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1. Navigation—why you need a clock

2. Brief history of relativity in the GPS

3. What the GPS is

4.   Relativistic effects:

Relativity of synchronization;

Time dilation;

Gravitational frequency shifts;

Sagnac effect;

5. Observations:  testing relativity

TOPEX; 

Frequency jumps;

Unmodeled effects;

6.   Applications

Relativity in Global Satellite 

Navigation Systems
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Moon, Jupiter & Satellites
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GPS RELATIVITY MEETINGS

• 1979 SAMSO Relativity Seminar (Boulder)

• 1985 JASON Study

• 1986 Air Force Studies Board

• 1988-98 Various Working Group Meetings

• 1995 ARL-Chapel Hill

• 1997 ICD-200 Relativity Review (Boulder)



6

GPS RELATIVITY MEETINGS

• 1979 SAMSO Relativity Seminar

• 1985 JASON Study

• 1986 Air Force Studies Board

• 1988-98 Various Working Group Meetings

• 1995 ARL-Chapel Hill

• 1997 ICD-200 Boulder

Erroneous Reports

• 1977-83  Moses, Cohen, Rosenblum

• 1992 Deines

• 1996 Fliegel & DiEsposti (Aerospace Corp)

• 2000-2006 Hatch

• 2008 Beisner 
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GPS Constellation

• 24 Satellites (now>30)

• 6 orbital planes, 55o inclination

• Period:  half a sidereal day

• Several atomic clocks/satellite

• Several spare satellites
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Control Segment
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GPS IIR Satellite 

IIF

III
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Block III satellite
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Block III GPS satellite
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Other GNSS Satellites

Beidou                                        GALILEO
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Constellation Status-GPS
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GPS Constellation Status
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GALILEO Constellation Status 11/21/2016
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Planned Beidou Constellation
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Beidou Constellation Status

• As of November 2016:  20 operational satellites of 35 planned

– 6 satellites in geostationary orbits;

– 8 in 55-degree inclined geosynchronous orbits;

– 6 in medium earth orbits at altitude 21,500 km
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• Constancy of the speed of light
– The speed of light, c, is a constant independent of the 

motion of the source  (or of the observer);

• Principle of Equivalence (“weak form”)
– Over a small region of space and time, the fictitious 

gravitational field induced by acceleration cannot be 

distinguished from a real gravitational field due to a 

mass.

Fundamental Principles
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Constancy of c
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Is the key!
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Reciprocity

 j jc t t r -r
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Exploded Block IIR Satellite View
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Clock Improvement Since 1000 A.D.

*

1 ns/day=

10-14
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Why are atomic clocks needed?

To reduce the effect of clock error to < 2 meters,

the clock error must be less than 2/c = 6.7 x 10-9 sec.

Half a day = 43200 seconds, so the fractional clock

error must be less than:

(2 m)/(43200 s x c) = 1.5 x 10-13.

Only atomic clocks can achieve such stability.
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Constancy of the speed of light 

implies time dilation

(These clocks are at

rest in the moving frame.)

(This clock at rest in “rest”

frame, coincides with upper

clock in moving frame.) 
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Einstein’s Light Clock
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How Big is Time Dilation?
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(about 8 microseconds per day)
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Accounting For Relativistic Effects

Example:  Time Dilation:
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Fundamental line element
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For light:

Time dilation:

With gravity:

Motion of

Planets:
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Coordinate Time

• In special relativity:

To each real clock, corrections are applied such 

that at each instant, the clock would read the same

as a hypothetical clock at rest at the same point

in the underlying inertial frame.

• When gravitational fields are present:

Additional corrections compensate for gravitational

frequency shifts relative to a reference on earth’s geoid.

• GPS time is an example of coordinate time, in which 

the reference is on the earth’s rotating geoid.
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Sagnac Effect
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For light: solving for dt to first order in      

the ddt term gives rise to the 

Sagnac effect.

,w

This is the Langevin metric.

In a rotating coordinate system such as one fixed to the earth, let the 
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Sagnac Effect on Synchronization 

in a Rotating System
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Over a small region of space and time,

a fictitious gravity field induced by 

acceleration cannot be distinguished

From a gravity field produced by mass.

Equivalence principle and

gravitational frequency shifts
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Gravitational Frequency Shift
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Gravitational Frequency Shift
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Relativity of Simultaneity

To an observer on the ground, let two lightning 

strokes at the front and back of the train 

be simultaneous.

The “moving” observer at the train’s midpoint finds 

the event at front occurs first.
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Principle of Equivalence
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Fundamental Scalar Invariant
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Earth-fixed Clock
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This is the fractional frequency shift of an atomic clock 

fixed on earth, relative to an atomic clock at infinity.

Note about centripetal term
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Clocks on earth’s geoid beat at equal rates

Clocks at rest on geoid

beat at equal rates, defining

International Atomic Time.

They are synchronized in 

the underlying inertial frame.

Centripetal potential, 

monopole potential, 

quadrupole, and higher

potential terms conspire 

to give an equipotential 

in the rotating frame.
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Earth-based Time Scale

SI Second:
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Atomic Clock in a Satellite
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Factory Frequency Offsets
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Frequency shifts cancel at this radius
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Three Important Effects (GPS)

#1:  Scale correction to satellite clock:

10.23000000000 MHz 10.22999999543 MHz

#2:  Receiver must implement the eccentricity correction:

104.4428 10 sin (sec)
meter

a
e E 

#3:  User must account for time required for signal propagation

(Sagnac effect) if relevant.
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SV#13 eccentricity effect 

(TOPEX receiver)

0.013e 
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GALILEO Satellites in unintended orbits

Normal radius of a GALILEO satellite:   29599.8 km

Eccentricity:  0
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Quasi-Zenith Satellite System  (Japan)



49

Frequency “Breaks” 

Due to Orbit Adjustments
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Unmodeled Relativistic Effect: Oblateness

Effect of Earth’s oblateness on satellite orbit:
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A Coincidence?

There are many terms in the perturbations arising

from Earth’s oblateness with coefficient

23
1 (sin )

2
I

 
 

 

For GPS, this is nearly zero. ( 55 )I  
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Shapiro delay SV to earth surface
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Spectrum of lunar tidal potential

The coefficients are functions of  the eccentricities and inclinations of the SV and the

moon with respect to the equator.    The phases are functions of the altitudes of perigee

and the angles of the lines of nodes.  

There are significant contributions from many frequencies 

in the neighborhood of  6 hours.  (These correspond to                )

The short-period terms are sufficiently close together that they can beat against

each other, reinforcing and cancelling.  They can combine  and have amplitudes 

that are estimated to be greater than about

Detailed calculation of the lunar tidal potential gives perturbations in terms of 

cos( )i i sat i moon i

i

A n t m tw w  

6,... 8; 7,... 8i in m     

152 10 .

2.in 
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Unmodeled Relativistic Effects:

Lunar and Solar Tides

Lunar and solar tidal perturbations are estimated to affect the 

fractional frequency shifts  of GPS SV clocks in a predictable way

by about
153.7 10

The principal periods with which this occurs are near 6 hours 

but there are many nearly equal frequencies.
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Surface Plate Velocities
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Control of Monster Machines
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Autonomous Operation
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Precision Agriculture
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Surveying

Finding boundary markers 

lost for a century.
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Animal 

Tracking
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GNSS-other satellite navigation 

systems

GLONASS-Russia

GALILEO-ESA

BEIDOU--China  

IRNSS--INDIA

QZSS--JAPAN

AUGMENTATION SYSTEMS:

WAAS

EGNOS

QZSS

All use the same fundamental relativity concepts.

The GALILEO specs state “all relativity corrections are

the responsibility of the user.”    ????
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Clock Coefficient a0 of 

GPS Satellite clocks, 1992-2014
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GPS DEVELOPMENT KIT
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