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Abstract

A continuum limit treatment of planar spin chains with arbitrary 5 is presented.

The difference betwsen integer and half-integer spins is emphasised, uhile isotropic
half-integer spin chains are gapless, and have power-law dacay of correlatians at T=0
with exponent‘v = 1, integer spin systems have a singlet ground state with 3 gap

for 5 = 1 excitations and exponential decay of correlations., The easy-plane to

pasy—axis transiticon is described,
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One dimensional guantum spin chaims are currently the subject of much |

study. 1In this note, I outline seme new results on axially-symmetric spin

1,2

chains, without restriction on S, that confirm and extend earlier results
restricted to spin 5 = %, and lead to an unexpected conclusion: while half-

integral spin isotropic antiferromagnets have a gapless linear spin wave

. ‘ > -
spectrum and power—law decay of ground state correlations <§L-56)~(—4)nn 1,

integral spin systems have a singlet ground state, with a gap for"massive®

5 = 1 elementary excitations, and exponsntial decay of ground state correlations:

<{§n-§B§»v(-1)”n“%exp(-zn). Indeed, as will be outlined, the isotropic intager
spin system can be related to the 0(3) coupled rotor chain or "non-linear sigma
model"3, and thus teo the 2-D classical Haiseﬁbsrg model, The rola of quantum
fluctuations controlled by S—T is analogous to thermal fluctuations in the lattar
model,

I will discuss the XY-Heisenberg-Ising system, Qigh all components of

exchange antiferromagnetic: withﬁji a,

m Y('sn n+1 Sy Y+'1 )‘ rn n+1-7 * | ) | . (1)

In the easy-plame limit (X¢<1), a description in tarms of quantum action-angle

. . - R . . _ z +
variables N,qb(uhera [N,exp(1¢ﬂ = exp(i¢J ) is appropriate: N, =5+5, %5 =

n 2, % . z.% .
(-1) (S+Sn) exp(1¢%)(8—5n) « This representation, similar in spirit to the
Holstein-Primakoff boson representation appropriate in the wsasy-axis limit,
. 4 \ ' ,
is exact . The eigenvalues of Nn are integers. Physieal statgs are restricted
to the subspace U.‘-’:-_Nng 25,

It will prove useful to introduce a dual "angla" uariabls@n , defined on
bends, so st = €)+A“ € , . In the limit of sufficiently strong easy-plans
n n+s n—3

anisctropy, ¢n will exhibit short-range order, and Vvary slowly along the chain,
I will develop a continuum description in terms of fields gé(x)and B(x), where
B(xn_%)—)/ﬁra

z R : . c . .
-5°/L is conjugate togﬁ(xn). This description is appropriate when zero-paint

for lattice spacing a and x = na, nr¢(x 3 and’sz ) “[}9 1)
; ; n n+3




FluctuationsloFQQ‘uifh respact to its ﬁeighburs are small compared to-n; In
this small-fluctuyation regime, the locally psriodic character onﬂn and the related
discretisation of the spectrum of Si are hidden.

Noting that periodic boundary conditions allow thé field ¢s(x) to increase
by 27 times an integetr J around the ring of lehgth L, the fields® {x) and¢(x)
can be reprasented as S

8(x) =g, +215 /L - iZ«geiqxsgn(q)(!{l+b_q) ’
0

Qx) =¢0 +2rIx/L -i?q{;eiqx(b-g—b_q) ’ (2)

where ug = (2Lsin(%fq]a)/‘n‘a);%exp(_ﬂ?(q)), and ‘ﬂq) is a free Bogoliubov trans—
formation parametsr. 52 are beson creation operators labelled by q==2ﬁh/L, Q;£D,
[ql<7ﬂfa. ¢L is the global spin aﬁgls conjugate to total azimuthal spin SZ; simil=-
arly, E% is the angle conjugate to the action-type variable J,

The momentum operator P is given by
P:@l"+2'f(3/L)(SZ+SL/a)/a+ Z,qb.gbq . (3)
q

The first term provides a global rotation of ¢% by T+ 273/, This is raquirsd
in addition to a shift of the pattern of fluctuations for a translation of the
spin configuration by one lattics spacing.

The rspresantétimwofS;ir!away that reflects its discretg ° specirum is
crucial. The conssrved magnetisation density can be regarded as residing in a
fluid of "magnon" excitations about the fully aligned state Si = =5, each magnon

carrying 5% = +1. As n increases, & + 2W5(n+%) increases monotonically by 2T

n+y
each time such a magnon is passed. In the continuum field description, the
magnons will be taken to be located at the points where G{x) + ZWGx/a is an integer

multiple of 2W . The magnon density operator is thus a sum of unit-yeignt delta-—

functions: P(x) =

zzl8[9(x)+ZWSx/a—2ﬁﬁ]t?9(x)+2WS/a] .

This can be written as p(x) = 5/a + (210—1‘75()(),




’é(x) =6(x)+ ZEsln(rnB(x)+21Tmbx/a]/m . (4)

m?
The spin operator Si is then given by the integrated magnon density in the unit

~J
. . . _ z . .
< X< X ; this immediately gives § 3 = Q(xn é)' Sn given in terms

cell x 1
n—-, ~ = n+z

of the operators & constructed out of the continuum fislds B(x) has the

n+5

required discrete spectrum, For calculation of long-distance corrslations,
a gradient expansion in &(x) can be used to obtain an approximate local form

for Si. This form depends on whether 5 is integral or half-integral through ths

term 2rmSx/a in (4). For integral S ,
Srz‘ PVE) ESZ/L+Tr(xn)] {1 +n§ ZcosCmG(xn)]} H (5)

for half-integral S, an oscillatory term is pressnt: SiﬂJS + (~1)"s 2, where

S;::atsz/i_—ﬁr( xn)]{1+z 2cos Em@(xn))§ R

m21

s = Trz;’?s.m['?mﬂ)e(x ] /Gameny (6)

If, following Uillainé, the long-wavelength approximation 5;aua[§Z/L4ﬂzxnﬂ
: . . . . z : . .
is made, linearisation of (1) in S and (¢n+1~¢n) when) <1 leads to the effactive

Hamiltonian
H=2w(a)elb + (TTUS/L)['j(SZ)Z""_‘]-:]ZJ ; (7)

- 1
where M=% = exp[}2¢(0)], exp(??(qy] = 2r5{?+fkccs(q)}2. The spin-wave spectrum
is linear as q%O:CD(q)ﬁuuShﬂ;au(q)==2385in(%kﬂa){?+2Acos(q51_% - note the soft
mode at the Brillouin zone edge g = %/a = 4G, The linearisation is valid for
large S, when non-linsar zero-point fluctuations are suppressed; however, for
ganeral S, provided such fluctuations do not lead to breakdown of the shart-rangs
order of ¢%, a renormalisation procedure should yield an effective Hamiltonian of
form {(7), but with renormalised parameters;?%q),co(q). This viewpoint has been

advancaed in Réf.(S), and is supported by studies of exactly soluble models . The




state described by (7) may be called a "spin fluid" state. The magnon current
j= (2TD-1(dé%/dt) &= éius(l/t) is conserved at low energies.

Correlation functions -are easily evaluated iﬁ the fluid stata. . The momsntum
associatsd witJ:;ersnt axcitationr  AJ = 1 is 56 + ZﬂSz/L. When 52 # 0, harmonies
of this wavevector appear in the correlations through sine and cosine terms in (5)
and (6). However, I will describe only the case Sz = 0.1~

For integar spins, the current excitation carriss momentum 0 (mod. G). Housver,
oscillatory terms with exponential decay constantf%‘(mhere @(%G+ih;o):ﬁ) are still
present, due to tha soft-mode in the spin density fluctuation spectrum at the
Brillouin zone sdge; these arise from the branch cut in exp(2f(q)) at complex g.

In the linearised approximation, cosh(ﬂ%) = 1M . For n‘ﬁb1,<:5i5;:> ~
A(-ﬂnﬂ_-%axp(“ﬂon) + 52214807 V), (5Fspome(=1)"n Y4 un“3/2exp(-/cnn) ,
where A - D are constants depending on short-wavelength structure.

For half-inteqgral spihs, the current axcitation carries momentum %G, and

cantrols oscillatory behaviour,masking the soft mode. For n 1, (5§Sé"> —~

-—

A(-—’1)nn_':j +/5(217‘n)—2(1+8n-40) ,<S:5; >~Cn_,‘jﬁ-—1)n+0n—tﬂ » These expressions agree

with the S5=% results previously obtained with tha various fermion repreaentations1’?

If the full forms (8), {6) for Si are used, terms involving cos(m&%xn)) are
saen to be present in the Hamiltonian. These terms can be regarded as Umklapp
terms, as they allow desftruction of current guanta, hen 5% = 0, individual
currant quanta can be destroyed in integral spin . systems (by a 2Wrotation
of a spin), while in half-integral spin systems, they can only be destrayed in
pairs {(by a locel 4T rotation). The long-wavelength fluctuation part of the

Hamiltonian has the farm (8), with ¢ = us/df':

H=c dx@(U(}B}zﬂ(Vé)2+Z.'2fmcos(me)’} . (8)
4]

. -1 . . . . . s
Since (2ﬂﬁ*v¢ is conjugates to B, this is easily recognised to be of sine-Gordon

6 . . 2 2 . .
type ', with coupling parametersﬁ = ZMm g «» Jhe fluid state is only stable if
' m

2 . , 2 . .
¢‘> 8, i.e.,M<im . In the fluid state, fluctuatiocns of V?ﬁx) ars




—B—

small compared to the conjugate fluctuations of _ax). As X incroases, WY and

the fluctuations of V¢(x) increass, while those of & (x) decrease. Eventually,

the fluctuations of @(x) are tooc small to prevent pinning by the cosine potential,
local

and those of‘Vﬁ(x) are sufficiently large that the‘pariadicity af 525,1 is restored.

For integer spins , the m=1 process is prasent. Yreaches its limiting value

of + at some critical valuaﬂm(?, at which the correlations still have easy-plane
character. Far % >2C1, e(xn) is pinned to values 0 (mod. 2T}, .and 2T fluctuations
of 95‘ are important. The resulting state may be described as a pinned ]
spin density wave with the same periodicity as the lattice, so no broken symmetry |
is praesent, Its excitations are "topological salitons" whare & (x) slips by 2T

(one magnon), carrying 5% = +1, and intrinsic momentum 4G (from (3)). Predicted’

corralatiens in the singlat ground state phase with ”m decay as (SZSS> ~
. i n

“d -3 - . — :
A{=1)"n 2axp(—K0n) +n @exp(~21%n)+€exp(—2ﬁc1n)) s <S:50>~D(—1)nn 215~><p(—£(1r1)

+ En_zsxp(—( Ko-”‘ﬁ)n) , whers K1 is the decé}} constant associated with the 5% = +1

soliton dizpsrsion. £,(q): €, (46+iKy) = 0,

As ) increases, the soliton gap increases, while that of the soft mode
decreases. At the isotropic point) = 1, KUZK‘I s and the suft mode excitation
fForms a triplet with the 5% = +1 soliton excitation. The soft modes sxcitation
has the lower energy for A 1, and its gap vanishes at a second critical point
’)‘ c2> 1, signallirg the instability against the "doubly-degensrate Ising-Neel
stata, Though detailed justifiecation cannot be given hers, I note the critical
behaviour can be idantified with that of the singlet-doublet transition in the
"(154)“ field theory or 2-D Ising model, just as critical behavidur at qc is -

predicted”?
ralated to that of the 2-0 XY model. /CG vanishas whenﬂ=)cz, and)‘corralations
decay as (SiSS >~A(-‘I)nn_% + Bn'%', (S;-Sa)fv n_‘%exp(—l&'n}(c(-‘l)n + Dn—-s/‘?)

In the doublet N&el state whenﬁ?gc The 5% = 0 gexcitations again develop a2 gap,

2 >y
and can now be identified as pairs of solitons of the Néel state (wnich correspand
to conf‘iguratior}s like G-+U—+—l and carry ng magnetisation in the inteqral-spin

case). Pre_dicted? correlations now decay as<SerSé>~(-‘l)n.&~+n—2538x;!(-2k0n) +

.- _ . ‘ -~ L ) n -
Cax.pi(—Z!{?nﬂ}-i-n"1LDexp(A-ZKan)+Eexp(—2}"1n)] ;<5:SU>~n ZEXD(-‘KR)_ (=1} F+Gn 1].
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Asﬂ increases above }52 the excitaticn energy and associated decay constant F%.af
the 5° = 0 Neel solitans rapidly become larger than the correponding quantities
for the S° = +1 excitations, now identified as the Néel magnons.

The tramnsition from easy-plane to easy-axis system is simpler in the -case

of half-integral spins. The m=1 Umklapp process is absent, and the m=2 pracess

drives an instability against a doubly degenerate .Néal—ls;ng density—wave
state, uhe:e_e(xn) alternates between 0 and ™ .,  The solitons (configurations
like tf‘*r‘+;3s6'=.i%) are created in pairs, and carry magnetisation 5% = T3
The critical value of 4 at breakdown of the fluid stats is'9= 1y whan the correlat-
ions ars isotropic, hence the transition occurs at)= 1« For ,'\2‘1, pairs of ézzi-%
solitons are the lowsst energy excitations, and a strong enough axial field will
drive a second-order transition into a weakly incommensurats density wave state,
which.can be i;gé}dered as a dilute fluid of 5% = +} solitons. The origin of
the 5% = iﬂ/magnun excitations, which have muph lamer-snargy'tﬁan the sclitons at
larger easy-axis anisotropies, is not yat clarified. In the strong anisotropy
limit, the response to a magnetic field is a first-ordsr "spip~flop'" transition.
, aasy-axis Néel easy-plane _
It gseams likely that thekmagnon is connacted with the(zone—adge sof't mode; it is
not clear whether thase excitations have a gap at) = 1, when the soliton gap
vanishes,

The esoluble 5=% chain gxhibits the m=2 Umklapp instability, which was
overlooked in the sarlier "fermion reprasentation” treatment1, but first pointed
out in Ref,(5), The details of the solution are in precise accord with the
scaling theory of ( 8)8 » A feature special to S=} is the absence of the Néel
magnon for]s, and the soft mode for A<? . This can be attributed to the hard-core
nature of the guantum of magnetisation. In the sasy-axis casa, a treatment in taerms

of fermion "disorder variables" {solitons) is more appropriate than a treatment

using Holstein~Primakoff bosonuariablesg

Finally, 1 note the similarity between the bshaviour described hers for tha
integral spin antiferromagnatic chain, and that of the 0(3) roter chain, or "non-

linsar sigma model", which can be related to the elassical 2~D n=2 vector spin

model? The rotar chain Hamiltonian is




_ 1.2 X YaY ‘2 Z ‘e
H o= giszn %Cﬂhiﬁdq +9 00 fAJ}nﬂh+1) {g)
- == 2 . ' > 2> >
whare Ln.ﬂh = 0, £ = 1y and the rotor commutation relations are LnXLn==iLn s

N -
%(Lnxﬁ%-ﬁﬁgx?n) = 15%,_nhg3%:=0. In the isotropic cassj]= 1, this model has a

singlet ground state with a gap for L=1 elementary excitations for all non-zero g,

and models the 2-D classical Heisenberg model with g playing the role of temp-—-
.eratura'3 « Consider now a spin chain with altermating ferromagnetic and antiferro-

e -~ . .
magnetic exchange, H = 321#-4) Sn.Sn This model has two spins per unit cell,

+1
and to study it, it is useful to decimate it by blocking the spins inte pairs.

If it is chosen %o combine ferromagnetically coupled spins, it is easily seen that
the resulting effective Hamiltonian is that of a spin 25 (i.se., integral spin)
antiferromagnet, If antiferromagnetically coupled spins ars combined, one can
introduce new variables T?==7?1¥§; R 2= (25)-%(E:;32). For large S, these obey
rotor-like commutation relations, and an effective rotor-chain Hamiltonian is
obtainad.  The identification with (9 )provides the connection:of. the X

and 152 instabilities to the 2-D XY and Ising critical behavior, and justifies

the discussion aof the A instability given above.

c2
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Power-law prefectors to exponential decay of correlations given here are
to be regarded as cgnijsctures, based on the assumption that an Orstein-
Zarnike type of approach can be applied in the massive phases, and that
these power-laws ars coupling-independent, A Factur.n"% is associated with
each elementary excitation, with a extra factor n—1 dus to a matrix element
usually associated with a' pair of excitations. The correlation fumctions

predicted here agree with the FF

= 4N 1imit of the sine-~Gordon theory, and
the Holstein-Primakoff treatment of the easy—axis antiferromagnet. 2-D

Ising modsl results have been taken into account in the predictions for

behavior of integexr spins naar‘lcz.
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