Study of liquids with polarized neutrons on D3

A - Instrument and measurements

A-1: First ("old") setup: polarizing Heusler monochromator

In this setup, the polarization of the neutron beam impinging on the sample is constant throughout the experiment. However, there is always some uncertainty on its value, since one can only measure the product of the polarizer and analyzer efficiencies.

The main limitation of this setup is however the extremely poor Q-resolution resulting from the very small scattering angle of the Heusler (111) Bragg reflection ($\theta_{\text {Bragg }}=4.26^{\circ}$ at $\lambda=0.5 \AA$) and the fact that the monochromator is used in transmission geometry.

A-2: Second ("new") setup: Cu monochromator + spin filter

In this setup, the (002) Bragg reflection from a Cu monochromator produces an unpolarized beam ($\theta_{\text {Bragg }}=7.95^{\circ}$ at $\lambda=$ $0.5 \AA$). The beam is polarized by a ${ }^{3} \mathrm{He}$ spin filter. The polarizer efficiency is extracted directly from the filter transmission (see below).
The resolution, while still lower than on D4, is much improved, as shown in the figure.

A-3: Beam size and sample container

Upstream window: 13 (horizontal) x 21 (vertical) mm².
Downstream window: 13 (horizontal) x 25 (vertical) mm^{2}.
Annular vanadium cell:
Dimensions of the sample space: $\varnothing_{\text {in }}=0.312^{\prime \prime}=7.93 \mathrm{~mm}, \varnothing_{\text {out }}=0.426^{\prime \prime}=10.82 \mathrm{~mm}$. Considering the illuminated sample height, the sample volume is about $0.9 \mathrm{~cm}^{\wedge} 3$. The inner and outer walls of the vanadium can have a thickness of $0.006^{\prime \prime}=0.15 \mathrm{~mm}$. A single crystal is mounted on top of the sample container to monitor the efficiency of the analyzer spin filter.

A-4: Measurements

The measurements consist in recording horizontal angular scans of the single detector in both polarization channels: I^{+}and I^{-}.
The step size is usually 1° at high angle ($>25^{\circ}$) and 0.5° at low angle ($\leq 25^{\circ}$).
Considering the lifetime of the spin filters, of the order of 70-100 hours, the decay of the polarization is sufficiently slow to integrate each measurement over up to 4 minutes.

Every 2-3 hours, the single crystal on top of the sample container is (automatically) driven into the beam, to record the polarization, product of the efficiencies of the polarizer and the analyzer.

A typical sequence of measurements is:

```
ptz 19.28 (moves the sample into the beam)
fls ga fr -25 -2.5 .5 240s (scan the detector (25* to 2.5*, in 0.5* steps, 240 seconds/pt)
xbu polar (measure the polarization using the "polar.xbu" script
ptz 19.28
fls ga fr -60 -26 1 240s
xbu polar
ptz 19.28
fls ga fr -90 -61 1 240s
xbu polar
ptz 19.28
fls ga fr -120 -91 1 240s
xbu polar
```

```
polar.xbu:
par cet ====10000 2000 (reset the counting times)
par sps 30s
ptz -23.7 (drives the crystal into the beam)
hkl1 1 1 1 (rotate the detector and sample into predetermined (111) Bragg conditions)
pga -9.00
pom -28.41
spi 1 (set the polarization channels to + +)
spo 1
cen om .7 11 (small rocking curve to center the)
bpb (background-peak-background, "bpb" scan, to measure the polarization)
```

The heights are the following:
For 3 cells: $t z=-13$ and \quad Wafer: $\quad f z=0$
Top can: $\quad \mathrm{fz}=58$
Middle can: $\mathrm{fz}=120$
Bottom can: fz=182
For 2 cells: $\mathrm{tz}=-13$ and \quad Wafer: $\quad \mathrm{fz}=62$
Top can: $\quad f z=120$
Bottom can: fz=182
For 1 cell: $\mathrm{tz}=-13$ and \quad Wafer: $\quad \mathrm{fz}=124$
Can: $\quad \mathrm{fz}=182$
The transmission of the spin filters highly depends on the (decaying) ${ }^{3}$ He polarization. For example, at $\lambda=0.5 \AA$, the chosen ${ }^{3} \mathrm{He}$ pressure is usually 3.2 bars. With an initial ${ }^{3} \mathrm{He}$ polarization of $\approx 80 \%$ and a lifetime of $70-100$ hours, the (unpolarised) transmission varies from $\approx 36 \%$ to $\approx 24 \%$ in the first 24 hours. For that reason, the spin filters are usually replaced every day.
When replacing a filter, it is important to:

- Measure the polarization obtained with the old filter (mandatory) ("bpb" on Bragg peak),
- Measure the transmissions of the depolarized filters (optional, but helps to cross-check the characteristics of the filter, as provided by the ${ }^{3} \mathrm{He} \mathrm{lab}$),
- Declare the new filter in MAD or NOMAD ("par nsf" and "par nsf2",
- Measure the polarization obtained with the new filters ("bpb"),

A detailed procedure is available on the instrument, and given in the appendix.

B - Theory

Neutron beam intensity: $I=I^{+}+I^{-}$
Transmission of unpolarized beam (here ignoring the windows transmission, or empty spin filter transmission) :

$$
\begin{aligned}
& I^{ \pm}=T^{ \pm} \frac{I_{i n}}{2} \\
& I=I^{+}+I^{-}=\left(T^{+}+T^{-}\right) \frac{I_{i n}}{2}=T I_{i n} \\
& T=\frac{T^{+}+T^{-}}{2}
\end{aligned}
$$

Neutron polarization

$$
\begin{aligned}
& P_{n}=\frac{I^{+}-I^{-}}{I^{+}+I^{-}}=\frac{T^{+}-T^{-}}{T^{+}+T^{-}} \\
& I^{+}=I \frac{1+P_{n}}{2} \\
& I^{-}=I \frac{1-P_{n}}{2}
\end{aligned}
$$

Spin filter transmission

$$
\begin{aligned}
& T^{ \pm}=e^{-O(\lambda)} e^{ \pm O(\lambda) P_{H e}} \\
& P_{H e}=P_{H e}^{0} e^{-\frac{t}{T_{1}}} \\
& O(\lambda)=7.32 * 10^{-2} * p[\mathrm{bar}] * L[\mathrm{~cm}] * \lambda[\mathrm{~A}]
\end{aligned}
$$

$P_{H e}$ is the ${ }^{3} \mathrm{He}$ polarization, T_{1} the relaxation time, $O(\lambda)$ the opacity
Spin filter transmission of unpolarized beam

$$
T=\frac{T^{+}+T^{-}}{2}=e^{-O(\lambda)} \cosh \left[O(\lambda) P_{H e}\right]
$$

Transmission of unpolarized beam through depolarized spin filter:

$$
\begin{aligned}
& P_{\text {He }}=0 \\
& T_{0}^{+}=T_{0}^{-}=e^{-O(\lambda)} \\
& T_{0}=\frac{T_{0}^{+}+T_{0}^{-}}{2}=e^{-o(\lambda)}
\end{aligned}
$$

Transmitted polarization:

$$
P_{n}=\tanh \left[O(\lambda) P_{H e}\right]
$$

note:

$$
\frac{T}{T_{0}}=\cosh \left[O(\lambda) P_{H e}\right]
$$

since $\cosh ^{2} x-\sinh ^{2} x=1$

$$
\begin{equation*}
P_{n}=\sqrt{1-\left(\frac{T_{0}}{T}\right)^{2}} \tag{1}
\end{equation*}
$$

This is what we use to determine the polarization of the beam impinging on the sample, from the Monitor2 measurements

Decay:

The relaxation time T_{1} is obtained by fitting:

$$
\begin{equation*}
P_{n}=\tanh \left[O(\lambda) P_{H e}^{0} e^{-\frac{t}{T_{1}}}\right] \tag{2}
\end{equation*}
$$

For a polarized primary beam, with polarization $P_{\text {in }}$ one has to use:

$$
P_{n}=P_{i n} \tanh \left[O(\lambda) P_{H e}^{0} e^{-\frac{t}{T_{1}}}\right]
$$

Beam path:

We use $I_{0}^{ \pm}=T_{M T}^{0} I_{i n}^{ \pm}$, where $T_{M T}^{0}$ is the magic box empty filter transmission. $T_{M T}^{0}=1$ if there is no magic box (polarization from Heusler monochromator).

Measured intensities:

Flipper off: $I_{m}^{+}=T_{M T}\left[T^{+}\left(\sigma_{N S F} I_{0}^{+}+\sigma_{S F} I_{0}^{-}\right)+T^{-}\left(\sigma_{S F} I_{0}^{+}+\sigma_{N S F} I_{0}^{-}\right)\right]$
Flipper on: $I_{m}^{-}=T_{M T}\left[T^{+}\left(\sigma_{S F} I_{0}^{+}+\sigma_{N S F} I_{0}^{-}\right)+T^{-}\left(\sigma_{S N F} I_{0}^{+}+\sigma_{S F} I_{0}^{-}\right)\right]$
$\frac{I_{m}^{+}}{T_{M T}}=\sigma_{N S F}\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)+\sigma_{S F}\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)$
$\frac{I_{m}^{-}}{T_{M T}}=\sigma_{N S F}\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)+\sigma_{S F}\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)$
$\sigma_{N S F}=\frac{\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right) \frac{I_{m}^{+}}{T_{M T}}-\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right) \frac{I_{m}^{-}}{T_{M T}}}{\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)^{2}-\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)^{2}}$

$$
\begin{aligned}
& =\frac{\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right) \frac{I_{m}^{+}}{T_{M T}}-\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right) \frac{I_{m}^{-}}{T_{M T}}}{\left(I_{0}^{+2}-I_{0}^{-2}\right)\left(T^{+2}-T^{-2}\right)} \\
\sigma_{S F} & =\frac{\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right) \frac{I_{m}^{-}}{T_{M T}}-\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right) \frac{I_{m}^{+}}{T_{M T}}}{\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)^{2}-\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)^{2}} \\
& =\frac{\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right) \frac{I_{m}^{-}}{T_{M T}}-\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right) \frac{I_{m}^{+}}{T_{M T}}}{\left(I_{0}^{+2}-I_{0}^{-2}\right)\left(T^{+2}-T^{-2}\right)}
\end{aligned}
$$

We want to re-write the equations as functions of the incoming polarization and the spin filter parameters
We note $P_{\text {in }}$ the incoming neutron polarization
$P_{\text {in }}=\frac{I_{0}^{+}-I_{0}^{-}}{I_{0}^{+}+I_{0}^{-}}=\frac{I_{0}^{+2}-I_{0}^{-2}}{\left(I_{0}^{+}+I_{0}^{-}\right)^{2}}=\frac{I_{0}^{+2}-I_{0}^{-2}}{I_{0}{ }^{2}}$
resulting in: $I_{0}^{+2}-I_{0}^{-2}=P_{\text {in }} I_{0}{ }^{2}$
$I_{0}^{+}=I_{0} \frac{1+P_{i n}}{2}$ and $I_{0}^{-}=I_{0} \frac{1-P_{i n}}{2}$
To simplify, we will write: $T^{ \pm}=\alpha e^{ \pm \beta}, \quad \alpha=e^{-O(\lambda)}, \quad \beta=O(\lambda) P_{H e}^{0} e^{-\frac{t}{T_{1}}}$. Then:
$T^{+} I_{0}^{+}+T^{-} I_{0}^{-}=I_{0} \alpha\left[e^{\beta} \frac{1+P_{\text {in }}}{2}+e^{-\beta} \frac{1-P_{\text {in }}}{2}\right]$
$T^{+} I_{0}^{-}+T^{-} I_{0}^{+}=I_{0} \alpha\left[e^{\beta} \frac{1-P_{\text {in }}}{2}+e^{-\beta} \frac{1+P_{\text {in }}}{2}\right]$
$T^{+} I_{0}^{+}+T^{-} I_{0}^{-}=I_{0} \alpha\left[\cosh \beta+P_{\text {in }} \sinh \beta\right]$

$$
\begin{align*}
& T^{+} I_{0}^{-}+T^{-} I_{0}^{+}=I_{0} \alpha\left[\cosh \beta-P_{\text {in }} \sinh \beta\right] \\
& T^{+2}-T^{-2}=\alpha^{2} e^{2 \beta}-\alpha^{2} e^{-2 \beta}=2 \alpha^{2} \sinh (2 \beta) \\
& T^{+2}-T^{-2}=4 \alpha^{2} \sinh \beta \cosh \beta \\
& \sigma_{N S F}=\frac{I_{0} \alpha\left[\cosh \beta+P_{\text {in }} \sinh \beta\right] \frac{I_{m}^{+}}{T_{M T}}-I_{0} \alpha\left[\cosh \beta-P_{\text {in }} \sinh \beta\right] \frac{I_{m}^{-}}{T_{M T}}}{P_{\text {in }} I_{0}^{2} 4 \alpha^{2} \sinh \beta \cosh \beta} \\
& \sigma_{N S F}=\frac{\left[1+P_{\text {in }} \tanh \beta\right] I_{m}^{+}-\left[1-P_{\text {in }} \tanh \beta\right] I_{m}^{-}}{4 P_{\text {in }} I_{0} \alpha \sinh \beta T_{M T}} \tag{3}
\end{align*}
$$

similarly:
$\sigma_{S F}=\frac{-\left[1-P_{\text {in }} \tanh \beta\right] I_{m}^{+}+\left[1+P_{\text {in }} \tanh \beta\right] I_{m}^{-}}{4 P_{\text {in }} I_{0} \alpha \sinh \beta T_{M T}}$
As shown in equation (2'), $P_{\text {in }} \tanh \beta$ is actually the neutron polarization measured on a nuclear coherent Bragg peak, $P_{\text {meas }}$:
$\sigma_{N S F}=\frac{\left[1+P_{\text {meas }}\right] I_{m}^{+}-\left[1-P_{\text {meas }}\right] I_{m}^{-}}{4 P_{\text {in }} I_{0} \alpha \sinh \beta T_{M T}}$
similarly:
$\sigma_{S F}=\frac{-\left[1-P_{\text {meas }}\right] I_{m}^{+}+\left[1+P_{\text {meas }}\right] I_{m}^{-}}{4 P_{\text {in }} I_{0} \alpha \sinh \beta T_{M T}}$
Due to the fact that the $P_{\text {meas }}$ measurements (Si single crystal measurements) do not perfectly sample the beam properties (wavelength distribution as well polarization and intensity profile), it is actually safer to use $P_{\text {in }} \tanh \beta$ rather than the fit to $P_{\text {meas }}$ in the calculations.

If the primary beam polarization is obtained with a spin filter (magic box setup), $P_{i n}$ is obtained by fitting the time evolution of the transmission ("Monitor2" measurements) using equations (1) and (2). If the beam polarization is produced by the Heusler polarizing monochromator, one should calibrate it separately, i.e. using a Si wafer or rather a large, mosaic, single crystal.

The characteristics of the analyzer spin filter are obtained by fitting the Si polarization measurements to equation (2'). Equation (2') actually involves 3 parameters: $P_{i n}, T_{1}$, and $O(\lambda) P_{H e}^{0}$. They are rather highly correlated and one can choose to fit either $P_{\text {in }}$ and T_{1}, or $O(\lambda) P_{H e}^{0}$ and T_{1}, depending on how accurately $O(\lambda) P_{H e}^{0}$ or $P_{i n}$ are known.

Once this is done, one calculates the actual non-spin-flip and spin-flip intensities using equations (3) and (4) or (3') and (4').

Considerations about the flipper efficiency

We assume that the first flipper ("Flipper in") before the sample is perfect, i.e. has an efficiency $=1$ (magic box). If the second flipper has an efficiency $e<1$, the above cartoon maust be modified:

General case

Flipper out: e < 1

For a nuclear Bragg peak $\left(\sigma_{N S F}=\sigma\right.$ and $\left.\sigma_{S F}=0\right)$ the measured intensities reduce to:
Flipper off: $I_{m}^{+}=T_{M T}\left(T^{+} \sigma I_{0}^{+}+T^{-} \sigma I_{0}^{-}\right)$
Flipper on: $I_{m}^{-}=T_{M T}\left[\left(T^{+} \sigma I_{0}^{+}+T^{-} \sigma I_{0}^{-}\right)-e \sigma\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)\right]$
And the measured polarization is:

$$
P_{\text {meas }}=\frac{e\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)}{2\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)-e\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)}
$$

which can be transformed into:

$$
\begin{gathered}
\frac{1}{P_{\text {meas }}}=\frac{2\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)-e\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)}{e\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)} \\
\frac{1}{P_{\text {meas }}}=\frac{\left(I_{0}^{+}+I_{0}^{-}\right)\left(T^{+}+T^{-}\right)+\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)}{e\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)}-1 \\
\frac{1}{P_{\text {meas }}}=\frac{1}{e P_{\text {in }} P_{\text {out }}}+\frac{1}{e}-1=\frac{1+P_{\text {in }} P_{\text {out }}-e P_{\text {in }} P_{\text {out }}}{e P_{\text {in }} P_{\text {out }}} \\
e P_{\text {in }} P_{\text {out }}=P_{\text {meas }}\left(1+P_{\text {in }} P_{\text {out }}-e P_{\text {in }} P_{\text {out }}\right) \\
P_{\text {out }}\left(e P_{\text {in }}-P_{\text {in }} P_{\text {meas }}+e P_{\text {in }} P_{\text {meas }}\right)=P_{\text {meas }} \\
P_{\text {out }} P_{\text {in }}\left(e-P_{\text {meas }}+e P_{\text {meas }}\right)=P_{\text {meas }} \\
P_{\text {out }}=\frac{P_{\text {meas }}}{P_{\text {in }}\left(e-P_{\text {meas }}(1-e)\right)}
\end{gathered}
$$

From the sample, we measure :

$$
\begin{gathered}
I_{m}^{+}=T_{M T}\left[\sigma_{N S F}\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)+\sigma_{S F}\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)\right] \\
I_{m}^{-}=T_{M T}\left[\sigma_{N S F}\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)+\sigma_{S F}\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)\right. \\
\left.-e\left(\sigma_{N S F}-\sigma_{S F}\right)\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)\right]
\end{gathered}
$$

We note that:

$$
I_{m}^{-}=I_{m}^{+}-T_{M T}\left[e\left(\sigma_{N S F}-\sigma_{S F}\right)\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)\right]
$$

We obtain the system of linear equations:

$$
\left\{\begin{array}{c}
\sigma_{N S F}-\sigma_{S F}=\frac{I_{m}^{+}-I_{m}^{-}}{T_{M T} e\left(I_{0}^{+}-I_{0}^{-}\right)\left(T^{+}-T^{-}\right)} \\
\sigma_{N S F}\left(T^{+} I_{0}^{+}+T^{-} I_{0}^{-}\right)+\sigma_{S F}\left(T^{+} I_{0}^{-}+T^{-} I_{0}^{+}\right)=\frac{I_{m}^{+}}{T_{M T}}
\end{array}\right.
$$

Using the previously defined α and β parameters, this system is re-written:

$$
\left\{\begin{array}{c}
\sigma_{N S F}-\sigma_{S F}=\frac{I_{m}^{+}-I_{m}^{-}}{T_{M T} e P_{\text {in }} 2 I_{0} \alpha \sinh \beta} \\
\sigma_{N S F} I_{0} \alpha\left[\cosh \beta+P_{\text {in }} \sinh \beta\right]+\sigma_{S F} I_{0} \alpha\left[\cosh \beta-P_{\text {in }} \sinh \beta\right]=\frac{I_{m}^{+}}{T_{M T}}
\end{array}\right.
$$

$$
\begin{gathered}
\left\{\begin{array}{c}
\sigma_{S F}=\sigma_{N S F}-\frac{I_{m}^{+}-I_{m}^{-}}{T_{M T} e 2 P_{i n} I_{0} \alpha \sinh \beta} \\
\sigma_{N S F} 2 \cosh \beta I_{0} \alpha-\frac{\left(I_{m}^{+}-I_{m}^{-}\right)\left(\cosh \beta-P_{i n} \sinh \beta\right)}{T_{M T} e P_{i n} 2 \sinh \beta}=\frac{I_{m}^{+}}{T_{M T}}
\end{array}\right. \\
\left\{\begin{array}{l}
\sigma_{N S F}=\frac{\left(I_{m}^{+}-I_{m}^{-}\right)\left(1-P_{i n} \tanh \beta\right)+I_{m}^{+}\left(2 e P_{i n} \tanh \beta\right)}{T_{M T} e 4 P_{i n} I_{0} \alpha \sinh \beta} \\
\sigma_{S F}=\frac{\left(I_{m}^{+}-I_{m}^{-}\right)\left(-1-P_{i n} \tanh \beta\right)+I_{m}^{+}\left(2 e P_{i n} \tanh \beta\right)}{T_{M T} e 4 P_{i n} I_{0} \alpha \sinh \beta}
\end{array}\right.
\end{gathered}
$$

Errors and propagation

The error on a measured intensity I is taken as \sqrt{I} (Poisson).

$$
d\left(\frac{I_{m}}{I_{0}}\right)=\frac{I_{m}}{I_{0}} \sqrt{\frac{1}{I_{m}}+\frac{1}{I_{0}}}
$$

$I_{m}=I_{m}^{+}$or I_{m}^{-}and $I_{0}=$ monitor or, if using the magic box, Monitor2.
The uncertainty on the opacity can be estimated:

$$
\begin{gathered}
\frac{d[O(\lambda)]}{O(\lambda)}=\sqrt{\left(\frac{d p}{p}\right)^{2}+\left(\frac{d L}{L}\right)^{2}+\left(\frac{d \lambda}{\lambda}\right)^{2}} \\
\frac{d p}{p} \approx 0.003, \frac{d L}{L} \approx 0.007, \frac{d \lambda}{\lambda} \approx 0.005 \text { resulting in } \frac{d[O(\lambda)]}{O(\lambda)} \approx 0.0085
\end{gathered}
$$

When using the magic box setup, the polarization $P_{i n}$ is obtained from the fit of the Monitor2 measurements to equation (1). With this method, we can estimate that the accuracy $d P_{\text {in }}$ of $P_{\text {in }}$ is better than 0.005 . The scripts use $d P_{i n}=0.005$.
In the "old" setup (Heusler monochromator and no magic box), the actual value of the polarization is quite tricky, since there is no direct measurement, and so is the accuracy. At the moment, the data reduction scripts include a fixed error $d P_{\text {in }}=0.002$.

Similarly, the product $\beta=O(\lambda) P_{H e}^{0}$ (value of the order of 1.2 to 1.5 at $\lambda=0.5$) may be either the result of the fit of the polarization decay to (2^{\prime}), or simply calculated from the theoretical values of the spin filter cell characteristics. For calculated β, The calculations use a fixed, reasonable value, including also the uncertainty on the relaxation time T_{1} :
$d \beta=d\left(O(\lambda) P_{H e}^{0} e^{-\frac{t}{T_{1}}}\right) \approx 0.01$.

The transmissions of the empty spin filter cells, $T_{M T}$, are of the order of 0.85 to 0.9 (exact value depending on the cell and the wavelength). They have been measured directly, with accuracies $d\left(T_{M T}\right) \approx 0.002$ to 0.005 .

$$
\begin{aligned}
& d\left(1 \pm P_{\text {in }} \tanh \beta\right)=d P_{\text {in }} \tanh \beta+\frac{P_{\text {in }} d \beta}{(\cosh \beta)^{2}} \\
& d\left(1 \pm P_{\text {in }} \tanh \beta\right)=d\left(P_{\text {in }} \tanh \beta\right)=P_{\text {in }} \tanh \beta \sqrt{\left(\frac{d P_{\text {in }}}{P_{\text {in }}}\right)^{2}+\left(\frac{d \beta}{(\cosh \beta \sinh \beta)}\right)^{2}} \\
& d\left[\left(1 \pm P_{i n} \tanh \beta\right) \frac{I_{m}^{+}}{I_{0}}\right]=\sqrt{\left[d\left(\frac{I_{m}^{+}}{I_{0}}\right)\right]^{2}+\left(P_{i n} \tanh \beta \frac{I_{m}^{+}}{I_{0}}\right)^{2}\left[\left(\frac{d\left(P_{\text {in }} \tanh \beta\right)}{P_{i n} \tanh \beta}\right)^{2}+\left(\frac{d\left(\frac{I_{m}^{+}}{I_{0}}\right)}{\frac{I_{m}^{+}}{I_{0}}}\right)^{2}\right]} \\
& =\sqrt{\left[d\left(\frac{I_{m}^{+}}{I_{0}}\right)\right]^{2}+\left(P_{\text {in }} \tanh \beta \frac{I_{m}^{+}}{I_{0}}\right)^{2}\left[\left(\frac{d P_{\text {in }}}{P_{\text {in }}}\right)^{2}+\left(\frac{d \beta}{(\cosh \beta \sinh \beta)}\right)^{2}+\left(\frac{d\left(\frac{I_{m}^{+}}{I_{0}}\right)}{\frac{I_{m}^{+}}{I_{0}}}\right)^{2}\right]} \\
& d\left(P_{\text {in }} \alpha \sinh \beta T_{M T}\right)=P_{\text {in }} \alpha \sinh \beta T_{M T} \sqrt{\left(\frac{d P_{\text {in }}}{P_{\text {in }}}\right)^{2}+\left(\frac{d \alpha}{\alpha}\right)^{2}+\left(\frac{d(\sinh \beta)}{\sinh \beta}\right)^{2}+\left(\frac{d T_{M T}}{T_{M T}}\right)^{2}} \\
& =P_{\text {in }} \alpha \sinh \beta T_{M T} \sqrt{\left(\frac{d P_{i n}}{P_{\text {in }}}\right)^{2}+(d(O(\lambda)))^{2}+\left(\frac{d \beta}{\tanh \beta}\right)^{2}+\left(\frac{d T_{M T}}{T_{M T}}\right)^{2}} \\
& \frac{d\left(\sigma_{N S F}\right)}{\sigma_{N S F}} \\
& =\sqrt{\left(\frac{d\left(P_{\text {in }} \alpha \sinh \beta T_{M T}\right)}{P_{\text {in }} \alpha \sinh \beta T_{M T}}\right)^{2}+\frac{\left(d\left(\left(1 \pm P_{\text {in }} \tanh \beta\right) \frac{I_{m}^{+}}{I_{0}}\right)\right)^{2}+\left(d\left(\left(1 \pm P_{\text {in }} \tanh \beta\right) \frac{I_{m}^{-}}{I_{0}}\right)\right)^{2}}{\left(\left(1+P_{\text {in }} \tanh \beta\right) \frac{I_{m}^{+}}{I_{0}}-\left(1 \pm P_{\text {in }} \tanh \beta\right) \frac{I_{m}^{-}}{I_{0}}\right)^{2}}}
\end{aligned}
$$

Average of corrected data

Once the data have been corrected, we can merge the scans. At each angle, the average $\bar{\sigma}$ of the set $\left\{\sigma_{i}\right\}_{i=1, N}$ measured quantities, with errors $\left\{\delta_{i}\right\}$ is:

$$
\bar{\sigma}=\frac{\sum \frac{1}{\delta_{i}^{2}} \sigma_{i}}{\sum \frac{1}{\delta_{i}^{2}}}
$$

Two errors can be calculated:

- the statistical error

$$
d \bar{\sigma}_{\text {stat }}=\sqrt{\frac{1}{\sum \frac{1}{\delta_{i}^{2}}}}
$$

- the standard deviation, reflecting the (weighted) distribution of the data points:

$$
d \bar{\sigma}_{\text {dist }}=\sqrt{\frac{\sum \frac{1}{\delta_{i}^{2}}\left(\sigma_{i}-\bar{\sigma}\right)^{2}}{(N-1) \sum \frac{1}{\delta_{i}^{2}}}}
$$

If the experimental errors have been properly estimated, and the measurements are reproducible, both errors should be equal.
To account for a possible spread of the data, the final error is taken as the highest of both values:

$$
d \bar{\sigma}=\max \left(d \bar{\sigma}_{s t a t}, d \bar{\sigma}_{d i s t}\right)
$$

C Analysis, "new" setup (magic box)

The data reduction has been divided into separate steps, to allow easy critical analysis at each step. Similarly, each step produces a number of ouput files, most of them useful only for tests, or used as input in the subsequent steps. In the following, the files to be preferably checked at each step will be highlighted.

C-1 Edit an ascii file containing all the useful information.

The file (here named "Userfile") must follow the example below:
Most of the file will be prepared by the local contact.
The user should only act on the data/time informations, scan names and scan numbers.
No keyword should be modified.
The sample descriptions and scan numbers must come last in the file, following the keyword "Numors"
There is no limitation to the number of samples on can add to the file
The sample name cannot contain any space

Userfile

```
Cycle: }16
Exp: TEST-2708
Local(1)/Remote(0): 0
Polarisation_file: polar.fli
Nominal_Lambda 0.5
Lambda - 0.5
Gamma_Offset: 0
Small Beam Pol: 0.89
Full_Beam_Pol: 0.73
Ratio_full_Small: 0.85
Begin: 10-Nov-2016 @ 16:00
End: 20-Nov-2016 @ 12:00
FirstScan: }57052
LastScan: 570993
Numors
MTCan 0.500 570524:570548
Sample-1 0.500 570566:570599 570609:570642 570654:570681
MTI 0.500 570696:570697
Vana 
Sample-2 0.500 570804:570902
Sample-3 0.500 570916:570993
(end with an empty line)
```


C -2 In MATLAB, launch the gui:

Start MATLAB
"cd" to your own directory
magic3('Userfile')

The GUI is subdivided into 6 panels. From top to bottom:

- Information about the experiment. This corresponds to the first part of the user file, prepared by the local contact.
In "Local" mode, the logfiles and polarisations file must first be copied into a subdirectory named "logfiles".
In "Remote" mode, the data will be fetched directly from the server, using the provided information on cycle number and experiment number. In that case, the computer must first be connected to the data server (local contact action)
- Extract the data and analyze the decays of the polarizations in the spin filters. This part is performed for all data within the given date/time range in the blue boxes. Dates and times may be edited but the format should not be modified. See § C-3 for the details of
the operations performed in that panel. All times in the data analysis will use the given starting date and time as reference ("time 0"). In the files and plots, times are given in minutes from "time 0".
- Normalize and correct the data within the range of scan numbers given in the blue boxes. The scan numbers may be edited. See § C-4 for the details of the operations performed in that panel.
- Data treatment for all samples. See § C-5 for details.
- Visualization of results. This panel allows background subtraction and comparison of results. See § C-6 for details
- Test panel (mostly for local contact: check monitors and polarisatopns)

C-3 Extract data and analyze spin filters

First choose the output format using the top left popup menu. Recommended during the experiment is the html format, which will create .html files in the subdirectory "html". The "pdf" option will create .pdf files in the subdirectory "pdf". It is however much slower, and only recommended for exporting results: pdf files are standalone, while in html format, all graphics are saved into separate files.

C-3-1 Extract data:

Click on the Read Log Files button. This will extract all the scans from the logfiles.
Input: logfiles
Output:

- html/pdf output listing the logfiles, the scan numbers, the "bpb" numbers, and the magic box spin filters
- individual scans (whether of "fls" or "bpb" type), saved under their scan numbers into the subdirectory "scans"

scans / 570530											
gammaC	unt_P	Count	MTime_P	Time_M	Monit_P	Monit_M	Date	Time	pol	dpol	moni2
-90.00	620.	892.	90.0000	90.0000	27261451.	27255330.	10/11/16	22:02:05	-0.17989	0.08392	641124
-89.00	649.	893.	90.0000	90.0000	27264880.	27262243.	10/11/16	22:05:10	-0.15824	0.08323	640153
-88.00	569.	884.	90.0000	90.0000	27262460.	27271780.	10/11/16	22:08:15	-0.21679	0.08531	639168
-87.01	621.	941.	90.0000	90.0000	27255341.	27248790.	10/11/16	22:11:19	-0.20487	0.08335	637523
-86.01	624.	892.	90.0000	90.0000	27245310.	27241150.	10/11/16	22:14:25	-0.17678	0.08383	637996
-85.01	646.	880.	90.0000	90.0000	27253723.	27245414.	10/11/16	22:17:29	-0.15334	0.08346	638696
$\cdots{ }^{-\ldots}$	I+	I-	time(+)	time(-)	monitor(+)	monitor(-)	dat	e time	Pol	dPol	nitor2

- "monitor2" file, which includes the information about changes of magic box spin filters as well the measurements with time, monitor and monitor2 informations (i.e., all fls" and "bpb" scans)

monitor2								
Magic Box Filter: ge18008 3.190 .75 10/11/2016 @ 13:00								
-120.79	69.54.	9.0000	9.0000	2748320.	2746449. 10/11/16 16:41:28	0.12195	0.28015	69343
-117.79	69385. 51685.	72.0000	72.0000	21973912.	21969660. 10/11/16 16:43:57	0.14620	0.01159	555092
-114.79	62.44.	9.0000	9.0000	2747013.	2743895. 10/11/16 16:44:17	0.16981	0.29209	69027
-120.79	8. 21.	1.1200	2.8800	342158.	882683. 10/11/16 16:44:27	-0.01031	0.65063	15923
2θ	I+ I-	time(+)	time(-)) monitor(+)	monitor(-) date time	Pol	dPol	monitor2

- "scan_list" file: a list of all the extracted "fls" scan numbers

```
scan_list
570524
570527
570530
570533
570536
5 7 0 5 3 9
```

- "bpb_list" file: a list of all the extracted "bpb" scan numbers

```
bpb_list
570524
570527
570530
570533
570536
570539
```

This step also updates the first and last scan numbers given in the next panel.
The extracted scans are corrected for deadtime ($0.43 \mu \mathrm{~s}$, applied to both monitor count rates)

C-3-2 Fit of the magic box spin filter transmission, equations (1) and (2).

$$
\begin{align*}
& P_{n}=\sqrt{1-\left(\frac{T_{0}}{T}\right)^{2}} \tag{1}\\
& P_{n}=\tanh \left[O(\lambda) P_{H e}^{0} e^{-\frac{t}{T_{1}}}\right] \tag{2}
\end{align*}
$$

Click on the Magic Box Filters: Fit button.
P_{n} is calculated using the transmission measurements (monitor2) and the fitted parameters are the product $O(\lambda) P_{H e}^{0}$ and the relaxation time T_{1}.
We can compare the fitted values of $O(\lambda) P_{H e}^{0}$ with the values calculated using the given helium pressure and initial polarization. They are usually consistent within better than 0.5%.
The results will serve to calculate the polarization $P_{\text {in }}$ in steps C-3-3 and C-4, using equation (2).

Input:
"monitor2" file

Output:

- html/pdf "magic_polariser" output showing the fits and giving a summary of all the results
- individual files "polariser-lam-cell", where lam is the wavelength, as entered in the top panel, and num is the cell order number (starting at 1). This is the fit input.

1.6765	11420	0.1870	(opacity $\mathrm{O}(\lambda)$, starting time of the cell (mn), depolarized cell transmission $e^{-O(\lambda)}$							
Magic Box	Filter: ge1	80113.17	. 75 18/11/	16 @	:20	(information from logfile)				
9.0000	9.0000	2758013.	2759840.	8/11/1	:22:00	70317	0.339890	0.0012900	0.835001	0.002332
72.0000	72.0000	22094664.	22105150.	8/11/1	:24:28	562136	0.339211	0.0004550.	0.834274	0.002107
9.0000	9.0000	2759504.	2758031.	8/11/1	124:49	70242	0.339547	0.0012890	0.834635	0.002336
0.4000	3.6000	123200.	1107126.	8/11/1	124:58	15501	0.336038	0.0027160	0.830810	0.003146
39.1000	130.9000	12003251.	40179103.	8/11/1	6:27:54	663865	0.339316	0.0004190	0.834387	0.002101
0.4000	3.6000	122538.	1102667.	8/11/1	:28:00	15510	0.337638	0.0027280	0.832571	0.003124
(time(+)	time(-)	monitor(+)	monitor(-)	date	time	monitor2	transm.	d(transm.)	Pol	dPol

- individual files "polariser -lam-cell.pol": fit output

| Time(mn) Polar | dPolar | Transm | dTransm | fit | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.8332 | 0.0024 | 0.3547 | 0.0013 | 0.8401 |
| 3 | 0.8327 | 0.0022 | 0.3542 | 0.0005 | 0.8399 |
| 3 | 0.8338 | 0.0024 | 0.3553 | 0.0013 | 0.8399 |
| 3 | 0.8341 | 0.0024 | 0.3556 | 0.0013 | 0.8399 |
| 6 | 0.8300 | 0.0024 | 0.3516 | 0.0013 | 0.8396 |

- summary file "polariser _parameters-lam.txt"

Opacity 1.713	$\begin{array}{r} \text { Tin } \\ 41 \end{array}$	Tout OPolHe		dOPHe	T1(mn) dT1 T1 (hr)			$\begin{aligned} & \text { Chisq } \\ & 12.77 \end{aligned}$	$\begin{aligned} & \mathrm{T}(\mathrm{P}=0) \\ & 0.1804 \end{aligned}$	MT-Trans dMT		$\begin{gathered} \text { Cell\# } \\ 8 \end{gathered}$
		2594	1.2846	0.0000	4238	11	70.64			0.900	0.004	
1.692	2628	4048	1.2693	0.0000	4250	4	70.84	0.35	0.1841	0.900	0.004	11
1.713	4085	5499	1.2846	0.0000	4642	5	77.36	0.52	0.1804	0.900	0.004	8
1.687	5536	6835	1.2653	0.0000	4691	5	78.18	0.49	0.1851	0.900	0.004	11
1.702	7028	8366	1.2765	0.0000	4875	5	81.25	0.31	0.1823	0.900	0.004	8
1.629	8397	9741	1.2217	0.0000	4072	8	67.87	1.46	0.1961	0.900	0.004	11
1.707	9770	11482	1.2806	0.0000	4535	6	75.59	1.07	0.1813	0.900	0.004	8
1.6771	11542	12821	1.2574	0.0000	3691	20	61.52	11.85	0.1870	0.900	0.004	11
1.745	12850	14057	1.3090	0.0000	4591	4	76.52	0.25	0.1746	0.900	0.004	11

Notes: the "MT-Trans" parameters are the transmissions of the empty filters, and have been measured separately for each filter. The Cell\# is the identity of the filter (from ${ }^{3} \mathrm{He}$ lab)

C-3-3 Fit of the analyzer ("decpol") spin filter transmission, equation (2').

Click on the Analyser Filters: Fit button.
The incoming beam polarization $P_{i n}$ should be known from step 1 above but, since the polarisatin transport is not perfect along the beam path, we need an extra parameter PolRatio. The other parameters are the product $\beta=O(\lambda) P_{H e}^{0}$ and the relaxation time T_{1}. All three parameters are highly correlated and we can fit either PolRatio and T_{1}, or β and T_{1}.
β can be calculated from the given spin filter parameters, and past experience has shown that theses values are very reliable.
In the first experiment using this setup, we obtain PolRatio $=0.94(1)$.
Input:
-Polarisation file ("Polar.fli" in our example)
When working in "Local" mode, this file must be first copied into the "logfiles"
directory

- "polariser _parameters-lam.txt " file from step C-3-2

Output:

- html/pdf "magic_analyser" output showing the fits and giving a summary of all the results
- individual files "analyser-lam-cell", where lam is the wavelength, as entered in the top panel, and num is the cell order number (starting at 1). This is the fit input.
In the file, two values of the incident polarization are given: Pin(fit) and Pin(T), calculated using the parameters from file "polariser _parameters-lam.txt", and using the measured transmission (monitor2), respectively. The measured polarization Pol, has been corrected for Pin, ie, relates directly to the analyser filter alone.

- summary file "analyser _parameters-lam.txt"

Opacity	Tin	Tout	OPolHe	dOPHe	T1(mn) dT1 T1(hr)			Chisq	T(P	MT-Tra	dMT	Cell\#
1.713	41	2594	1.2846	0.0000	4238	11	70.64	12.77	0.1804	0.900	0.004	8
1.692	2628	4048	1.2693	0.0000	4250	4	70.84	0.35	0.1841	0.900	0.004	11
1.713	4085	5499	1.2846	0.0000	4642	5	77.36	0.52	0.1804	0.900	0.004	8
1.687	5536	6835	1.2653	0.0000	4691	5	78.18	0.49	0.1851	0.900	0.004	11
1.702	7028	8366	1.2765	0.0000	4875	5	81.25	0.31	0.1823	0.900	0.004	8
1.629	8397	9741	1.2217	0.0000	4072	8	67.87	1.46	0.1961	0.900	0.004	11
1.707	9770	11482	1.2806	0.0000	4535	6	75.59	1.07	0.1813	0.900	0.004	8
1.6771	11542	12821	1.2574	0.0000	3691	20	61.52	11.85	0.1870	0.900	0.004	11
1.7451	12850	14057	1.3090	0.0000	4591	4	76.52	0.25	0.1746	0.900	0.004	11

Notes:

The "MT-Trans" parameters are the transmissions of the empty filters, and have been measured separately for each filter. They have been included into the code.
The Cell\# is the identity of the filter (from ${ }^{3} \mathrm{He}$ lab)

C-4 Normalize and correct

C-4-1 Normalize data to Monitor2.

Click on the Normalise to Monitor button.
Normalisation to monitor takes possible reactor fluctuations into account. In our case, it is all the more mandatory, since it also corrects for the decay of the polarizer transmission.

The recorded Monitor2 $\left(\mathrm{Mon}_{2}\right)$ value is the sum of the intensities measured in both polarization channels, so we need to scale the normalized intensities to the amount of time spent in the relevant polarization state.

$$
I_{\text {norm }}^{ \pm}=\frac{I_{\text {meas }}^{ \pm}\left(\text {Time }^{+}+\text {Time }^{-}\right)}{\text {Scale } \times \text { Mon }_{2} \times \text { Time }^{ \pm}}
$$

Scale $=300000{ }^{*}$ M1M2 is a scale factor, chosen to obtain normalized intensities of the same order (in cts/s) as the measured intensities:
300000 is an average Monitor 1 intensity (cts/s), to convert to
M1M2 is the ratio of monitors efficiencies :

- M1M2 $=4.16510^{-2}$ for experiments in 2016-2017
- M1M2 $=0.0322$ for experiments in March 2018 onwards

The normalisation is performed for all scans in the given scan range

Input:

- individual scans numor, where "numor" is the scan number, from the sub-directory "scans"

Output:

- html/pdf output all the normalized scan numbers
- individual normalized scans, saved as "norm_numor", where "numor" is the scan number, into the subdirectory "normalised_scans"
- monitor values of the individual scans, saved as

C-4-2 Correct data for polarizer and analyzer efficiencies.

Click on the Correct for Filter Efficiency button.
This is done using equations (3) and (4). The errors are calculated as described above. Since the neutron polarization is currently not homogenous across the beam, there is the possibility to pick e beam profile from the popup menu
The correction is performed for all scans in the given scan range.

Input:

- individual scans numor, where "numor" is the scan number, from the sub-directory "scans"

Output:

- html/pdf output all the corrected scan numbers
- individual corrected scans, saved as "corr_numor", where "numor" is the scan number, into the subdirectory "corrected_scans"

C-5- Group scans measured in the same conditions.

Select the sample to treat from the popup menu
(the scan numbers are set automatically but can also be edited)
Click on the Group and Average button.
See "average of corrected data".

C-6 Visualization of results.

The sample names are those used in the data reduction above. They refer to the ave_name files in the "Averages" sub-directory

