here are the incommensurate magnetic phases and excitations observed in three

compounds, in which a transition to superconductivity appears as a function of either iron

content, for the chalcogenide Fe1+y Te0.7Se0.3, or as a function of applied pressure, for the

binary pnictides CrAs and MnP.

B.1 Fe1+y Te1−xSex

Iron-based chalcogenides started attracting attention with the discovery of high temperature

superconductivity in the doped iron compound RFeAsO [151, 152], further fuelled by their

similarities to the high Tc cuprates. These similarities include a layered structure with a square

lattice and a proximity of magnetic and superconductive states [153]. As in the cuprates, a

spin resonance is observed in the excitation spectrum below Tc in both iron chalcogenide

and pnictide compounds [147]. Fe1+y Te1−x Sex has the simplest layered crystallographic

structure among the iron-based superconductors and displays a spin excitation spectrum

with a spin resonance, an hourglass-shaped dispersion and a spin gap which accompanies

the onset of superconductivity[154, 155, 156]. In addition to the Te/Se ratio as a tuning
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parameter, the excess of iron (parameter y ) located on interstitial sites strongly influences

both the magnetic and the superconducting properties of Fe1+y Te1−x Sex [157] and its study

provides new insights into the superconducting mechanism. In addition, parent compounds

show peculiar magnetic behaviour upon the application of hydrostatic pressure such as

ferromagnetism in antiferromagnetic Fe1+y Te [158], indicating a strong correlation between

the crystal structure and the magnetic properties.

The excitation spectrum of Fe1+y Te0.7Se0.3 for y=0.02 is characterised by an hourglass dis-

persion with the constriction of the incommensurate spectrum towards a commensurate

wavevector Q =(0.5 0.5 0) at the energy Ehg . In a previous inelastic neutron scattering study

[156], the hourglass-shaped dispersion was shown to be most likely a prerequisite for super-

conductivity, while the consequences are the opening of a gap and a shift of spectral weight.

Indeed, the hourglass dispersion was shown to exist above the transition temperature, and a

possible natural explanation is that the inwards dispersion allows the spin gap to shift spectral

weight towards the commensurate point, thereby lowering the exchange energy [159]. A con-

sequence of this interpretation is that the commensurate energy Ehg sets an upper limit for

the possible spin gap and hence for Tc .

Further investigations of the interplay between magnetism and unconventional superconduc-

tivity were thus performed by applying pressure, a parameter with the advantage of tuning

superconductivity properties [160, 161] without sample composition changes, avoiding po-

tential changes in doping-induced inhomogeneity and the hard-to-control level of excess

iron. The evolution of the hourglass shaped dispersion under an applied pressure of 12

kbar was measured using a superconducting sample with composition Fe1.02Te0.7Se0.3 in

a Paris-Edinburgh pressure cell on the thermal neutron spectrometer IN8 at the ILL. The

Fe1+y Te1−x Sex single crystals with different y excess Fe doping are in the tetragonal phase

with the space group P4/nmm with cell parameters at ambient pressure of a = b = 3.807

Å and c = 6.152 Å.

The results are detailed and discussed in Lançon et al. [162] : it was shown that the pressure-

induced 37% increase of Tc from 9.7 K to 13.3 K is concomitant with a change in the magnetic

excitation spectrum, with a similar 38% increase of the hourglass energy Ehg from 5.3(5)meV

to 7.3(6)meV. Figure B.1 illustrates this shift of the resonance energy with applied pressure.

In addition, figure B.1.a shows the typical excitation spectrum of Fe1.02Te0.7Se0.3 at 2K, showing

both the incommensurate rods of scattering, with a commensurate point at Ehg and Q =
(π,π) =(0.5 0.5), and the spin gap below ∆E ∼ 4 meV.

The temperature dependence of the spin gap was measured on the triple axis spectrometer

IN14 at the ILL with k f = 1.5 Å−1 , using a single crystal of Fe1.02Te0.7Se0.3 aligned with (100) and

(010) in the scattering plane. From a constant-energy scan at∆E = 7 meV, the incommensurate

excitation was estimated to be at Q =(0.375 0.625) and the temperature dependence was

measured at this Q point for ∆E = 1.5 meV from 50K to 2K. Figure B.2 showing the opening of

the spin gap from about 15 K, thus starting slightly above the transition temperature Tc =10K.
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Figure B.1: (a) The magnetic dispersion measured in superconducting state of Fe1.02Te0.7Se0.3

at T=2K at zero applied pressure. (b-c) Sketchs of the hourglass shape for zero applied pressure
(b) and applied pressure (c), illustrating the increase of the commensuration energy Ehg in
applied pressure

Figure B.2: Temperature dependence of the spin gap measured at Q =(0.375 0.625) at ∆E=1.5
meV on IN14. the line are guides to the eye

Furthermore, magnetic correlations at the in-plane magnetic wavevector Q = (π,0) were

shown to survive as short-range order after the long-range antiferromagnetic order has been

suppressed in non-superconductive samples by partially substituting Se by Te [163]. Indeed,

the parent compound Fe1+y Te has been shown to exhibit antiferromagnetic order with an

in-plane magnetic vector of (π,0) , contrasting with iron-pnictides where the magnetic order

has an in-plane wavevector (π,π) . The hypothesis is that short-range order at (π,0) coexists

with (π,π) spin fluctuations in Fe1.02Te0.7Se0.3, thus hinting towards a similar mechanism

between iron pnictides and iron chalcogenides [163].

The short range magnetic correlations at Q = (π,0) were measured for four single crystals

of Fe1+y Te0.7Se0.3 for excess Fe doping corresponding to compositions at the brink of super-

conductivity, on the triple axis spectrometer IN3 at the ILL set up for elastic scattering with

ki = k f = 2.62 Å−1. Figure B.3 shows both a longitudinal (δ along Qh) and a transverse scan
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(δ along Qk) of the (π,0) peak for a sample with y ∼ 0.05 at 2K. The data was background-

subtracted and the resulting peak profiles were both fitted with a Lorentzian function. No spin

gap at 2K was observed for this sample at 2K on IN14, but magnetisation measurements using

a SQUID magnetometer showed that the sample had a transition at 4K corresponding to a

superconducting volume fraction of ∼ 14%.

Figure B.3: Longitudinal and transverse scans of the Q = (π,0) feature at 2K for Fe1+y Te0.7Se0.3

with y ∼ 0.5.

From Figure B.3, it is clear that the Q = (π,0) peak corresponds to short range order correlations,

with a peak width larger than the instrumental resolution. Similar to what was observed in

[163], the feature is asymmetrical so that the range of the correlations are Q-dependent, with a

Lorentzian widthΛ for the longitudinal and transverse scans of respectivelyΛ= 0.12 and 0.21

[r. l.u].

The temperature dependence of the Q = (π,0) peak was measured for each of the four samples

from 40 to 2K and is shown in figure B.4. Figure B.4.a corresponds to Fe1+y Te0.7Se0.3 with y ∼
0.05 while Figure B.4.d corresponds to the superconducting sample Fe1.02Te0.7Se0.3 previously

measured on IN14. Figure B.4.b-c correspond to the temperature-dependence of two samples

(labelled X6 and X7) very close to superconducting doping but which show no transition

to superconductivity in magnetisation measurements. Their nominal excess Fe doping are

respectively 0.11 and 0.05, and their actual Fe doping y is not known accurately.

For the samples corresponding to figure B.4.a-c, the Q = (π,0) peak is clearly present down to

2K, with an overal linear temperature dependence showing no particular transition. For the

superconducting sample Fe1.02Te0.7Se0.3, there is little to no evidence of the presence of this

magnetic peak in this temperature range.

Overall, it appears that the actual excess Fe doping is difficult both to control and to char-

acterize. Indeed, the composition of the sample was measured by EDX1 (Energy Dispersive

X-ray spectroscopy), taking five different points of the single crystals for the measurements,

1done with Arnaud Magrez at the EPFL, and compared to other EDX measurements done by Enrico Giannini at
the University of Geneva
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Figure B.4: Temperature dependence of the Q = (π,0) peak on IN3 for four samples of
Fe1+y Te0.7Se0.3. a) y ∼ 0.05 with a superconductive volume fraction of 14% from SQUID
measurements. b)-c) nominal excess Fe of respectively 0.11 and 0.05, no transition to super-
conducting phase observed in SQUID magnetisation. d) y=0.02, superconducting volume
fraction of ∼ 94−100%

and the results showed that the samples did not appear homogeneous in their composition.

In addition, the obtained Fe dopings were not consistent with previous EDX measurements.

Furthermore, samples X6 and X7, with their compositions very close to the superconducting

limit were shown not to have a superconducting phase by SQUID measurements (and by

inelastic neutron scattering checking the absence of a spin gap). However, single crystals from

the same batch were then measured again (12-24 months later ) and were shown to have a

superconducting phase for a fraction of the sample volume. The properties of these samples

thus appear to be time-dependent 2, with possibly oxidation or water adsorption leading to

chemical modifications.

From the study of short-range order magnetic correlations in Fe1+y Te0.7Se0.3 single crystals,

it thus appears that establishing a reliable phase diagram as a function of excess Fe is very

challenging and any results must be interpreted with caution. Furthermore, the crystals

appear highly inhomogeneous, with partial superconducting fractions observed in the y ∼ 0.05

sample. The co-existence of short range order at (π,0) and with (π,π) spin fluctuations

observed in [163] could thus well be linked to a two-phase description where the two magnetic

correlations exists in two distinct volume fractions of the sample.

2observed by Enrico Giannini at the University of Geneva

157



Appendix B. Incommensurate magnetic correlations in new superconductors

B.2 CrAs

Superconductivity in the binary pnictide CrAs was discovered from resistivity and susceptibility

measurements at 2.2K for an applied pressure Pc >7 kbar, with a superconductive phase present

up to a large applied pressure (>30 kbar)[149, 150, 164]. Figure B.5 from [150] shows the

pressure-temperature phase diagram of CrAs.

Figure B.5: Pressure-temperature of CrAs from [150], where Tc has been multiplied by 30 for
plotting purposes.

CrAs has an orthorhombic structure with space group Pnma with unit cell parameters

a = 5.649 Å, b = 3.463 Å, c = 6.208 Å at room temperature. Below TN ∼ 270 K, the mag-

netic structure is double-helical with an incommensurate propagation vector along c with

the magnetic moment of ∼ 1.7µB /Cr lying in the (a,b) plane. Understanding the magnetic

interactions of CrAs would provide insight on the interplay between magnetism and supercon-

ductivity. A neutron diffraction study of the pressure evolution of the helimagnetic structure

close to the critical pressure showed a reduction of the ordered moment and a Bragg-peak-

width dependence on pressure, understood as competing ground states in vicinity of the

superconducting phase [165].

An attempt at measuring the excitation spectra of CrAs in the helical phase without applied

pressure and in the superconductivity phase around 10 kbar was carried out on the time-of-

flight spectrometer CNCS at SNS for co-aligned single crystals of CrAs. Preliminary measure-

ments on a powder sample had shown promising inelastic intensities.

Fourteen needle-shaped crystals of CrAS3 were co-aligned on an Al holder with (010) and

(001) in the horizontal plane for a total mass of about 100 mg. The sample was cooled to 1.7K

and the excitation spectra were measured on the time-of-flight spectrometer CNCS for Ei =
3.15, 12 and 50 meV at ambiant pressure. The sample was then inserted in a clamp pressure

cell (described in 1.1.10) and a pressure of ∼ 10 kbar was applied. The pressure cell was then

cooled down to 1.7K and the excitation spectra were measured for Ei = 12 meV. The maps

3The crystals were grown by Athena S. Sefat at the Materials Science and Tech. division of ORNL and co-aligned
by Andrey Podlesnyak at SNS
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were obtained by doing "Horace-type" scans where the sample was rotated about the vertical

axis with steps of 2 degrees, with a counting time of ∼ 4 mn per rotation.

Although the object of the neutron scattering experiment was to measure the inelastic spec-

trum, diffraction maps of CrAs in the Qk −Ql plane could be obtained by integrating over

the elastic line. Figure B.6 shows the resulting Qk −Ql diffraction map for an integration over

Qh=[-0.1 0.1] and over either ∆E = [−0.5,0.5] meV for Ei =12 meV and ∆E = [−0.2,0.2] meV for

Ei =3.15 meV. The data has been symmetrized by folding over equivalent Q points to improve

statistics. Strong powder rings corresponding to the Al holder are observed, and nuclear Bragg

peaks are visible at (0 2 0) and (0 1 3), and magnetic incommensurate Bragg peaks are visible

close to (0 0 0) and to (0 1 1).

Figure B.6: Diffraction Qk−Ql map of CrAs obtained on the time-of-flight spectrometer CNCS
at 1.7K for two Q-coverages obtained with either Ei =12 and 3.15 meV

Figure B.7 shows energy slices of the data for Ei =12 meV and Ei =3.15 meV showing no inelastic

scattering that could be attributed to magnons in CrAs. There appears to be inelastic intensity

visible in the Ei =12 meV excitation spectra, but constant-energy maps clearly showed that it

had a powder-like behaviour. The |Q |-dependence of the observed dispersion can be linked to

the presence of helium in the sample space (used for cooling). This helium background was

probably responsible for the strong inelastic scattering that had been observed in preliminary

powder measurements.

In order to check the unlikely case where the excitations would be located at energy transfers

above 10 meV, a partial set of rotation was carried out for Ei =50 meV with 9 minutes of counting
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Figure B.7: Energy slice obtained on CNCS at ambient pressure and 1.7K for a)Ei =12 meV and
b) Ei =3.15 meV

time per rotation. To reduce scattering from helium, the temperature was first increased to

20K, the sample space was pumped and then the sample was cooled back down to 1.5K. this

procedure lead by a reduction of helium pressure by a factor 10. Figure B.8 shows the resulting

spectrum, where no inelastic scattering is observed.

Figure B.8: Energy slice obtained on CNCS at ambient pressure and 1.7K for Ei =50 meV after
reducing helium pressure in sample space.

Even at ambient pressure, no magnetic inelastic scattering could be detected on CNCS, possi-

bly due to the small sample size resulting in intensities too weak to be measured. Nevertheless,

measurements were done for CrAs at an applied pressure of about 10kbar , with Ei =12meV and

at T=1.7K, with 9 mn counting time per rotation. Part of the Qk −Ql diffraction map under

pressure obtained by integrating over Qh=[-0.1 0.1] and over either ∆E = [−0.5,0.5] is shown

in figure B.9.

The Qk −Ql map is dominated by rings attributed to the Bragg scattering from the pressure

cell. A background measurement was done by measuring above the transition temperature,

keeping the same set-up. However, the background-subtracted maps obtained still had a

spurious character, although the ring intensity decreased by a factor 60. In B.9, the (0 1 3)

nuclear Bragg peak is weakly visible close to the spurious ring. The Bragg peak has moved from

2θ = 94 degrees to 2θ = 100 degrees, so that there is significant reduction of lattice parameters

with applied pressure.
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Figure B.9: Diffraction Qk-Ql map of CrAs under 10 kbar applied pressure obtained on the
time-of-flight spectrometer CNCS at 1.7K with Ei =12 meV

Overall, no inelastic excitations of CrAs could be measured on CNCS, most probably due to the

small sample size. Before the inelastic spectrum can be successfully measured under pressure,

ambient pressure measurements on larger samples should provide insight on the magnetic

excitations in CrAs.

B.3 MnP

A superconductivity phase was discovered by resistivity and susceptibility measurements

in MnP, another binary pnictide, below ∼ 1 K for an applied pressure of ∼ 80 kbar [164],

significantly larger than the P ∼ 10 kbar applied pressure for the superconductivity phase

in CrAs. Although both compounds have an helical magnetic phases at ambient pressure,

CrAs has dominant antiferromagnetic correlations whereas ferromagnetic spin correlations

dominate in MnP.

The orthorhombic Pbnm spacegroup with a = 5.91 Å > b = 5.25 Å > c = 3.18 Å at room

temperature is used for MnP, following [166] (equivalent to the Pnma space group used in

[167] with different axis labelling). MnP orders ferromagnetically below TN =291 K, and a

double helical magnetic structure appears as the temperature is cooled down further than

50K. Upon the application of pressure, this magnetic structure is suppressed and replaced

by another magnetic phase which was interpreted as having antiferromagnetic order from

susceptibility measurements [164]. For an applied pressure of ∼ 80 kbar a superconducting

dome appears.

Neutron diffraction experiments on both powdered and single crystal samples were performed

under applied pressure in order to understand how the magnetism evolves with applied

pressure to complete and check the proposed magnetic phase diagram of MnP.

The powdered sample was made by heating the mixture of Mn and P with the ratio of 1:1 in

quartz tube, while the single crystal was grown by using the Bridgeman method 4. The single

4The crystals were grown and prepared by Shinichiro Yano, from the Neutron Group of the National Synchrotron
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Figure B.10: The pressure-temperature phase diagram of MnP . Helimagnetic phase (HM),
Superconducting phase (SC), Ferromagnetic phase (FM), and Antiferromagnetic phase (AFM)
were proposed in [164] from susceptibility. The symbols shows the accessed points of the
phase diagram in the D20 experiment, with the pressures calibrated from the Pb Bragg peaks
(111) and (200). Color symbols red, blue, and green correspond respectively to the magnetic
phases δ, δ’ and δ” identified from the powder diffraction patterns.

crystal , with dimensions �4×2 mm, was aligned with (100) and (010) in the scattering plane.

The experiments were carried out using the high-intensity two-axis diffractometer D20 for the

powdered sample and the thermal neutron diffractometer D23 for the single crystal at the ILL

using a Paris-Edinburgh pressure cell. The particularity of this pressure cell is that applied

pressure can be changed in-situ (described further in 1.1.10).

Powder neutron diffraction patterns were obtained the diffractometer D20 for λ = 2.41 Å.

A methanol:ethanol mixture was added to the sample as a pressure-transmitting medium,

creating a broad scattering feature in powder patterns around 30. 2θ. 50. Figure B.10 shows

the accessed points of the pressure temperature phase diagram as non-vertical lines, for which

the temperature-dependent pressures were determined using Pb. The helimagnetic phase was

identified from the powder diffraction patterns around an applied pressure of 7 kbar, but the

expected antiferromagnetic order was not observed at 20 kbar applied pressure and above. In

addition, a new phase δ′ was observed in between the helimagnetic phase δ and the magnetic

phase δ′′.

Regarding the known δ phase, the magnetic satellite peak indexed as (1−δ,1,0) was observed

in the powder diffraction pattern for a pressure of ∼ 7 kbar below 30K, with an intensity

Radiation Research Center, Taiwan. Shinichiro Yano is responsible for initiating and driving this MnP work.
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reduced by a factor 17 from ambiant pressure. The transition temperature is also reduced

from 47 K at ambient pressure to 30K for 7 kbar applied pressure.

The new δ′ phase discovered for an applied pressure of ∼ 15 kbar at low temperatures, is

characterised by four magnetic peaks appearing below 230 K, shown in the diffraction pattern

of figure B.11. These peaks could be indexed with a propagation vector (0.25, 0.125, 0.25).

Figure B.11: Powder diffraction pattern of the new magnetic phase δ′ for an applied pressure
of 15 kbar (at ∼ 10 K) showing the four magnetic peaks at 7.8K and 206 K (black and red curves)
compared to the diffraction pattern at 229 K (green), just above the transition temperature.

The temperature-dependence of the nuclear peaks (110), (220) and of the magnetic peaks

(110)+δ′ is shown in figure B.12, obtained by fitting the resolution-limited peaks by nor-

malised Gaussian functions. No transition to a ferromagnetic phase can be observed from the

temperature dependence of the intensity of the nuclear peak, but the transition to the new

magnetic phase around 230 K is clear from the magnetic peak (110)+δ′.

Figure B.12: Temperature dependence of the intensity of the nuclear peaks (110) and (200)
and of the magnetic peak (110)+δ′ for an applied pressure of ∼ 15 kbar

The magnetic phase δ′′ appearing for applied pressures above 20 kbar on the other hand

is characterised by a broad magnetic scattering at low angles (around 2θ = 3.7° ), while the

four sharp magnetic peaks of the the δ′ phase are not present in the δ′′ phase. Figure B.13

shows the low angle part of the powder diffraction patterns for four different applied pressures

by integrating over several temperature ranges. The value of the four applied pressures

correspond to the measured pressures at low temperatures (∼ 10 K) : 25, 39, 55 and 76 kbar.
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As the background appears to be temperature dependant, the data were normalised to the

nuclear Bragg peak (110) at 250K.

(a) 25 kbar (b) 39 kbar

(c) 55 kbar (d) 76 kbar

Figure B.13: Low angle part of the D20 powder diffraction pattern for an applied pressure of a)
25 kbar, b)39 kbar, c)55 kbar and d)76 kbar. Combining all scans with temperature below 10K
(blue), below 100K (red) and around 250K (green), the data has been scaled with respect to
the 250K (110) nuclear peak (at 2θ = 36° ). For 76 kbar, there are additional curves for all data
below 60 K (magenta) and between 75 and 125K (black)

As shown in figure B.14, the broad magnetic scattering feature appears to move from 2θ = 3.7°

at 25 kbar to 2θ ∼ 6° at 39 kbar, concomitant with a broadening and a significant decrease of

ts intensity. At 55 kbar, a broad weak peak can still be identified around 2θ ∼ 9°, while at 79

kbar no peak is visible. As this magnetic feature broadens and weakens with increased applied

pressure, it cannot be completely excluded that it is present at 76 kbar with an intensity too

weak to be detected from the background.

This feature can be attributed to short-range magnetic scattering and is consistent with a

neutron pressure study [167] claiming that the δ′′ phase is incommensurate along the c axis. In

addition, under hydrostatic pressure, the lattice parameters only change significantly for the c

axis, so that interaction between the Mn 3rd nearest neighbours is likely to play an important

role in these magnetic structural changes.

164



B.3. MnP

Figure B.14: Broad scattering feature scattering as a function of 2θ extracted by subtracting the
high temperature datatset from the < 10 K dataset for an applied pressure of 25 kbar (blue), 39
kbar (red), 55 kbar (green) and 76 kbar (black).

Figure B.15 shows the temperature dependence of the broad magnetic scattering, obtained by

integrating over the 2θ range of the observed scattering : [3.2,5] for 25 kbar, [5.5-8.5] for 39

kbar and [7.7-10.5] for 55 kbar. Regarding the highest applied pressure, the integrated range

was [10-14] degrees, corresponding to a very weak possible peak consistent with the expected

shift of the broad feature towards higher angles as pressure increases.

Figure B.15: Temperature dependence of the broad magnetic scattering observed in the δ′′

magnetic phase as a function of applied pressure.
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This temperature dependence allows to identify the transition temperature of the phase as

a function of pressure, as shown the phase diagram of figure B.10, with a reduction of the

transition temperature from ∼ 200 K at 25 kbar to ∼ 160 K at 55 kbar. In addition, the weak

and broad feature observed at 55 kbar applied pressure is confirmed to correspond to the

same magnetic scattering as at lower pressures since its temperature dependence follows the

same behaviour. In the case of 76 kbar, the presence or absence of this feature cannot be

determined, as the temperature dependence is not conclusive.

Finally, an attempt to find the propagation vector of the magnetic phases δ′ and δ′′ was carried

out on D23 at a wavelength of 2.38 Å using a single crystal of MnP aligned with (100) and (010)

in the scattering plane. No data for this experiment is shown, as no magnetic scattering was

observed either in the δ′ phase nor the δ′′ phase.

Based on the powder diffraction, the intensity of the magnetic Bragg peaks in the δ′ phase were

expected to be high, but no peak was found in the (a,b) plane on D23, even when combining

constant-Q scans with fixed 2θ scans. This result suggests that the propagation vector of this

phase must have a component along the c axis, which cannot be accessed due to the small

vertical opening of the Paris-Edinburgh pressure cell. A propagation vector (0.25,0.125,0.25)

can be proposed from the powder diffraction data.

Regarding the δ′′ phase, magnetic peaks were searched at 39 kbar within the hypothesis of δ”=

(0.23−0.29,0,0), which corresponds to the 2θ = 5.3−6.72 values of the broad scattering seen in

D20 powder diffraction patterns. Using 2θ fixed omega scan, and introducing an out-of-plane

component by tilting within ± 3 degrees, no magnetic peaks were observed. These results

support the idea that the incommensurability is along the c-axis.

From these sets of experiments, several conclusions are reached, confirming the complexity of

the MnP pressure-temperature phase diagram: a new narrow magnetic phase is discovered at

15 kbar applied pressure, for which a propagation vector (0.25,0.125,0.25) with a c-component

is proposed. In order to solve this magnetic phase, further single crystal measurements with

orientations including the c-axis in the scattering plane should be attempted. In addition,

the δ′′ magnetic phase from applied pressures of 25 kbar is shown to be incommensurate

along c, and to extend at least to 55 kbar. This phase may even extend closer to the onset

of the superconductivity phase, although it cannot be confirmed in the D20 experiment

due to a too low signal compared to the background. Nevertheless, MnP is shown to be

particularly interesting in the context of the interplay between complex magnetism phases

and superconductivity.
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École Polytechnique Fédérale de Lausanne, Switzerland
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• D. Lançon, H. C. Walker, E. Ressouche, B. Ouladdiaf, K. C. Rule, G. J.
McIntyre, T. J. Hicks, H. M. Rønnow, and A. R. Wildes The magnetic structure
and magnon dynamics of the quasi-two dimensional antiferromagnet FePS3, in
Phys. Rev. B, vol 94, 2016
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