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Whispering-gallery states of antihydrogen near a curved surface
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We predict the existence of antihydrogen atom long-living quasistationary states, localized near a curved
material surface due to quantum reflection from the van der Waals–Casimir potential. Such states are an atom-wave
analog of the whispering-gallery (WG) modes, known in acoustics, optics, and neutron physics. We argue that
the WG states of antihydrogen atoms could be regarded as a close analog of recently predicted gravitational states
of antihydrogen where the centrifugal potential plays the role of the linear gravitational potential. We point out
a method for the precision measurement of anti-atom-matter interactions, based on the study of interference of
WG antihydrogen states.
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I. INTRODUCTION

Since ancient times, the localization of waves near a curved
material surface was known in acoustics; it was called the
whispering-gallery (WG) effect. It was explained in detail by
Lord Rayleigh in his Theory of Sound [1,2]. The WG effect
in optics [3,4] has been the object of growing interest during
the last decade due to their multiple applications [5,6]. The
WG type of matter-wave localization was observed recently
in neutron scattering on a cylinder [7,8]. WG states of atoms
were studied in relation to the possibility of atom trapping
in an external field near a curved surface [9–12] or to atom
interaction with a quantized field in cavities (see Refs. [13–16]
and references therein). Here, we study a different class of WG
matter-wave localization phenomena. Namely, we predict that
antihydrogen (H̄ ) atoms could be settled in long-living WG
states near a curved material surface in the absence of external
fields.

H̄ atoms, impinging a material surface, are partially
reflected due to the phenomenon of overbarrier quantum
reflection [17–20] from the van der Waals–Casimir (vdW–CP)
atom-wall potential [21–26]. The smaller the normal incidence
momentum k of H̄ , the larger the reflection coefficient. It
tends to unity in the limit of zero k. Thus, a material wall
appears to be an efficient reflector for slow enough antiatoms
[27,28]. This is why an H̄ atom may be localized in quantum
quasistationary states near a material surface [29] in the
gravitational field of the Earth. It bounces on a surface the
same way neutrons bounce in gravitational quantum states,
discovered recently [30–32]. The characteristic lifetime of H̄

states above a conducting surface is long enough (τ � 0.1 s)
and could be increased significantly by choosing a proper
material. Gravitational states of H̄ could be a useful tool for
studying gravitational properties of antiatoms.

In a similar phenomenon of the localization of H̄ atoms,
moving in the vicinity of a curved surface, corresponding qua-
sistationary quantum states are formed by a superposition of
the effective centrifugal potential and the quantum reflection.
We are interested in the states with high angular momentum
such that the kinetic energy of tangential motion (parallel to
the curved surface) is close to the total energy. This condition
means that H̄ radial motion normal to the material wall is slow,

which provides a large probability of quantum reflection and,
thus, a long lifetime of the quasistationary states. We show
that, for a certain range of parameters (namely, the tangential
velocities v of H̄ and the surface curvature radius R), the
problem of H̄ transport near a curved surface is equivalent to
the dynamics of H̄ above a plane surface in the gravitational
field with effective acceleration v2/R. Indeed, the effective
centrifugal potential can be approximated accurately by a
linear potential in the vicinity of the curved surface. In the
problem of interest, we deal with the effective centrifugal
potential (mv2/R)x (where m is the inertial mass of H̄ and x

is the distance from the surface), instead of the gravitational
potential Mgx (where M is the gravitational mass of H̄ and
g is the free-fall acceleration). Thus, mentioned WG states
appear complementary to gravitational states in testing the
weak equivalence principle (WEP). Additional benefits of
exploiting the WG effect for the study of H̄ interactions consist
of long times in which H̄ atoms spend in the vicinity of
a material surface in WG states and the simplicity to tune
the effective centrifugal acceleration by changing atom-beam
velocity. They also could provide a promising tool for guiding
and trapping antimatter with curved material walls.

II. ANTIHYDROGEN IN A CYLINDER WAVEGUIDE

We are interested in the H̄ atom transport through a
cylindrical waveguide with radius R. Atom dynamics obeys the
following Schrödinger equation in the cylindrical coordinates:

[
− h̄2

2m

(
∂2

∂z2
+ ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)

+V (|R − ρ|) − p2

2m

]
�(z,ρ,ϕ) = 0. (1)

Here, �(z,ρ,ϕ) is the H̄ wave function, z is the distance
along the cylinder axis, ρ is the radial distance measured from
the cylinder axis, ϕ is the angle, V (|R − ρ|) is the H̄ -wall
interaction potential [28,33], and p is the H̄ momentum. The
wave function depends on z in a trivial way, so we omit this
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dependence. Equation (1) is transformed into the following
form by standard substitution �(ρ,ϕ) = �(ρ,ϕ)/

√
ρ:[

− h̄2

2m

(
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∂ρ2

)
− h̄2

2mρ2

(
∂2

∂ϕ2
+ 1

4

)

+V (|R − ρ|) − p2

2m

]
�(ρ,ϕ) = 0. (2)

The above equation meets the following boundary conditions:
regularity at ρ = 0, uniqueness under the substitution ϕ →
ϕ + 2π , and full absorption (annihilation) in the wall bulk at
ρ � R [28].

The wave function is decomposed into the angular momen-
tum eigenfunctions basis,

�(ρ,ϕ) =
μ=+∞∑
μ=−∞

χμ(ρ) exp(iμϕ), (3)

with χμ(ρ) as the radial motion wave functions, which obey
the following one-dimensional radial equation:[

− h̄2

2m

∂2

∂ρ2
+ h̄2(μ2 − 1/4)

2mρ2
+ V (|R − ρ|)− p2

2m

]
χμ(ρ) = 0.

(4)

The solutions of interest are regular at ρ = 0.
The H̄ -wall interaction potential has the asymptotic

C4/|R − ρ|4 and the characteristic spatial scale lCP =√
2mC4/h̄, where C4 is the Casimir-Polder coefficient [21],

which depends on the wall material properties alone and
stands for the retardation effects in the atom-wall interaction.
The potential behaves like C3/|R − ρ|3 at short distances;
here, C3 is the van der Waals coefficient [21], determined by
the wall material properties. The solution of Eq. (4) satisfies
the condition of total absorption in the wall ρ → R,

χμ(ρ) ∼
√

|R − ρ|H (1)
1 (2

√
2mC3/|R − ρ|), (5)

where H 1
1 is the Hankel function on the order of unity [34].

Thus, Eq. (5) can be used as a boundary condition at ρ → R.
A solution of Eq. (4) for the given energy p2/(2m) and for

all μ values provides a complete description of the H̄ dynamic
in a waveguide. We are interested in a special class of solutions
χμ, which correspond to the H̄ WG modes.

III. WG STATES

We are interested in the H̄ states with large angular
momentum μ such that h̄2μ2/R2 ≈ p2 [8]. In this case, the
radial motion is slow, which is necessary for efficient H̄

quantum reflection from the surface. In order to solve Eq. (4),
we expand the expression for the centrifugal potential in the
vicinity of ρ = R, introducing the deviation from the cylinder
surface x = ρ − R. In the first order of the small ratio x/R,
we get the following equation:[

− h̄2

2m

∂2

∂x2
+ V (−x) + h̄2 μ2 − 1/4

2mR2

×
(

1 − 2x

R

)
− p2

2m

]
χμ(x) = 0. (6)

The full absorption boundary condition Eq. (5) is now

χμ(x → 0) ∼ √
xH

(1)
1 (2

√
2mC3/x). (7)

Introducing a new variable,

εμ = p2

2m
− h̄2 μ2 − 1/4

2mR2
� (pR)2 − h̄2μ2

2mR2
,

we get the following equation:[
− h̄2

2m

∂2

∂x2
+ V (−x) − mv2

μ

R
x − εμ

]
χμ(x) = 0. (8)

Here, we introduce the tangential velocity vμ such that μ =
mvμR/h̄. The value εμ could be understood as the radial
motion energy. In the following, we omit the subscript μ,
assuming that the following results are obtained for a fixed μ

value.
Equation (8) describes the H̄ motion in a constant effective

field a = −v2/R superposed with the H̄ -wall CP–vdW poten-
tial V (x). Equation (8) gives the spatial l0 and energy ε0 scales,
characteristic for the effective linear potential m(v2/R)x,

l0 = 3

√
h̄2R

2m2v2
, (9)

ε0 = 3

√
h̄2mv4

2R2
. (10)

We are interested in such a range of the parameters of the
problem (R and v) that

l0 � lCP . (11)

This condition means, in particular, that the effect of the
vdW–CP potential on the H̄ motion in a linear potential
can be described using a modified boundary condition.
Under the condition, Eq. (11), the problem of interest is
equivalent to the problem of H̄ motion in a superposition
of the linear gravitational potential and the CP–vdW anti-
atom-wall interaction potential, studied in Ref. [29]. In
particular, for the parameters R = 0.1 m and v = 0.99 m/s,

FIG. 1. The reflection coefficient from the CP–vdW interaction
potential as a function of the incident (radial) energy.
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the effective centrifugal acceleration coincides with the
free-fall acceleration v2/R = g. The corresponding WG
spatial scale is l0 = 5.87 μm, while the energy scale is
ε0 = 0.60 peV.

An important feature of the problem of interest is high
reflectivity of slow H̄ from the vdW–CP interaction po-
tential V (−x), which takes place at distances, small com-
pared to the characteristic spatial scale l0. In Fig. 1, we
show the reflection coefficient as a function of the radial
energy εμ.

Using the analogy with gravitational quantum states of
H̄ atoms [29], we find that the lifetime τ = h̄/� of the
quasistationary states is 0.1 s for v = 0.99 m/s and R =
0.10 m for an ideally conducting surface, and it goes up to 0.2 s
for the silica surface. The H̄ atom angular position changes by

�ϕ = τv

R
= h̄

2mv|Im aCP | , (12)

during this lifetime. Here, aCP is the complex
scattering length on the vdW–CP potential. aCP =
−0.0027 − i0.0287 μm for an ideally conducting surface,
aCPs = −0.0035 − i0.0144 μm for the silica surface, and

�ϕ = 1.136 rad for an ideally conducting surface and twice
larger for the silica surface.

Although the properties of WG states of H̄ near a cylindrical
surface are equivalent to the gravitational states of H̄ near a
plane surface, only the inertial mass of H̄ is involved in the
case of WG states, and here, the effective acceleration v2/R is
a tunable parameter.

IV. CONCLUSION

We have predicted the existence of long-living quantum
states of H̄ atoms, moving near a cylindrical material surface.
Such states are a matter-wave analog of the WG wave. The
localization of H̄ atoms near a surface of a curved mirror
is due to the combined effect of quantum reflection and
centrifugal potential. We have shown that, under a certain
choice of the curvature radius and the H̄ velocity, the problem
of H̄ transport near a curved surface is equivalent to H̄

behavior near a plane material surface in the presence of a
linear potential. Interference of long-living WG states of H̄

could provide a promising tool in precision measurements of
H̄ -surface interactions, gravitational properties and WEP tests,
H̄ guiding, and trapping.
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