Development of human organs with nanocomposite materials, bioactive molecules and stem cells technology

Professor Alexander M. Seifalian NanoRegMed Ltd

The London BioScience Innovation Centre, London, UK

Segment of blood vessel, usually the saphenous vein in the leg, is taken from the patient to be used as the bypass graft.

Market Potential for Medical Devices

Application	Estimated Potential Market	Unmet Need
	Size	
CABG	\$15 billion	Thrombosis, fibrinogen build up,
	100-800 thousand pat	vein graft weakness
Renal graft	\$10 billion	Thrombosis and infection
Urinary	\$10 billion	Infection, irritation,
Catheter		
Cardiac Valves	\$12 billion	Thrombosis, Durability, rejection
	82 thousand/year in US	
Stent	\$14 billion+	Thrombosis, rejection,
		librinogen bulla up

Background (Cardiovascular Bypass graft)

- 5-30% of patients do not have suitable vein
- Grafts made from PTFE or Dacron have primary patency rates of 20-30% for vascular bypass at 4-5 yrs^{1,2}

- 1. Seifalian AM, et al. Artif Organs 2002; 26: 307-20.
- 2. Kannan RY, et al. J Biomed Mater Res B Appl Biomater. 2005;74:570-81.

Cause of graft failure

1. Compliance mismatch^{1,2}

2. Thrombogenicity of the material³⁻⁵

¹Abbott et al. J Vasc Surg 1987; 5: 376-82.
²Sarkar S, et al. Eur J Vasc Endovasc Surg. 2006;31:627-36.
³Sarkar S, et al. J Biomed Mater Res. 2007;82:100-8.
⁴de Mel A, Biomacromolecules 2008;9:2969-79.
⁵de Mel A, et al. Expert Rev Cardiovasc Ther. 2008;6:1259-77.

Development of tissue engineering bypass graft "Living graft"

Matrix mixture added: Rat tail type I collagen+ Porcine aortic SMC Incubated and fed >>> rapid radial contraction +

Precondition, typically venous flow shear stress 7 days arterial flow shear stress 14 days

Cheng KS, et al. Cardiovasc Res. 2002;54:528-38 Baguneid M, et al.J Vasc Surg. 2001;33:812-20. Giudiceandrea A, et al, Eur J Vasc Endovasc Surg. 1998;15:147-54

Bioreactor

Krijgsman B, et al. Tissue Eng. 2002;8:673-80 Tiwari A, Circ Res. 2003;93:1

EC graft + in vivo test

SEM EC Cell Expression, Immunostaining CD34, gene expression RT PCR

Tissue Engineering with Human Cells age > 55

- Low burst pressure (80 mm Hg)
- Elderly cells very difficult to harvest & culture from vein or fat
- These and logistical problems make introduction of totally autologous TEVG in the foreseeable future for adult unlikely

Nanomedicine

Miss Shirin Ghadiri, PhD student

CNT & Graphene

Cardiac Patch

Bulletproof Suit

R&D Nanoparticles

Silver & Gold

inhibit microbial growth

Superparamagnetic

Thermal treatment of cancer

Pre-treatment

During treatment

Post-treatment

Developed a family of bioactive nanocomposite materials, example:

Based on POSS+poly(carbonate-urea)urethane (PCU)

Specimen 1 to 4

Development of two families of bioactive nanocor

4.5

👋 🗘 e materi

Superhydrophobic nanomaterial coating for clothes could reduce scalding injuries

Prof. Parker Natural History Museum

SEM further shows HUVECs adhering to the grooved surface

GROOVE

FLAT

Miss Debra Chong , PhD UCL Prof Dalby, University of Glasgow

A) **Figure 4**. A. Freshly isolated adipose-derived stem cells; **B.** ASCs cultured in media for 7 days; **C.** ASCs after 7 days of culture, appearing to begin neovessel formation.

In collaboration with Professor Ferretti, UCL

12 weeks subcutaneous post-implantation

Tissue Engineering

Growth factors

Scaffold

BMC

Scaffold seeded with cells attached

> Scaffold placed in bioreactor for culture in chondrogenic medium

Construct placed underneath patient skin on the forearm to biointegrate and vascularise.

Cartilage is harvested from the arm and sutured in place to reconstruct the nose. A skin graft can then be used to complete the surgery.

We developed a bypass graft with based on **Poly(carbonate-urea)urethane** Bonded with bimolecules

SEM: Honeycomb Structure

Cells (SMC, EC) Moieties (E.g. - RGD, Heparin) Acrylamide attached to activated surface from which was abstracted hydrogen leaving OH Elastic basement layer (polymer)

Tiwari, et al. FASEB J. 2002;16:791-6. Tiwari, et al. Cardiovasc Surg. 2002;10:191-7. Seifalian, et al. Biomaterials. 2003;24:2549-57. Baguneid, et al. Br J Surg. 2006;93:282-90. Vara, et al.Biomaterials. 2005;26:3987-93.

4500 ٦

Diameter (um) 4000-

3750-

0

1

2

60*

Compliant arterial prosthesis design

Obtaining long-term compliance is difficult as to date PU based grafts have relied on overall external dilation which is negated by perivascular in-growth.

The design approach used here has been to develop a prosthesis that maintains compliance and pulsatile flow *in vivo* by enabling the transmission of energy and a better quality of flow.

This is achieved via the honeycomb structure which accommodates increases in volume without the need for external dilation-a mechanism of wall compression.

ESEM cross-section (×50) and surface (×250) micrographs

Biocompatibility Studies

In Vivo Studies:

- 36 months in a sheep model for biocompatibility studies
- 9 months in a sheep model as a bypass graft
- Undergone all biocompatibility tests to the international standard ISO10993.

We have used silica nanoparticles to "couple" RGD into polymer

Aerosil 504 is fumed silica reacted with Hexamethyldisilazane and Aminosilane to form a hydrophobic fumed silica with functional surface amine groups.

B and M Mode imaging of longitudinal vessel segment

Acquisition of induced radiofrequency signal received from anterior and posterior walls

Tracking of signal over time to generate distension curves

Elasticity/compliance C=(Ds-Dd)/(Dd(Ps-Pd)) Viscous component sin (angle)

Manufacture

Preclinical test

Clinical trials

Heart valve through blood vessels

In collaboration with; Dr Gaetano Burriesci, UCL Postdoc: Dr Ben Rahmani

Transcatheter Aortic Valve

Inflow

A number of sealing strategies were proposed to reduce paravalvular leakage.

Stent design optimisation

DEVELOPMENT OF A NOVEL ARTIFICIAL AORTIC VALVE FOR TRANSCATHETER IMPLANTATION

G BURRIESCI et a

- Full repositionability and retrievability
 - 18 Fr delivery system
 - 3 stage valve expansion through three control lines
 - After full deployment catheter can be moved away and valve functionality verified.
 - If necessary, catheter can be readvanced and the valve safely recollapsed and repositioned.
 - Once the procedure is satisfactorily completed, the control lines can be released and extracted

Patent Pending :1017921.6 GB – PROSTHESIS DELIVERY SYSTEM

First animal implant in ovine model (≈ 50 kg) in May 2013, off-pump via brachiocephalic approach in orthotopic position, using continuous ultrasonic and fluoroscopic guidance.

Three valves of different sizes successfully implanted and retrieved, after assessing positioning and haemodynamic performance.

No interference of coronary blood flow for two smallest sizes, and good acute valve function with no significant regurgitation.

A) No interference of coronary blood flow was observed;
B) the valve was self-aligned owing to its outflow protrusions which expand to assist optimal positioning

2. Synthesis of POSS-PCU based trachea / patient-own stem cells

2. Surgical implantation of tracheal construct

Dr Karla Chaloupka, Zurich University Hospital

Research and Development MHRA / FDA Funding Industry Commercialisation

NanoRegMed Ltd, London, UK

Co-Directors

Professor Alexander Seifalian Mrs Hana Salussolia

Thanks, contact

- Skype: alex-seifalian
- Email: <u>a.seifalian@gmail.com</u>
- Tel: ++ 44 7985 380 797