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Abstract: The aim of Small Angle Neutron Scattering experiments is to extract the shape,

distribution in size and structure of scatterers from data measured in reciprocal space. Ideal form

factors models have been known for many years and have been further developed by many authors.

The knowledge of the instrumental resolution is as important as the choice of the model. The finite

divergence and size of direct beam, the wavelength resolution and the pixel size contribute to the

smearing of the real intensity scattered by the sample. In this paper, the effects of the instrumental

resolution and polydispersity of the scatterers are investigated and compared. Is the instrumental

resolution a limitation for the structural characterization? The geometry of the spectrometer D22

(Institut Laue Langevin, Grenoble) will be taken as reference for the numerical and experimental

applications but the equations are general and can be applied to others small angle neutron

spectrometers. The calculations show that the effects of polydispersity or wavelength resolution are

very similar, mainly smoothing of the form factor oscillations and broadening of Bragg peaks.

Synopsis: comparison between the effects of instrumental resolution and polydispersity of the

scatterers in Small Angle Neutron Scattering data.
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Introduction

The aim of Small Angle Neutron Scattering (SANS) experiments is to extract the shape, distribution

in size and structure of scatterers from data measured in the reciprocal space. The term “scatterers”

covers a large range of objects, like polymers, proteins, colloids, micelles, bilayers, aggregates,

pores in solids…with typical sizes from 10 to 4000 Å. Ideal form factor models have been known

for years; the spherical one was already calculated in 1911 by Lord Rayleigh (1911) and we can

also named among the most used models: Guinier (1939) for ellipsoid, Debye (1947) for polymer

chains, Fournet (1951) for cylinder, Teixeira (1988) for fractal. A very complete description of

possible form factors is given in (Pedersen, 1997). However, in the most of the cases, these form

factors do not represent the experimental data as well as expected. Instrumental resolution (Schmatz

et al., 1974), (Wignall et al., 1988), (Mildner et al., 1990), (Pedersen et al., 1990) and

polydispersity of the scatterers have to be introduced in the models. In this article, we propose first

to investigate separately the two effects which will be compared in a last part. The experimental

broadening of Bragg peaks illustrates the influence of the wavelength spread at large q.

In all the following, the consequences of polydispersity and resolution will be illustrated on the

ideal form factor ( )0
2 , rqF  of a spherical shell (Figure 1):
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q is the scattering vector ( θλπ sin4=q ); r0 and r1, the internal and external radii of the shell and

V0-V1 its volume. We take r0=200 Å and e=20 Å. We chose this example as the bumps and the

sharp cusps are very sensitive to the resolution effects.

The geometry of the spectrometer D22 (ILL) has been taken as reference (D22 manual) for the

numerical and experimental applications. The size of the collimation guide and the source is

S=55x40 mm2. In a standard experiment a 7x10 mm2 aperture is placed in front of the sample to

define the beam size at the ample position. The simulated curves are plotted between 10-3 to 0.5 Å-1,

a q-range that would be obtained with three sample to detector distances, D=18 m, 5.6 m and 1.4 m

with λ=6 Å. We call collimation C is the distance between the end of the neutron guide and the

sample. The size of the direct beam on the detector depends on the configuration, i.e. collimation

and detector distance. By simple geometric consideration, one deduces the beam size on the

detector: CDSSd = .

We consider only very dilute suspensions to neglect the structure factor (S(q)=1). The constant Kc,

also called the contrast constant represents the product ( ) ( )01

2 VV −Φ∆ρ , Φ is the volume fraction
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and ∆ρ the difference of length scattering densities between the shell and the environment. In these

conditions, the ideal scattered intensity Iid(q) is equal to:

( ) ( )0
2 , rqFKqI CId = ( 2)

∆ρ

r0

r1

e

Figure 1: Parameters of the spherical shell used as model to illustrate the effect of resolution and polydispersity.

Instrumental resolution

The smearing of the ideal scattered intensity has three factors: the finite size of the incident beam,

the wavelength resolution and the pixel size on the detector (Pedersen et al., 1990). We consider

here only the first two points since the pixel size (7.5x7.5 mm2) has a negligible effect.

The q-resolution at a given q may be written according to a Taylor expansion as:
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∆λ/λ is related to the FWHM (full width at half maximum) value of the triangular function

describing the wavelength distribution by  FWHM=λ0(∆λ/λ). ∆θ is related the width of the direct

beam (Figure 11). A detailed description of  ∆λ/λ (δλ/λ) and ∆θ  are given in the Appendix.
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From ( 4), one sees clearly that ∆q2 depends on the wavelength spread and also on q. Taking λ=6 Å,

∆λ/λ=10% and ∆θ=2x10-3 rad, typical values for a D22 experiment (see Table 1), the evolution of

∆q2 as a function of q is presented in Figure 2. The contribution from ∆θ is quasi-constant versus q.

That from λ increases with q. At low q (< 10-2 Å-1), the uncertainly on q is dominated by the

distribution in angle. At large q-values, ∆q is due to the wavelength spread.
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Figure 2: Contributions of ∆λ/λ (s), ∆θ (+) to the total q-distribution, ∆q2 (u). Curves are calculated for λ=6 Å,
∆λ/λ=10% and ∆θ=10-3 rad.

The resolution function R(q’,q,∆q) describes the distribution of the q-vectors at a given instrumental

configuration. The experimental intensity Iexp is the real intensity scattered by the sample KcF2(q,ro)

( 2) smeared by the resolution function R(q’,q,∆q):
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Assuming a gaussian function for the resolution (Pedersen et al., 1990), equation 5 yields:
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In practice, the range of integration q’-8 , q’+8  is replaced by q’-a, q’+a where a depends on the

width of the gaussian function, i.e. on ∆q2. The higher ∆q2, the larger is the integration range which

has to be used A too small integration range would yield to an underestimation of the smearing,

particularly at high q. In Figure 3, the gaussian q-distribution at small and large q are shown. ∆q2 is
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calculated assuming the same angle and wavelength distributions as in Figure 3, λ= 6 Å, ∆λ/λ=

10% and ∆θ= 10-3 rad (i.e. ∆q(0)= 6x10-3 Å-1). At small q, 5 points around q would be enough for

the integration, whereas 30 points are needed at high q.
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Figure 3: Gaussian q-distribution function and integration range at small and high q. λ=6 Å, ∆λ/λ=10% and
∆θ=10-3 rad.

Effect of the beam divergence and size: θ  resolution

As shown in Table 1 and Figure 11, ∆θ varies between 8x10-4 to 2.6x10-3 rad on D22. These

smearing effects are presented in Figure 4. In insert, a zoom of the low-q region is presented; the

direct beam size is compared to the width of the first oscillation of the ideal form factor and the

resulting smeared curve is drawn. The direct beam size has a large influence at small angles

inducing an intensity decrease of the plateau and smoothing the first oscillations.
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Figure 4: Effect of the ∆θ on the ideal scattering of a monodisperse spherical shell, r0=200 Å. λ=6 Å and ∆λ/λ=0.
( ) ∆θ=0 rad; ( ) ∆θ=1 10-3 rad corresponding to ∆q(0)=2.1x10-3 Å-1; ( ) ∆θ=2x10-3 rad 
corresponding to ∆q(0)=4.2x10-3 Å-1

Insert: comparison of the direct beam width ( ) ∆θ=1x10-3 rad (∆q(0)=2.1x10-3 Å-1) with the width of the

first oscillation of the form factor, ( ) ∆θ=0 and the resulting smeared curve ( ) ∆θ=1x10-3 rad.
Curves plotted in semi-log scale.
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Figure 5: Effect of the wavelength resolution on the ideal scattering of a monodisperse spherical shell, r0=200 Å.
λ=6 Å and ∆θ=0. ( ) ∆λ/λ=0; ( )∆λ/λ=10%; ( ) ∆λ/λ=20% and (+) ∆λ/λ=40%.
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In Figure 5, one sees that on such a sample, the effects are most noticeable for ∆λ/λ>20%. Above

this value, the oscillations vanish. Below 20%, the oscillations are still visible but a broadening is

observed. In contrast with the θ-resolution, the smearing effects by λ are important at large q.

Application: Evidence of wavelength spread

A simple and easy experiment to demonstrate the wavelength spread is to use a polycrystalline

sample, giving narrow Bragg peaks, with several orders at large angles (> 0.1 Å-1). For example

tetradecanol, octadenol (Né et al., 2000) or silver behenate (Huang et al., 1993) are currently used

for q-range calibration and give their first order Bragg peak at qb : 0.1583, 0.1521 and 0.10763 Å-1

respectively.

In this range of q larger than 0.1 Å-1 the uncertainty in q is mainly governed by the wavelength

spread (Figure 2). At the position of nth Bragg peak, equation ( 4) becomes:

( ) ( )θλ
2222 n

bb
n
b qqnq ∆+∆=∆ ( 7)

• We consider first that the crystalline structure factor is ideal and gives delta function at the

positions qn equal to qb, 2qb, …, nqb, n being an integer. The structure factor smeared by the

resolution function may be developed as a sum of gaussian functions of maxima at qb, 2qb, …,

nqb:
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An is a scaling intensity factor.

We call ( )exp
n
bq∆ , the characteristic width (see appendix) of the experimental nth Bragg peak

assuming a gaussian geometry. The wavelength resolution is directly deduced from the data by:

( )[ ] ( )[ ]22
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• In a more realistic case, the Bragg peaks have a finite size and a gaussian shape described by

Pn(q,nqb,∆qc). The real structure factor is the sum of:

( ) ( )∑=
N

nnncristal qSAqS  with ( 10)
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∆db is the variation of period in the real space around db, the average period ( bb qd π2= ).
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The smearing of two gaussian functions is also a gaussian function of characteristic width ( )exp
n
bq∆ ,

but there is no simple analytical expression to link it with n
bq∆  and cq∆ . The calculation has to be

done numerically. We developed a Fortran program with input parameters ∆qc and ( )exp
n
bq∆  (the

characteristic width of the experimental nth Bragg peak). The program increases ( )n
bq∆ by step of

10-4 from an initial value of 2x10-4 Å-1 and calculates the reduced chi-squared χ2 between the data

obtained by convolution ( 12) and the gaussian of width ( )exp
n
bq∆ . It selects the parameter

corresponding to the smallest χ2.

( )∑ −
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n
b nq

qdS
qqGqS

1
)(

),()(
2

2χ
( 13)

Where nq is the number of points of calculation.

The wavelength spread is then deduced from ( )n
bq∆ with ( 9).

This experiment has been done on D22 (ILL) with silver behenate. Silver behenate was purchased

by Johnson Matthey chemicals and used without further treatment, but kept in a dry dark place.

Three wavelengths 6, 8 and 10 Å have been used. The collimation distances C were varied from

17.6 m to 2.8 m to show broadening of the Bragg peak width due to divergence of the direct beam.

The sample to detector distance was fixed at 2 m, with a 390 mm detector offset, to cover the

largest possible q-range. For the two smallest collimation distances, an attenuator was placed in the
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beam to avoid detector damage due to the high count rates in the Bragg peaks. In these experimental

conditions, three Bragg peaks are visible for λ=6 and 8 Å, two for λ=10 Å. After a radial averaging,

the data were divided by a water spectra measured in the same experimental conditions in order to

correct the detector geometry.

The Bragg peaks are fitted with a gaussian function. The half widths ( )exp
n
b∆ are summarized in

Table 1. The shapes and sizes of the direct beam are shown in Figure 11 for λ=6 Å. An example of

spectra obtained with λ =6 Å and C=14.4 m where three Bragg peaks are visible is presented in

Figure 6.

Firstly, we have assumed that Bragg peaks from the Ag-Behenate were infinitely sharp (∆qc=0). We

note here that the width of the experimental Bragg peaks does not vary for ∆θ  smaller or equal to

10-3 rad. From ( 9), we deduce an average value for the wavelength distribution of ∆λ/λ =0.134 for

the 1st order Bragg peak, ∆λ/λ=0.122 for the 2nd order Bragg peak. The values found are slightly too

high, in comparison with that obtained with time of flight measurement. The overestimate of ∆λ/λ

may be due to the hypothesis ∆qc =0.

Consequently, the silver behenate was also studied on the x-ray beam line D2AM at the ESRF so

that the wavelength spread (∆λ/λ =10-4) is negligible. It was measured for 10 s at 15.02 keV and

recorded on a CCD camera, to get a good spatial resolution. ∆q(0) (direct beam) was 0.0019 Å-1 (∆θ

=1.18x10-4 rad) with the configuration used and the characteristic width of the first order Bragg

peak is ( ) 004.0exp
1 =∆ bq  Å-1. From ( 12) and the method described above, we deduced ∆qc =0.0035

Å-1 (∆qc
2=1.22x10-5 Å-2). ∆qc is thus not negligible; it is of the same order as ∆qn

2(θ) (see Table 1).

The wavelength spreads have been calculated again with ( 12). The values of ( )n
bq∆  corrected from

the silver behenate period spread ∆qc are given in the Table 2. ∆λ/λ is deduced with ( 9). The

average value for ∆λ/λ is now 0.109 (±0.007) for the 1rst order Bragg peak and 0.113 (±0.004) for

the 2nd order Bragg peak, in good agreement with the 10% determined by time of flight.

The values of ∆λ/λ obtained with time of flight experiment and with the method presented here are

in good agreement. From an experimental point of view, our measurement is easy to do in

comparison with a time of flight experiment that requires adapting the instrument. However, the

data treatment needs further development and a good knowledge of the sample is essential.
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Figure 6: Example of SANS spectra of silver behenate obtained for λ=6 Å and Collimation=14.4 m. Squares are
the experimental points, full lines are the best fits obtained with gaussian functions.

Polydispersity

Most colloidal suspensions are composed of polydisperse objects. The form factor of monodisperse

particles F2(q,r0) ( 1) is smeared with the size distribution function G(ro,r,x), where x is the

parameter characterizing the width of the distribution:

( ) ∫
∞

=
0

2 ),(),,(, drrqFxrrGKrqI oocopoly
( 14)

Gaussian, log-normal functions or Schultz distribution are often used to represent the size spread,

around an average value ro. The normalized expressions ( ∫
∞

=
0

1)( drrG ) are given here; their shapes

and principal properties compared in Figure 7.

• The gaussian function is:
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where ∆ro is the half-width of the gaussian function for ( ) 606.0)21exp()(, 00 =−=∆+ ooG rGrrrG .

The gaussian function is symmetric about its maximum ro.

• The log-normal distribution is equal to:



Instrumental resolution and polydispersity, ILL technical report ILL01GR08T, Isabelle Grillo, May-2001

11

( ) 















−=

2

2 ln
2

1
exp

2
1

,,
r
r

r
rrG o

oo
ooLN

σπσ
σ

( 16)

σ0 is the standard mean deviation, related to the half width by ∆r0=σ0r0. The maximum of the
function is found for ( )2exp oorr σ−= .

• The Schultz distribution is:
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The root mean square deviation from the mean is ( ) 211/ += Zroσ . The maximum of the curve is

found at ( )1/ += ZZrR o

The three functions are plotted in Figure 7. ro is fixed at 200 Å. For the log-normal and the Schultz

functions, the maximum of the curves are slightly smaller than ro. The half-widths at

)21exp()( −orG are related by:

( ) ( ) ( ) )(1/log 21 SchultzZrnormalrgaussianr oooo +=−=∆ σ ( 18)

Finally, these three expressions yield very similar numerical values (Figure 7) and it is certainly not

possible to distinguish them by a SANS experiment.

In the following, we will use a log-normal law to illustrate the effects of polydispersity.
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Figure 7: Comparison of the 3 size distribution laws. ro=200 Å; ∆ro =40 Å (gaussian); σo=0.2 (log-normal) and
Z=90 (Schultz).
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The effect of polydispersity on the form factor of a spherical shell of inner radius of 200 Å is

illustrated in Figure 8. It is clearly visible for σ0 > 10%. The oscillations vanish and the minimum of

the first oscillation is shifted to higher q-values.

0.01

0.1

1

0.001 0.01 0.1 1q (Å-1)

F
2 (q

)

Figure 8: Effect of the polydispersity on the ideal scattering of a monodisperse spherical shell, r0=200 Å. ( )
σ0=0; ( ) σ0=10%; ( ) σ0=20%.

Instrumental resolution and polydispersity

If one compares Figure 5 and Figure 8, the effect of polydispersity or wavelength resolution are

very similar. Indeed, mathematically, the smearing equations ( 6) and ( 14) are similar. An

experimental curve results from the smearing of the ideal intensity both by the resolution and the

polydispersity functions:

( ) ( ) ( ) ( ) ',',
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As q and r0 are independent variables, ( 19) is also equal to:
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Remark: Taking a Gaussian law for the polydispersity, the total resolution function is symmetrical

according the variables q and r. Thus, the smearing effects due to ∆ro or ∆qo may be equivalent.

It is interesting now to compare the two smearing influences. We consider ∆λ/λ=10%, and a

spherical shell of inner radius r0=200 Å, outer one 220 Å and polydispersity σ0=0.2 (r0=200 ± 40 Å).

These values are typically found with a dilute sample of AOT, an anionic surfactant (Fontell, 1973)

in a dilute salt suspension. The calculated intensity is shown in Figure 9. Equivalent spectra are

obtained either by fixing ∆λ/λ at 42% or the radius polydispersity at 0.22 (r0=200 ± 44 Å). This

example shows clearly that the smooth of the pattern is mainly due to the sample characteristics and

not to the spectrometer resolution.
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0.1

1

0.001 0.01 0.1 1q (Å-1)

F
2  (q

)

∆θ=10-3 rad; ∆λ/λ=0.1; σ=0.2
∆θ=10-3 rad; ∆λ/λ=0; σ=0.22

∆θ=10-3 rad; ∆λ/λ=0.42; σ=0+

Figure 9: Comparison of the effect of polydispersity and wavelength resolution on the shell form factor. λ=6 Å,
∆θ=10-3 rad. A realistic spectra obtained with ∆λ/λ=10% and σ=0.2 is equivalent to a spectra obtained with
∆λ/λ=0% and σ=0.22 or ∆λ/λ=42% and σ=0.

Conclusion

The contribution of the instrumental resolution to the scattering pattern is a general question. This

knowledge is crucial for the data analysis because instrumental resolution and sample polydispersity

have similar smearing effects on the SANS data. Smoothing of the form factor oscillations,

broadening of Bragg peaks or of the maxima are observed. Plotting I(q) versus q in a log-log

representation may show a decrease of the initial slope, due to a smearing by a large direct beam

may also be present (Né et al., 2000). As shown with simulation, 20% is the limiting value above
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which the smearing effect by the wavelength becomes drastic and yields to a real change in the

scattered pattern.

For the spectrometer D22 (ILL), the conclusions are the following. At low q (< 5x10-2 Å-1), the

smearing is dominated by the size and divergence of the direct beam. At large q (>10-1 Å-1), the

wavelength spread dominates the smearing and enlargement of Bragg peaks (for example) may be

observed. The 10% wavelength resolution is not a limiting factor to measuring possible form factor

oscillations. The beam divergence does not affect the shape of the Bragg peaks measured at large q

(> 0.1 Å-1) as long as the angular divergence ∆θ  is smaller than 10-3 rad as demonstrated with the

silver behenate experiments when varying the collimation distance. The choice of collimation is a

compromise between the flux and the resolution that has to be considered for each experiment.
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Appendix: Definition of ∆θ and ∆λ/λ; comparison between triangle and gaussian

functions

In the entire text gaussian functions are used to describe the wavelength and the angular

distribution. We define here where the widths are taken. Indeed, the ∆λ/λ usually given is the

FWHM and has to be replaced by ∆x0, the width parameter in the gaussian equation.

We recall that a gaussian function centered on xo of half width ∆x0 at the value

( )21exp
2

1
),,(

0
00 −

∆
=∆

x
xxxG

π
 is given by:

( ) ( )











∆

−
−

∆
=∆ 2

0

2
0

0
00

2
exp

2
1

,,
x

xx

x
xxxG

π
( 21)

The FWHM of a gaussian is:

2ln22 0xFWHM ∆= ( 22)

Wavelength distribution

The wavelength distribution is ideally triangular but experiments show that gaussian fits gives

reasonable results and improve the numerical treatment (Pedersen et al., 1990). ∆λ/λ is deduced

from the FWHM of the triangular function. It is usually between 5% and 20% with a neutron

velocity selector, a value determined by time of flight measurements. Gaussian and triangular

function are compared in Figure 10.

A triangular function of unit area, centered on λo of FWHM λo(∆λ/λ) is given by:

( )
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0
2
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2
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∆
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+

∆
−
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( 23)

Now, for calculation, we use a gaussian function where the relevant parameter is σλ, the half width

at the value ( )21exp
2

1
−

λσπ
.
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We replace the triangular function by a gaussian one with the same FWHM. From ( 22), one

deduces:

( )
2ln22

0 λλλ
σ λ

∆
= ( 24)

Thus, the relative wavelength spread introduces in ( 1) is:

( ) ( )
2ln22

λλ
λδλ

∆
= ( 25)

0
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1
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λ (Å)

T
 ( λ
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G

( λ
)

G(λ0)exp(-0.5)

λο(∆λ/λ)

λο(∆λ/λ)/(2ln2)1/2

λο

G(λ0)

G(λ0)/2

Figure 10: Comparison between triangular and gaussian functions with the same areas used to represent the
wavelength distribution.

Angular distribution

The angular distribution ∆θ is deduced from the width of the direct beam. On q=0, θ= 0 and ( 3) is

reduced to:

( ) θ
λ
π

∆=∆
4

0q ( 26)

On D22, the measurements show that reasonable fits are obtained with a gaussian function, even if

deviation is observed in the tails. In these conditions ∆q(0) is equivalent to ∆x0 in ( 21) and one

easily deduce ∆θ with ( 26).

∆θ can also be calculated with the geometry of the instrument. We have seen in the introduction

that the beam size on the detector was CDSSd = . The direct beam divergence is:

CSd=∆θ ( 27)

Example of experimental direct beam shapes for λ=6 Å and various collimation distances C are

presented in Figure 11.
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Figure 11: Shape and size of the direct beam of D22 at λ=6 Å for the different possible collimation distances.
Dotted lines are a guide for the eyes.
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Tables

λ = 6 Å
Coll.(m) 17.6 14.4 11.2 8.0 5.6 4.0 2.8
∆θ (rad) 1.109 10-3 1.14 10-3 1.18 10-3 1.48 10-3 1.76 10-3 2.10 10-3 2.57 10-3

1rst Bragg peak
( )exp

1
bq∆ (Å-1) 0.0066 0.0066 0.0066 0.0069 0.0072 0.0071 0.0078

∆q1
2(θ) 5.20 10-6 5.68 10-6 6.09 10-6 9.58 10-6 1.35 10-5 1.93 10-5 2.89 10-5

∆λ/λ (qb) 0.135 0.134 0.134 0.135 0.135 0.130 0.134
2nd Bragg peak

( )exp
2
bq∆ (Å-1) 0.011 0.011 0.011 0.0112 0.0115 - * - *

∆q2
2(θ) 5.09 10-6 5.56 10-6 5.96 10-6 9.38 10-6 1.33 10-5 1.89 10-5 2.83 10-5

∆λ/λ (2qb) 0.118 0.117 0.117 0.118 0.119 - * - *
3rd Bragg peak

( )exp
3
bq∆ (Å-1) 0.018 0.017 0.0165 0.0165 - * - * - *

∆q3
2(θ) 5.08 10-6 5.56 10-6 5.96 10-6 9.38 10-6 1.33 10-5 1.89 10-5 2.83 10-5

∆λ/λ (3qb) 0.130 0.123 0.119 0.118 - * - * - *

λ = 8 Å
Coll.(m) 17.6 14.4 11.2 8.0 5.6 4.0 2.8
∆θ (rad) 1.11 10-3 1.2110-3 1.27 10-3 1.34 10-3 1.78 10-3 2.39 10-3 3.18 10-3

1rst Bragg peak
( )exp

1
bq∆ (Å-1) 0.0063 0.0063 0.0063 0.0063 0.0067 0.0068 0.0078

∆q1
2(θ) 1.72 10-6 2.02 10-6 2.24 10-6 2.46 10-6 4.41 10-6 7.87 10-6 1.39 10-5

∆λ/λ (qb) 0.132 0.131 0.131 0.130 0.131 0.124 0.126
2nd Bragg peak

( )exp
2
bq∆ (Å-1) 0.011 0.011 0.011 0.011 0.0115 0.012 0.012

∆q2
2(θ) 5.20 10-6 5.68 10-6 6.09 10-6 9.58 10-6 1.35 10-5 1.93 10-5 2.89 10-5

∆λ/λ (2qb) 0.119 0.118 0.118 0.118 0.122 0.125 0.126
3rd Bragg peak

( )exp
3
bq∆ (Å-1) 0.017 0.017 0.017 - * - * - * - *

∆q3
2(θ) 1.72 10-6 2.03 10-6 2.25 10-6 - * - * - * - *

∆λ/λ (3qb) 0.116 0.116 0.116 - * - * - * - *

λ =10 Å
Coll.(m) 17.6 14.4 11.2 8.0 5.6 4.0
∆θ (rad) 6.70 10-4 7.60 10-4 9.50 10-4 1.00 10-3 1.05 10-3 1.40 10-3

1rst Bragg peak
( )exp

1
bq∆ (Å-1) 0.0063 0.0063 0.0063 0.0064 0.0066 0.0068

∆q1
2(θ) 7.04 10-7 9.05 10-7 1.41 10-6 1.90 10-6 1.97 10-6 3.21 10-6

∆λ/λ (qb) 0.134 0.133 0.131 0.131 0.132 0.131
2nd Bragg peak

( )exp
2
bq∆ (Å-1) 0.011 0.011 0.011 0.011 0.011 - *

∆q2
2(θ) 7.09 10-7 9.12 10-7 1.43 10-6 1.91 10-6 1.98 10-6 - *

∆λ/λ (2qb) 0.119 0.119 0.118 0.118 0.118 - *

Table 1: Determination of ∆λ/λ according to wavelength and direct beam width. ( )exp
n
bq∆  is the half width of the

experimental bragg peaks. We suppose here ∆qc=0.

* Bad statistic on the Bragg peak for a good fit.
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λ = 6 Å
Coll.(m) 17.6 14.4 11.2 8.0 5.6 4.0 2.8
∆θ (rad) 1.109 10-3 1.14 10-3 1.18 10-3 1.48 10-3 1.76 10-3 2.10 10-3 2.57 10-3

1rst Bragg peak
( )corbq1∆  (Å-1) 0.0057 0.0057 0.0057 0.0060 0.0064 0.0063 0.0071

∆q1
2(θ) 5.20 10-6 5.68 10-6 6.09 10-6 9.58 10-6 1.35 10-5 1.93 10-5 2.89 10-5

∆λ/λ (qb) 0.114 0.113 0.112 0.112 0.114 0.099 0.101
2nd Bragg peak

( )corbq 2∆ (Å-1) 0.0105 0.0105 0.0105 0.0107 0.0111 - * - *

∆q2
2(θ) 5.09 10-6 5.56 10-6 5.96 10-6 9.38 10-6 1.33 10-5 1.89 10-5 2.83 10-5

∆λ/λ (2qb) 0.112 0.112 0.112 0.112 0.115 - * - *
3rd Bragg peak

( )corbq3∆ (Å-1) 0.0178 0.0162 0.0162 0.0162 - * - * - *

∆q3
2(θ) 5.08 10-6 5.56 10-6 5.96 10-6 9.38 10-6 1.33 10-5 1.89 10-5 2.83 10-5

∆λ/λ (3qb) 0.118 0.117 0.117 0.116 - * - * - *

λ = 8 Å
Coll.(m) 17.6 14.4 11.2 8.0 5.6 4.0 2.8
∆θ (rad) 1.11 10-3 1.2110-3 1.27 10-3 1.34 10-3 1.78 10-3 2.39 10-3 3.18 10-3

1rst Bragg peak
( )corbq1∆ (Å-1) 0.0053 0.0053 0.0053 0.0053 0.0058 0.0059 0.0071

∆q1
2(θ) 1.72 10-6 2.02 10-6 2.24 10-6 2.46 10-6 4.41 10-6 7.87 10-6 1.39 10-5

∆λ/λ (qb) 0.109 0.108 0.107 0.106 0.111 0.100 0.111
2nd Bragg peak

( )corbq 2∆ (Å-1) 0.0105 0.0105 0.0105 0.0105 0.0111 0.0116 0.0116

∆q2
2(θ) 5.20 10-6 5.68 10-6 6.09 10-6 9.58 10-6 1.35 10-5 1.93 10-5 2.89 10-5

∆λ/λ (2qb) 0.113 0.113 0.113 0.113 0.117 0.120 0.114
3rd Bragg peak

( )corbq3∆ (Å-1) 0.0157 0.0157 0.0157 - * - * - * - *

∆q3
2(θ) 1.72 10-6 2.03 10-6 2.25 10-6 - * - * - * - *

∆λ/λ (3qb) 0.114 0.114 0.114 - * - * - * - *

λ = 10 Å
Coll.(m) 17.6 14.4 11.2 8.0 5.6 4.0
∆θ (rad) 6.70 10-4 7.60 10-4 9.50 10-4 1.00 10-3 1.05 10-3 1.40 10-3

1rst Bragg peak
( )corbq1∆  (Å-1) 0.0053 0.0053 0.0053 0.0055 0.0057 0.0059

∆q1
2(θ) 7.04 10-7 9.05 10-7 1.41 10-6 1.90 10-6 1.97 10-6 3.21 10-6

∆λ/λ (qb) 0.112 0.111 0.107 0.109 0.114 0.111
2nd Bragg peak

( )corbq 2∆ (Å-1) 0.0105 0.0105 0.0105 0.0105 0.0105 - *

∆q2
2(θ) 7.09 10-7 9.12 10-7 1.43 10-6 1.91 10-6 1.98 10-6 - *

∆λ/λ (2qb) 0.114 0.113 0.113 0.112 0.112 - *

Table 2: Determination of ∆λ/λ for various wavelengths and direct beam widths after correction of
( )exp

n
bq∆ from the period variation of the silver behenate, ∆qc=0.004 Å-1.
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