print

Eine Quantenwelle in zwei Kristallen

Durchbruch in der Neutronenphysik: Einem Team von TU Wien, INRIM Turin und ILL Grenoble gelang es nun erstmals, aus zwei getrennten Kristallen ein Neutronen-Interferometer zu bauen.

Teilchen können sich wellenartig auf unterschiedlichen Wegen gleichzeitig bewegen – das ist eine der wichtigsten Erkenntnisse der Quantenphysik. Besonders eindrucksvoll zeigt sich das in Neutroneninterferometern: Man schießt Neutronen auf einen Kristall, die Neutronen-Welle wird in zwei Portionen aufgeteilt, die dann wieder miteinander überlagert werden. So ergeben sich charakteristische Interferenzmuster – der Beweis für die Welleneigenschaften der Materie.

Solche Neutroneninterferometer spielen seit Jahrzehnten eine wichtige Rolle für Präzisionsmessungen und die physikalische Grundlagenforschung. Ihre Größe war bisher aber begrenzt, weil sie nur funktionierten, wenn sie aus einem einzigen Kristall hergestellt wurden. Schon seit den 1990erjahren versuchte man, auch Interferometer aus zwei getrennten Kristallen herzustellen – bisher ohne Erfolg. Doch genau dieses Kunststück gelang nun einem Team von TU Wien, INRIM Turin und ILL Grenoble, durch eine Hochpräzisionsmessung mit extrem exakt ausgerichteten Kristallen. Das eröffnet ganz neue Möglichkeiten für Quantenmessungen, bis hin zur Erforschung von Quanteneffekten im Gravitationsfeld.

Der erste Schritt im Jahr 1974

Die Geschichte der Neutroneninterferometrie begann 1974 in Wien. Helmut Rauch, langjähriger Professor am Atominstitut der TU Wien, stellte aus einem Silizium-Kristall das erste Neutronen-Interferometer her und konnte am Wiener TRIGA-Reaktor die ersten Interferenzen mit Neutronen beobachten. Wenige Jahre später konnte die TU Wien an der weltstärksten Neutronenquelle, dem Institut Laue-Langevin (ILL) in Grenoble, die permanente Interferometriestation S18 einrichten, die bis heute besteht.

„Das Prinzip des Interferometers ähnelt dem berühmten Doppelspaltexperiment, bei dem ein Teilchen wellenartig auf einen Doppelspalt geschossen wird, als Welle beide Spalte gleichzeitig durchdringt und sich dann mit sich selbst überlagert, sodass danach am Detektor ein charakteristisches Wellenmuster entsteht“, erklärt Hartmut Lemmel vom Atominstitut der TU Wien.

Doch während beim Doppelspaltexperiment die beiden Spalte nur einen minimalen Abstand voneinander entfernt sind, teilt man die Teilchen im Neutroneninterferometer in zwei verschiedene Pfade auf, zwischen denen mehrere Zentimeter liegen. Die Teilchenwelle erreicht eine makroskopische Größe – trotzdem entsteht durch Überlagerung der beiden Pfade ein Wellenmuster, das eindeutig beweist: Das Teilchen hat sich nicht für einen der beiden Pfade entschieden, es hat beide Pfade gleichzeitig benutzt.

Important for fundamental research

"This is an important breakthrough for neutron interferometry" says Michael Jentschel from the ILL. "Because if you can control two crystals well enough that interferometry is possible, you can also increase the distance and expand the size of the overall system quite easily."

For many experiments, this total size determines the accuracy that can be achieved in the measurement. It will become possible to investigate fundamental interactions with unprecedented accuracy – for example, the sensitivity of neutrons to gravity in the quantum regime and to hypothetical new forces.


Re.: “Neutron interference from a split-crystal interferometer", by Hartmut Lemmel et al. J. Appl. Cryst. (2022)
The article can be accessed at http://doi.org/10.1107/S1600576722006082

ILL instrument : Thermal neutron interferometer S18

ILL Contacts:  Hartmut Lemmel, Michael Jentschel