

Neutron crystallography to inform drug design targeting SARS-CoV-2 main protease

<u>Andrey Kovalevsky</u> Neutron Scattering Division Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

SARS-CoV-2 life cycle

Proteolysis of pp1a and pp1ab by 3CL M^{pro} and PL^{pro} produces NSPs

А

- Action by the two enzymes is vital for the viral replication cycle
- Inhibition of the proteases can stop the viral replication

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Main protease is the heart of SARS-CoV-2 replication

Stopping the heart of SARS-CoV-2

- 1) Polyproteins are cleaved into components of the replication machinery
- 2) Protease inhibitors bind active site, blocking substrate processing
- 3) Viral replication is prevented

Active site of SARS-CoV-2 Mpro

Substrate binding to M^{pro}

Targetable active site features

- Non-canonical catalytic Cys145-His41 dyad
- Room for ~6-7 peptide/inhibitor groups (P2'-P5)
- Characteristic oxyanion hole

M^{pro} active site: Where are the hydrogens?

Room-temp joint XN structure of M^{pro} in the native form @ 2.5Å resolution

Kneller et al. 2020 Nat. Commun. 18, 688-699 Kneller et al. 2020 J. Biol. Chem. 295, 17365-17373

Room-temp joint XN structure of Mpro-Telaprevir @ 2.4Å resolution

Actional Laboratory

8

Kneller et al. 2021 J. Med. Chem. 64, 4991-5000

M^{pro} active site is malleable adapting to ligand size Subsites S2 and S4 are cryptic

Tunability and malleability of M^{pro}

 Active site protonation states are tunable, but overall electrostatic charge is maintained at +1

 Active site conformation dynamically adapts to inhibitor properties

•Cryptic binding subsites and plasticity presents challenges for inhibitor design and in silico modeling

Structure-activity relationship (SAR) study for noncovalent inhibitors: Exploring structural, electrostatic and electronic determinants for binding to subsites S1 and S2

Supercomputer screen identifies noncovalent inhibitor

1 room temperature X-ray structure

CAK RIDGE HIGH FLUX ISOTOPE National Laboratory REACTOR SOURCE

12

Clyde et al. 2022 J. Chem. Inf. Model. 62, 116-128

Room-temp joint XN structure of Mpro-1 complex @ 2.5Å resolution

Direct characterization of protein-ligand hydrogen bond network

Neutrons enable observation of new catalytic water molecule orientation

First neutron structure of M^{pro}-Non-covalent inhibitor complex

Neutron structure-led VR-assisted SAR

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

SAR study guided by the neutron structure M^{pro}-1 complex (HL-3 series)

- > P1 must have H bond acceptor capability and correct geometry to make H bond with protonated His163.
- Substituents on the aromatic P2 group should have both moderate steric size and electronegativity.
- > P2 group with one substituent on the aromatic ring is disadvantageous.
- Highly electronegative substituents, such as -F or -CF₃ are disadvantageous, as are less electronegative but sterically larger ones.
- ➤ A third substituent such as -Cl at P2 group is favorable.

In vitro assessment of chemical modifications

Compound	Inhibition K _i (μM)	Affinity K _d (μM)	∆H (kcal/mol)	∆S (cal/mol⋅K)	∆G (kcal/mol)
MCULE-5948770040	2.9	1.30	-8.32	-0.7	-8.11
HL-3-68	0.89	0.69	-7.75	2.4	-8.5
Mcule-CSR-494190-S1	1.4	1.32	-9.1	-3.16	-8.15

HL-3-68 Mcule-CSR-494190-S1 Cl С Cl Ο 0 Ο -CH₃ -Cl C HN HN O= Cl O =C HN HN Ο

MCULE-5948770040

CAK RIDGE National Laboratory SPALLATION NEUTRON SOURCE

M^{pro} is structurally and electronically malleable

- •One atom difference can significantly alter inhibitor binding potency
- •VR allowed true 3D structural analysis and inhibitor building
- •VR allowed inhibitor structures to be tailored to the binding site

CAK RIDGE National Laboratory

Design of covalent inhibitors based on hepatitis C virus protease inhibitors

Hepatitis C virus protease inhibitors bind and inhibit M^{pro}

Boceprevir

Narlaprevir

Design of covalent hybrid inhibitors of M^{pro}

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Unique binding of BBH-1 to M^{pro}: A neutron structure perspective

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Unique binding of BBH-1 to M^{pro}: A neutron structure perspective

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Covalent inhibitors with nitrile warhead

Isothermal titration calorimetry

<u>Compound</u>	K _d ,	Stoichiometry,	ΔH ,	ΔS,	ΔG,
	μ M	N	kcal m ol ⁻¹	cal mol ⁻¹ K ⁻¹	kcal mol ⁻¹
BBH-2	0.030 ± 0.007	1.000 ± 0.005	-8.74 ± 0.08	5.40	-10.4
NBH-2	0.026 ± 0.016	0.990 ± 0.009	-8.76 ± 0.17	5.63	-10.5
PF-07321332	0.007 ± 0.003	0.990 ± 0.003	-10.75 ± 0.70	1.57	-11.2
GC-376	0.15 ± 0.03ª	0.99 ± 0.01	-6.7 ± 0.1	9.1	-9.4

Antiviral data

Hybrid inhibitors – fruitful path to clinical drugs

- Protonation states adapt to a specific inhibitor
- •Active site geometry adapts to inhibitor steric and electronic properties
- •Hybrid inhibitors are conceptually superior to previous designs

ORNL, SNS & HFIR

Daniel Kneller

Malcolm Cochran

ORNL, **Biology**

Martha Head

Audrey Labbé

Acknowledgements **ORNL, CNMS, Synthesis**

Hui Li Peter Bonnesen

Mark Arnould

ANL, MD Simulations

Heng Ma

Gwyndalyn Phillips Qiu Zhang

Hugh O'Neill

Swati Pant

Kevin Weiss

NIDDK, NIH

John Louis

ORNL, CSMB, Protein Production

ILL, Neutrons

Matthew Blakeley

Office of

Science

NVBL: National Virtual Biotechnology Laboratory

